dc.contributorGiraldo Mejía, Ángel María
dc.contributorCorrea Cardona, Héctor Jairo
dc.creatorZabala Mendoza, Alcides
dc.date.accessioned2021-09-17T14:20:32Z
dc.date.accessioned2022-09-21T15:33:14Z
dc.date.available2021-09-17T14:20:32Z
dc.date.available2022-09-21T15:33:14Z
dc.date.created2021-09-17T14:20:32Z
dc.date.issued2019-10-25
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80226
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3381871
dc.description.abstractEl período de transición de la gestación a la lactancia genera cambios hormonales en vacas lecheras los cuales alteran el metabolismo energético, el consumo, la producción y la calidad de la leche. Se ha sugerido que la L-carnitina podría contribuir reducir estas alteraciones al favorecer el metabolismo de lípidos. El objetivo de este estudio fue evaluar el efecto de la aplicación intramuscular de L-carnitina en dosis de 5, 10 y 15 gramos cada 5 días desde el día 20 preparto hasta el día 15 posparto sobre el consumo de materia seca (CMS), balance de energía (BE), producción (PL) y calidad de la leche. Para ello se seleccionaron 24 vacas Holstein entre segundo y sexto parto, cuya base de alimentación fue pastoreo de Cenchrus clandestinus. Hochst Ex chiov y un complemento alimenticio ofrecido a razón de 2 kg diarios durante el preparto. Después del tercer día postparto diariamente se ofreció un kg de complemento alimenticio por cada cuatro litros de leche producido. 20 días antes de la fecha prevista del parto y hasta 15 días después de éste las vacas recibieron cada cinco días la aplicación intramuscular de L-carnitina en solución de acuerdo con los siguientes tratamientos: T0 (Grupo control, sin aplicación de Lcarnitina), T1 (125 ml de solución equivalente a 5 g/d), T2 (250 ml de solución equivalente a 10 g/d) y T3 (375 ml de solución equivalente a 15 g/d). Cada tratamiento estuvo conformado por seis vacas. Mediante la técnica de indicadores se estimó el CMS. Los días 5, 10, 15 y 20 de lactancia se midieron el contenido de grasa (GrL) y proteína en la leche (PrtL). El día 270 de gestación y los días 10 y 20 postparto se calculó el BE de cada vaca. Los resultados de estas mediciones se analizaron en un diseño de parcelas divididas en el tiempo. Los tratamientos no afectaron el CMS, la PL, PrtL, GrL y el BE (p>0.05). Se concluye que la aplicación parenteral de L-carnitina en los niveles utilizados en el experimento a vacas Holstein en período de transición no afectó los parámetros evaluados. (Texto tomado de la fuente)
dc.description.abstractThe period of transition from gestation to lactation generates hormonal changes in dairy cows which alter the energy metabolism, consumption, production and quality of milk. It has been suggested that L-carnitine could contribute to reduce these alterations by favoring lipid metabolism. The objective of this study was to evaluate the effect of the intramuscular application of L-carnitine in doses of 5, 10 and 15 grams every 5 days from day 20 prepartum until day 15 postpartum on dry matter intake (CMS), balance of energy (BE), production (PL) and milk quality. To this end, 24 Holstein cows were selected between second and sixth calving, whose feeding base was grazed by Cenchrus clandestinus. Hochst Ex chiov and a dietary supplement offered at a rate of 2 kg per day during prepartum. After the third postpartum day, one kg of food supplement was offered daily for every four liters of milk produced. 10 days before the expected date of delivery and up to 15 days after the cows received the intramuscular application of L-carnitine in solution every five days in accordance with the following treatments: T0 (control group, without application of L-carnitine) , T1 (125 ml of equivalent solution at 5 g / d), T2 (250 ml of equivalent solution at 10 g / d) and T3 (375 ml of equivalent solution at 15 g / d). Each treatment consisted of six cows. Using the indicator technique, the CMS was estimated. On days 5, 10, 15 and 20 of lactation, the fat content (GrL) and protein in the milk (PrtL) were measured. On day 270 of pregnancy and on days 10 and 20 postpartum the BE of each cow was calculated. The results of these measurements were analyzed in a plot design divided in time. The treatments did not affect the CMS, PL, PrtL, GrL and BE (p> 0.05). It is concluded that the parenteral application of L-carnitine in the levels used in the experiment to Holstein cows in the transition period did not affect the parameters evaluated.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherDepartamento de Producción Animal
dc.publisherFacultad de Ciencias Agrarias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAdewuyi, A. A., Gruys, E., & van Eerdenburg, F. J. C. M. (2005). Non esterified fatty acids (NEFA) in dairy cattle. A review. Veterinary Quarterly, 27(3), 117–126. https://doi.org/10.1080/01652176.2005.9695192 Agudelo Gómez, D., & Bedoya Mejía, O. (2004). Composición nutricional de la leche de ganado vacuno. Revista Lasallista de Investigación [en linea] 2005, 2 (enero-junio) : [Fecha de consulta: 4 de noviembre de 2018] Disponible en:<http://www.redalyc.org/articulo.oa?id=69520107> ISSN 1794-4449. Revista Lasallista de Investigación, 2(1). Retrieved from http://www.redalyc.org/html/695/69520107/ Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions On, 19(6), 716–723. Allen, M. S., & Piantoni, P. (2013). Metabolic control of feed intake: implications for metabolic disease of fresh cows. The Veterinary Clinics of North America. Food Animal Practice, 29(2), 279–97. https://doi.org/10.1016/j.cvfa.2013.04.001 Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H., & Zaidi, N. (2014). De novo lipogenesis in health and disease. Metabolism, 63(7), 895–902. Angelini, C., Federico, A., Reichmann, H., Lombes, A., Chinnery, P., & Turnbull, D. (2006). Task force guidelines handbook: EFNS guidelines on diagnosis and management of fatty acid mitochondrial disorders. European Journal of Neurology, 13(9), 923–929. https://doi.org/10.1111/j.1468-1331.2006.01482.x AOAC International., & Latimer, G. W. J. (2016). Official methods of analysis of AOAC International. AOAC International. Aristizabal, J., & Pérez, R. (2005). Factores que afectan el consumo voluntario de materia seca en vacas de producción, en trópico alto. Fondo Editorial Biogénesis, 263–281. Babcock, S. M. (1890). new method for the estimation of fat in milk especially adapted to creameries and cheese factories. Ballard, F. J., Filsell, O. H., & Jarrett, I. G. (1972). Effects of carbohydrate availability on lipogenesis in sheep. Biochem J, 126, 193–200. Beam, S. W., & Butler, W. R. (1999). Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, 411–424. Bell, A. W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science, 73(9), 2804–2819. Bell, A. W., & Bauman, D. E. (1997). Adaptations of glucose metabolism during pregnancy and lactation. Journal of Mammary Gland Biology and Neoplasia, 2(3), 265–278. Bell, A. W., Burhans, W. S., & Overton, T. R. (2000). Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proceedings of the Nutrition Society, 59(01), 119–126. Bobe, G., Young, J. W., & Beitz, D. C. (2004). Invited Review: Pathology, Etiology, Prevention, and Treatment of Fatty Liver in Dairy Cows. Journal of Dairy Science, 87(10), 3105–3124. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=14792706&lang=es&site=ehost-live Bohinski, R. C. (John C. U. (1998). Bioquímica Quinta edición (Addison We). México. Bonner, C. M., DeBrie, K. L. Hug, G., Landrigan, E. Taylor, B. J., 1995. “Effects of Parenteral L-Carnitine Supplementation on Fat Metabolism and Nutrition in Premature Neonates.” The Journal of Pediatrics 126(2): 287–92. http://www.sciencedirect.com/science/article/pii/S0022347695705627 (May 19, 2014). Brass, E. P. (2000). Supplemental carnitine and exercise. The American Journal of Clinical Nutrition, 72(2), 618S–623S. https://doi.org/10.1093/ajcn/72.2.618S Bremer, J. (1983). Carnitine--metabolism and functions. Physiological Reviews, 63(4), 1420–1480. Retrieved from http://physrev.physiology.org/content/63/4/1420 Brindle, N. P., Zammit, V. A., & Pogson, C. I. (1985). Regulation of carnitine palmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, a tissue with a low capacity for fatty acid synthesis. Biochem J, 232, 177–182. Calvani, M., Benatti, P., Mancinelli, A., D’iddio, s., Giordano, V., Koverech, A., … Brass, E. P. (2004). Carnitine Replacement in End-Stage Renal Disease and Hemodialysis. Annals of the New York Academy of Sciences, 1033(1), 52–66. https://doi.org/10.1196/annals.1320.005 Carlson, D. B., Litherland, N. B., Dann, H. M., Woodworth, J. C., & Drackley, J. K. (2006a). Metabolic effects of abomasal L-carnitine infusion and feed restriction in lactating Holstein cows. Journal of Dairy Science, 89, 4819–4834. https://doi.org/10.3168/jds.S0022-0302(06)72531-0 Carlson, D. B., Litherland, N. B., Dann, H. M., Woodworth, J. C., & Drackley, J. K. (2006b). Metabolic effects of abomasal L-carnitine infusion and feed restriction in lactating Holstein cows. Journal of Dairy Science, 89(12), 4819–34. https://doi.org/10.3168/jds.S0022-0302(06)72531-0 Carlson, D. B., McFadden, J. W., D’Angelo, A., Woodworth, J. C., & Drackley, J. K. (2007). Dietary L-carnitine affects periparturient nutrient metabolism and lactation in multiparous cows. Journal of Dairy Science, 90(7), 3422–41. https://doi.org/10.3168/jds.2006-811 Carlson, D. B., Woodworth, J. C., & Drackley, J. K. (2007). Effect of L-Carnitine Infusion and Feed Restriction on Carnitine Status in Lactating Holstein Cows. Journal of Dairy Science, 90(5), 2367–2376. Retrieved from 10.3168/jds.2006-605 Castillo, J., Olivera, M., & Carulla, J. (2013). Descripción del mecanismo bioquímico de la biohidrogenación en el rumen de ácidos grasos poliinsaturados: una revisión. Revista UDCA Actualidad & Divulgación Científica, 16(2), 459–468. Castro Ruiz, S. M. (2016). Efecto de la aplicación parenteral de L- carnitina sobre balance de energía, concentración de metabolitos plasmáticos y hepáticos y sobre su concentracion plasmática y urinaria en vacas Holstein en el período de transición. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias Medellín. Cerretelli, P., & Marconi, C. (1990). L-Carnitine Supplementation in Humans. The Effects on Physical Performance. International Journal of Sports Medicine, 11(01), 1–14. https://doi.org/10.1055/s-2007-1024754 Chilliard, Y. (1999). Metabolic adaptations and nutrient partitioning in the lactating animal. Biology of Lactation, 503–552. Chow, J. C., & Jesse, B. W. (1992). Interactions between gluconeogenesis and fatty acid oxidation in isolated sheep hepatocytes. Journal of Dairy Science, 75(8), 2142–8. https://doi.org/10.3168/jds.S0022-0302(92)77974-0 Clark, M. A., Stein, R. E. K., Silver, E. J., Khalid, S., Fuloria, M., & Esteban-Cruciani, N. V. (2017). Carnitine deficiency in preterm infants: A national survey of knowledge and practices. Journal of Neonatal-Perinatal Medicine, 10(4), 381–386. Clark, R. H., Chace, D. H., & Spitzer, A. R. (2017). Impact of l-carnitine supplementation on metabolic profiles in premature infants. Journal of Perinatology, 37(5), 566. Coelho, C. de F., Mota, J. F., Bragrança, E., & Burini, R. C. (2005). Aplicações clínicas da suplementação de L-carnitina. Revista de Nutrição, 18(5), 651–659. https://doi.org/10.1590/S1415-52732005000500008 Contreras, P. A. (1998). Síndrome de movilización grasa en vacas lecheras al inicio de la lactancia y sus efectos en salud y producción de los rebaños. Archivos de Medicina Veterinaria, 30(2), 17–27. https://doi.org/10.4067/S0301-732X1998000200002 Contreras, G. A., Strieder-Barboza, C., & Raphael, W. (2017). Adipose tissue lipolysis and remodeling during the transition period of dairy cows. Journal of Animal Science and Biotechnology, 8(1), 41. Correa Cardona, H. J. (2001). El Modelo NRC 2001. Universidad Nacional de Colombia Sede Medellin Facultad de Ciencias Agropecuarias Departamento de Producción Animal Sección de Nutrición Animal Retrieved from http://www.ucv.ve/fileadmin/user_upload/facultad_agronomia/Modelo_NRC_2001.pdf Correa, H. J., Pabón, M. L., & Carulla, J. E. (2009). Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development, 21(4). Dann, H. M., & Drackley, J. K. (2005). Carnitine Palmitoyltransferase I in Liver of Periparturient Dairy Cows: Effects of Prepartum Intake, Postpartum Induction of Ketosis, and Periparturient Disorders. Journal of Dairy Science, 88(11), 3851–3859. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=18742272&lang=es&site=ehost-live Dann, H. M., Varga, G. A., & Putnam, D. E. (1999). Improving energy supply to late gestation and early postpartum dairy cows. Journal of Dairy Science, 82(8), 1765–78. https://doi.org/10.3168/jds.S0022-0302(99)75407-X De Koster, J. D., & Opsomer, G. (2013). Insulin resistance in dairy cows. Veterinary Clinics: Food Animal Practice, 29(2), 299–322. Drackley, J. K. (1999). Biology of Dairy Cows During the Transition Period: the Final Frontier? Journal of Dairy Science, 82(11), 2259–2273. https://doi.org/10.3168/jds.S0022-0302(99)75474-3 Drackley, J. K., Beitz, D. C., & Young, J. W. (1991). Regulation of in vitro palmitate oxidation in liver from dairy cows during early lactation. Journal of Dairy Science, 74(6), 1884–1892. Drackley, J. K., Dann, H. M., Douglas, G. N., Janovick Guretzky, N. A., Litherland, N. B., Underwood, J. P., & Loor, J. J. (2005). Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Italian Journal of Animal Science; Vol 4, No 4 (2005), 4(4), 323–344. Retrieved from http://www.aspajournal.it/index.php/ijas/article/view/ijas.2005.323/241 Drackley, J. K., Overton, T. R., & Douglas, G. N. (2001). Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. Journal of Dairy Science, 84, E100–E112. https://doi.org/10.3168/jds.S0022-0302(01)70204-4 Elsden, S. R., & Phillipson, A. T. (1948). RUMINANT DIGESTION. ANNUAL REVIEW OF BIOCHEMISTRY, 17, 705–726. https://doi.org/10.1146/annurev.bi.17.070148.003421 Erfle, J. D., & Fisher, L. J. (1977). The effects of intravenous infusion of lysine, lysine plus methionine or carnitine on plasma amino acids and milk production of dairy cows. Canadian Journal of Animal Science, 57(1), 101–109. Espinal, L. S., & Montenegro, E. (1977). Zonas de vida o formaciones vegetales de Colombia. Memoria Explicativa Sobre El Mapa de Ecológico. IGAC, Bogotá, 238. Fatro Ibérica. (n.d.). Uriavit Polvo soluble. Retrieved October 13, 2018, from http://www.fatroiberica.es/wp-content/uploads/2017/05/triptico-uriavit-bc-carnitina.pdf Fiore, E., Gianesella, M., Arfuso, F., Giudice, E., Piccione, G., Lora, M., … Morgante, M. (2014). Glucose infusion response on some metabolic parameters in dairy cows during transition period. Archives Animal Breeding, 57(1), 1–9. Flórez, J., Armijo, J. A., & Mediavilla, A. (1997). Farmacología humana. Masson. Fontana Gallego, L., Sáez Lara, M., Santisteban Bailón, R., & Gil Hernández, A. (2006). Compuestos nitrogenados de interés en nutrición clínica. Nutrición Hospitalaria, 21, 15–29. Forbes, J. M. (1977). Interrelationships between physical and metabolic control of voluntary food intake in fattening, pregnant and lactating mature sheep: a model. Animal Science, 24(1), 91–101. https://doi.org/DOI: 10.1017/S0003356100039258 Fox, P. F. (2003). Milk proteins: general and historical aspects. In Advanced Dairy Chemistry—1 Proteins (pp. 1–48). Springer. Galvis Goez, R. D. (2016). Efecto de la complementación con Metionina-Colina y L-Carnitina en vacas Holstein durante el período de transición sobre la acumulación hepática de triglicéridos. Universidad Nacional de Colombia-Sede Medellín. Galvis, R. D., Múnera, E. A., & Marín, A. M. (2005). Relación entre el mérito genético para la producción de leche y el desempeño metabólico y reproductivo en la vaca de alta producción. Revista Colombiana de Ciencias Pecuarias, 18(3), 228–239. García A., K., Campos G., R., & Giraldo P., L. (2016). Suplementación vitamínica y mineral como estrategia para reducir la incidencia de cetosis bovina en el trópico bajo. Revista Colombiana de Ciencia Animal - RECIA, 8(2), 204. https://doi.org/10.24188/recia.v8.n2.2016.188 García, C., Montiel, R. L. A., & Borderas, T. F. (2014). Grasa y proteína de la leche de vaca: componentes, síntesis y modificación. Archivos de Zootecnia, 63, 85–105. García Paloma, J. A. (1990). El método de la condición corporal en vacuno lechero: propuesta de una metodología unificadora. Investigación Agrária: Producción y Sanidad Animales, 5, 121–129. Gil Hernández, Á. (2010). Tratado de Nutrición Tomo I Bases Fisiológicas y Bioquímicas de la Nutrición. (2nd ed.). Editorial Médica Panamericana. Retrieved from https://www.medicapanamericana.com/Libros/Libro/4243/Tratado-de-Nutricion-rustica.html Gong, J. G., Lee, W. J., Garnsworthy, P. C., & Webb, R. (2002). Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. REPRODUCTION-CAMBRIDGE-, 123(3), 419–427 Granados-Rivera, L. D., & Hernández-Mendo, O. (2018). Síndrome de depresión de grasa láctea provocado por el isómero trans-10, cis-12 del ácido linoleico conjugado en vacas lactantes. Revisión. Revista Mexicana de Ciencias Pecuarias, 9(3), 536–554. Graulet, B., Gruffat, D., Durand, D., & Bauchart, D. (1998). Fatty Acid Metabolism and Very Low Density Lipoprotein Secretion in Liver Slices from Rats and Preruminant Calves. Journal of Biochemistry , 124(6), 1212–1219. https://doi.org/10.1093/oxfordjournals.jbchem.a022240 Grummer, R. R. (1993). Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science, 76(12), 3882–3896. Grummer, R. R., Hoffman, P. C., Luck, M. L., & Bertics, S. J. (1995). Effect of prepartum and postpartum dietary energy on growth and lactation of primiparous cows. Journal of Dairy Science, 78(1), 172–80. https://doi.org/10.3168/jds.S0022-0302(95)76627-9 Grummer, R. R., Mashek, D. G., & Hayirli, A. (2004). Dry matter intake and energy balance in the transition period. Veterinary Clinics of North America: Food Animal Practice, 20(3), 447–470. https://doi.org/10.1016/j.cvfa.2004.06.013 Harmeyer, J. (2002). The physiological role of L-carnitine. Lohman Information, 27, 15–21. Retrieved from http://lohmann-information.com/content/l_i_27_article_3.pdf Hayirli, A., Grummer, R. R., Nordheim, E. V, & Crump, P. M. (2003). Models for predicting dry matter intake of Holsteins during the prefresh transition period. Journal of Dairy Science, 86(5), 1771–1779. Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84(2–3), 245–258. Helton, E., Darragh, R., Francis, P., Fricker, F. J., Jue, K., Koch, G., … Linn, L. S. (2000). Metabolic aspects of myocardial disease and a role forl-carnitine in the treatment of childhood cardiomyopathy. Pediatrics, 105(6), 1260–1270. Henao Restrepo, G. (2001). Reactivación ovárica postparto en bovinos. Revisión. Revista Facultad Nacional de Agronomía Medellín, 54(1 y 2), 1285–1302. Hocquette, J.-F., & Bauchart, D. (1999). Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals. Reprod. Nutr. Dev., 39(1), 27–48. Retrieved from http://dx.doi.org/10.1051/rnd:19990102 ICONTEC Instituto Colombiano de Normas Técnicas y Certificación. (1999). Norma Técnica Colombiana NTC 4657. Alimento para animales. Determinación del contenido de nitrógeno y cálculo del contenido de proteína cruda. Método Kjeldahl. Bogotá. Ingvartsen, K. L. (2006). Feeding- and management-related diseases in the transition cow. Animal Feed Science and Technology, 126(3–4), 175–213. https://doi.org/10.1016/j.anifeedsci.2005.08.003 Ingvartsen, K. L., & Andersen, J. B. (2000). Integration of Metabolism and Intake Regulation: A Review Focusing on Periparturient Animals. Journal of Dairy Science, 83(7), 1573–1597. https://doi.org/10.3168/JDS.S0022-0302(00)75029-6 Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397–412. Jiménez, A.F., Restrepo, G.J. Indicadores metabólicos del status nutricional em vacas lecheras. Seminario "Fundamentos bioquímicos de los trastornos metabólicos”. Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín. 2017. 6p. https://www.ufrgs.br/lacvet/site/wp-content/uploads/2017/10/indicadores-metab%C3%B3licos.pdf Kaçar, C., Zonturlu, A. K., Karapehlıvan, M., Ari, U. Ç., Öğün, M., & Çıtıl, M. (2010). The effects of L-carnitine administration on energy metabolism in pregnant Halep (Damascus) goats. Gebe Halep (Damascus) Keçilerinde L-Carnitine Uygulamalarının Enerji Metabolizmasına Etkileri., 34(2), 163–171. Retrieved from 10.3906/vet-0805-11 Katz, M., & Bergman, E. (1969). Hepatic and portal metabolism of glucose, free fatty acids, and ketone bodies in the sheep. Am J Physiol -- Legacy Content, 216(4), 953–960. Retrieved from http://ajplegacy.physiology.org/content/216/4/953 Kertz, A. F., Reutzel, L. F., & Thomson, G. M. (1991). Dry Matter Intake from Parturition to Midlactation. Journal of Dairy Science, 74(7), 2290–2295. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(91)78401-4 Klein, B. G. (2013). Cunningham. Fisiología veterinaria. (QUINTA EDI). Barcelona: Elsevier Health Sciences Spain. Klein, B. G. (2014). Cunninham Fisiología veterinaria (Quinta Edi). Barcelona: Elsevier España, S.L.U. Kleppe, B. B., Aiello, R. J., Grummer, R. R., & Armentano, L. E. (1988). Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro. Journal of Dairy Science, 71(7), 1813–22. https://doi.org/10.3168/jds.S0022-0302(88)79750-7 Komaragiri, M. V. S., & Erdman, R. A. (1997). Factors affecting body tissue mobilization in early lactation dairy cows. 1. Effect of dietary protein on mobilization of body fat and protein. Journal of Dairy Science, 80(5), 929–937. Kudoh, Y. (2015). Re-evaluation of l-carnitine in chronic hemodialysis. Journal of Nephrology Research, 1(2), 49–60. Kirovski, D., & Sladojevic, Z. (2017). Prediction and Diagnosis of Fatty Liver in Dairy Cows. SM J Gastroenterol Hepatol, 3, 1–7. LaCount, D. W., Drackley, J. K., & Weigel, D. J. (1995). Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. Journal of Dairy Science, 78(8), 1824–36. https://doi.org/10.3168/jds.S0022-0302(95)76807-2 Lacount, D.W., L.D. Ruppert, and J.K. Drackley. 1996. “Ruminal Degradation and Dose Response of Dairy Cows to Dietary L-Carnitine.” Journal of Dairy Science 79(2): 260–69. https://www.sciencedirect.com/science/article/pii/S0022030296763592 (April 23, 2019). Liepinsh, E., Kalvinsh, I., & Dambrova, M. (2011). The regulation of energy metabolism pathways through L-carnitine homeostasis. In Role of the adipocyte in development of type 2 diabetes. InTech. Linn, J. G. (1988). Factors Affecting the Composition of Milk from Dairy Cows. National Research Council (US) Committee on Technological Options to Improve the Nutritional Attributes of Animal Products. Designing Foods: Animal Product Options in the Marketplace. Washington (DC): National Academies Press (US). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK218193/ Lippke, H. (2002, May). Estimation of Forage Intake by Ruminants on Pasture. Retrieved from https://dl.sciencesocieties.org/publications/cs/abstracts/42/3/869 Lira-García, C. de, Souto-Gallardo, M., Bacardí-Gascón, M., & Jiménez-Cruz, A. (2009). Revisión de la Efectividad de los Ingredientes de Productos Alternativos para la Pérdida de Peso. Revista de Salud Pública, 10(5), 818–830. https://doi.org/10.1590/s0124-00642008000500014 Lohmann Animal Health GmbH. (2014). CarnEon 20 RUMIN-PRO. Retrieved June 2, 2014, from http://www.lah.de/carnEon-20-RUMIN-PRO.370.0.html Madrid Calderón, L. V., Correa Cardona, H. J., & Góez Galvis, R. D. (2015). Effect of inclusion of L-carnitine fumarate on dry matter intake in Holstein cows during the period of transition to lactation. CES Medicina Veterinaria y Zootecnia, 10(2), 193–202. Malaguarnera, M., Cammalleri,L., Motta, M.,. 2008. “L-Carnitine Supplementation Reduces Oxidized LDL Cholesterol in Patients with Diabetes.” The American Journal of Clinical Nutrition 89(1): 71–76. https://doi.org/10.3945/ajcn.2008.26251. Mancinelli, A. (2005). Uptake of L-Carnitine and Its Short-Chain Ester Propionyl-L-carnitine in the Isolated Perfused Rat Liver. Journal of Pharmacology and Experimental Therapeutics, 315(1), 118–124. https://doi.org/10.1124/jpet.105.087890 Mann, S., Yepes, F. A. L., Overton, T. R., Wakshlag, J. J., Lock, A. L., Ryan, C. M., & Nydam, D. V. (2015). Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows. Journal of Dairy Science, 98(5), 3366–3382. https://doi.org/10.3168/jds.2014-9024 Mathews, C. K., & Van Holde, K. E. (2002). Bioquímica. 3a edición. Ed. McGraw-Hill-Interamericana. Madrid, España. McArt, J. A. A., Nydam, D. V, Oetzel, G. R., Overton, T. R., & Ospina, P. A. (2013). Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Veterinary Journal (London, England : 1997), 198(3), 560–70. https://doi.org/10.1016/j.tvjl.2013.08.011 McNamara, J. P. (1994). Lipid metabolism in adipose tissue during lactation: a model of a metabolic control system. The Journal of Nutrition, 124(suppl_8), 1383S–1391S. Meikle, A., Cavestany, D., Carriquiry, M., Adrien Delgado, M. de L., Ruprechter, G., Rovere, G., … Chilibroste, P. (2010). Endocrinología metabólica en la vaca lechera durante el período de transición y su relación con el reinicio de la ciclicidad ovárica (Vol. 14). Meikle, A., Cavestany, D., Carriquiry, M., Adrien, M. de L., Artegoitia, V., Pereira, I., … Chilibroste, P. (2010). Agrociencia Uruguay. Agrociencia Uruguay (Vol. 17). Facultad de Agronomía, Universidad de la República Oriental del Uruguay. Retrieved from http://www.scielo.edu.uy/scielo.php?pid=S2301-15482013000100017&script=sci_arttext Metin, Ş., Kaçar, C., Öğün, M., Güngör, Ö., Gürbulak, K., Oral, H., … Citil, M. (2007). Effect of L-Carnitine Administration on Energy Metabolism During Periparturient Period in Ewes. Kafkas Üniversitesi Veteriner Fakültesi Dergisi (Vol. 13). Minor, D. J., Trower, S. L., Strang, B. D., Shaver, R. D., & Grummer, R. R. (1998). Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows. Journal of Dairy Science, 81(1), 189–200. https://doi.org/10.3168/jds.S0022-0302(98)75566-3 Montoya Aguirre, A., Correa Cardona, H., & Galvis Góez, R. (2015). Effect of choline and methionine protected on intake, Lipid Mobilization, Production and composition of milk in Holstein Cows Artículo original. Rev CES Med Zootec, 10(2), 179–192. Retrieved from https://search.proquest.com/openview/1f5fd300e3ad3295d96205776e6f36df/1?pq-origsite=gscholar&cbl=756332 Morales, S. G. D., Diaz, J. I. R., & Góez, R. D. G. (2010). Efecto del Propilenglicol sobre la Uremia, Glicemia y la Producción de Componentes de la Leche. Revista Facultad Nacional de Agronomía, 63(2), 5621–5628. Moreno, I. A. (2016). Mitos en nutrición y suplementación deportiva. Retrieved from http://openaccess.uoc.edu/webapps/o2/handle/10609/56364 Morrison, C. D., Daniel, J. A., Holmberg, B. J., Djiane, J., Raver, N., Gertler, A., & Keisler, D. H. (2001). Central infusion of leptin into well-fed and undernourished ewe lambs: effects on feed intake and serum concentrations of growth hormone and luteinizing hormone. The Journal of Endocrinology, 168(2), 317–24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11182769 Murray, R. K., Bender, D. A., Bothan, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2010). Harper. Bioquímica Ilustrada. (Mc Graw Hill, Ed.) (28th ed.). México. Musser, R E, Goodband, R D, Tokach, M D, Owen, K Q, Nelssen, J L, Blum, S A,Dritz, S S, Civis, C A, 1999. “Effects of L-Carnitine Fed during Gestation and Lactation on Sow and Performance.” Journal of Animal Science 77(12):3289. Retrieved April 23, 2019 (https://academic.oup.com/jas/article/77/12/3289-3295/4645309). Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001. (2001). The National Academies Press. Retrieved from http://www.nap.edu/openbook.php?record_id=9825 Nelson, D. L., & Cox, M. M. (2005). Lehninger Principios de Bioquímica. (OMEGA, Ed.) (4th ed.). Barcelona. Ninabanda, J. J. (2018). Impacto del balance energético negativo en vacas lecheras tratadas con somatotropina recombinante bovina. Revista Veterinaria, 29(1), 68. https://doi.org/10.30972/vet.2912794 Osorio, J. H., Suárez, Y. J., & Pérez, J. E. (2012). VALIDACIÓN DE LA FÓRMULA DE FRIEDEWALD PARA LA DETERMINACIÓN DEL PERFIL LIPÍDICO EN BOVINOS. Biosalud, 11, 70–76. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-95502012000200008&nrm=iso http://biosalud.ucaldas.edu.co/downloads/Biosalud11(2)_8.pdf Pace, S., Longo, A., Toon, S., Rolan, P., & Evans, A. M. (2000). Pharmacokinetics of propionyl-L-carnitine in humans: evidence for saturable tubular reabsorption. British Journal of Clinical Pharmacology, 50(5), 441–8. https://doi.org/10.1046/J.1365-2125.2000.00280.X Penn, Duna, Eberhard Schmidt-Sommerfeld, and Helmut Wolf. 1980. “Carnitine Deficiency in Premature Infants Receiving Total Parenteral Nutrition.” Early human development 4(1): 23–34. Pickett, M. M., Piepenbrink, M. S., & Overton, T. R. (2010). Effects of Propylene Glycol or Fat Drench on Plasma Metabolites, Liver Composition, and Production of Dairy Cows During the Periparturient Period. Journal of Dairy Science. https://doi.org/10.3168/jds.s0022-0302(03)73801-6 Pirestani, A., and M. Aghakhani. 2018. “The Effects of Rumen-Protected Choline and l -Carnitine Supplementation in the Transition Period on Reproduction, Production, and Some Metabolic Diseases of Dairy Cattle.” Journal of Applied Animal Research 46(1): 435–40. https://www.tandfonline.com/doi/full/10.1080/09712119.2017.1332632 (January 29, 2019). Prietsch, V., Prietsch, V., Lindner, M., Zschocke, J., Nyhan, W. L., & Hoffmann, G. F. (2002). Emergency management of inherited metabolic diseases. Journal of Inherited Metabolic Disease, 25(7), 531–546. https://doi.org/10.1023/A:1022040422590 Grummer, Ric R., Doug G. Mashek, and A. Hayirli. (2004). Dry matter intake and energy balance in the transition period. The Veterinary clinics of North America. Food animal practice (Vol. 20). https://doi.org/10.1016/j.cvfa.2004.06.013 Rebouche, C. J. (1991). Ascorbic acid and carnitine biosynthesis. The American Journal of Clinical Nutrition , 54(6), 1147S–1152S. Retrieved from http://ajcn.nutrition.org/content/54/6/1147S.abstract Rebouche, C. J. (2004). Kinetics, pharmacokinetics, and regulation of L-Carnitine and acetyl-L-carnitine metabolism. In Annals of the New York Academy of Sciences (Vol. 1033, pp. 30–41). John Wiley & Sons, Ltd (10.1111). https://doi.org/10.1196/annals.1320.003 Reid, I. (1980). Incidence and severity of fatty liver in dairy cows. Veterinary Record, 107(12), 281–284. https://doi.org/10.1136/vr.107.12.281 Ringseis, R., Keller, J., & Eder, K. (2018). Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review. Archives of Animal Nutrition, 72(1), 1–30. Risco, C. A., & Retamal, P. M. (2011). Diseases that Affect the Reproductive Performance of Dairy Cattle. Dairy Production Medicine, 123–131. Rukkwamsuk, T., Wensing, T., & Geelen, M. J. H. (1999). Effect of Fatty Liver on Hepatic Gluconeogenesis in Periparturient Dairy Cows. Journal of Dairy Science, 82(3), 500–505. https://doi.org/10.3168/jds.S0022-0302(99)75260-4 Sánchez-Pintos, P., Pérez-Muñuzuri, A., Cocho, J. Á., Fernández-Lorenzo, J. R., Fraga, J. M., & Couce, M. L. (2016). Evaluation of carnitine deficit in very low birth weight preterm newborns small for their gestational age. The Journal of Maternal-Fetal & Neonatal Medicine, 29(6), 933–937. Sejersen, H., Sørensen, M. T., Larsen, T., Bendixen, E., & Ingvartsen, K. L. (2012). Liver protein expression in dairy cows with high liver triglycerides in early lactation. Journal of Dairy Science, 95(5), 2409–2421. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74428337&lang=es&site=ehost-live Skaar, T. C., Grummer, R. R., Dentine, M. R., & Stauffacher, R. H. (1989). Seasonal effects of prepartum and postpartum fat and niacin feeding on lactation performance and lipid metabolism. Journal of Dairy Science, 72(8), 2028–38. https://doi.org/10.3168/jds.S0022-0302(89)79326-7 Sordillo, L. M., & Raphael, W. (2013). Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Veterinary Clinics: Food Animal Practice, 29(2), 267–278. Soyeurt, H., Dardenne, P., Gillon, A., Croquet, C., Vanderick, S., Mayeres, P., … Gengler, N. (2006). Variation in Fatty Acid Contents of Milk and Milk Fat Within and Across Breeds. Journal of Dairy Science, 89(12), 4858–4865. https://doi.org/10.3168/jds.S0022-0302(06)72534-6 Steinman, T. I., Nissenson, A. R., Glassock, R. J., Dickmeyer, J., Mattern, W. D., Parker, T. F., & Hull, A. R. (2003). L-carnitine use in dialysis patients: is national coverage for supplementation justified? What were CMS regulators thinking--or were they? Nephrology News & Issues, 17(5), 28–30, 32–4, 36 passim. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12715624 Sun, F., Cao, Y., Cai, C., Li, S., Yu, C., & Yao, J. (2016). Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine. PLOS ONE, 11(8), e0160659. https://doi.org/10.1371/journal.pone.0160659 Tasdemir, A. R., Görgülü, M., Serbester, U., & Yurtseven, S. (2011). Influence of dietary fat, L-carnitine and niacin on milk yield and milk composition of dairy cows in midlactation. Cuban Journal of Agricultural Science, 45(2), 209–211 Vaz, F. M., & Wanders, R. J. A. (2002). Carnitine biosynthesis in mammals. . Biochemical Journal, 361(3), 417–429. Retrieved from http://www.biochemj.org/bj/361/bj3610417.htm Vernon, R. G., Doris, R., Finley, E., Houslay, M. D., Kilgour, E., & Lindsay-Watt, S. (1995). Effects of lactation on the signal transduction systems regulating lipolysis in sheep subcutaneous and omental adipose tissue. Biochemical Journal, 308(1), 291–296. Villani, R. G., Gannon, J., Self, M., & Rich, P. A. (2000). L-Carnitine supplementation combined with aerobic training does not promote weight loss in moderately obese women. International Journal of Sport Nutrition and Exercise Metabolism, 10(2), 199–207. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10861338 Wessels, B., van den Broek, N. M. A., Ciapaite, J., Houten, S. M., Wanders, R. J. A., Nicolay, K., & Prompers, J. J. (2015). Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo. American Journal of Physiology-Endocrinology and Metabolism, 309(7), E670–E678. https://doi.org/10.1152/ajpendo.00144.2015 Zammit, V. A. (1996). Role of insulin in hepatic fatty acid partitioning: emerging concepts. .Biochemical Journal, 314(1), 1–14. Retrieved from http://www.biochemj.org/bj/314/bj3140001.htm Zárate, A., Saucedo, R., & Basurto, L. (2005). Sustitutos no farmacéuticos que se usan para reducir el peso corporal. Terapéutica Al Día, 3(2), 115–117. Retrieved from http://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=2134
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto de diferentes niveles de carnitina parenteral sobre el consumo de materia seca, producción y composición de la leche en vacas Holstein durante el período de transición a la lactancia.
dc.typeTesis


Este ítem pertenece a la siguiente institución