dc.contributor | Silva Valencia, Jereson | |
dc.contributor | Sistemas Correlacionados (SISCO) | |
dc.creator | Pérez Romero, Arturo | |
dc.date.accessioned | 2020-08-08T17:56:53Z | |
dc.date.available | 2020-08-08T17:56:53Z | |
dc.date.created | 2020-08-08T17:56:53Z | |
dc.date.issued | 2019-04-20 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77982 | |
dc.description.abstract | En la presente tesis se considera fermiones con tres grados de libertad internos en una dimensión, sistema que puede ser descritos por un modelo de Fermi-Hubbard SU(3), al cual se adiciona un término de interacción a primeros vecinos. El modelo obtenido no tiene solución exacta, pero usando el método de grupo de renormalización de la matriz densidad (DMRG) se evidencia la presencia de seis fases: onda de densidad de espín (SDW), onda de densidad de carga (CDW), separación de fase (PS), metalica, apareamiento de pares (PP) y una fase que se denominó como Beat. Además, usando la
entropía de von Neumann y el parámetro de Luttinger se determinó los puntos críticos entre algunas de estas fases. De tal modo que se construyó un diagrama de fases para un modelo de Hubbard extendido SU(3), el cual presenta diferencias con el mismo modelo con dos grados de libertad internos. | |
dc.description.abstract | In the present work we consider three-color fermions in a one-dimensional lattice. The system not only can be described by a SU(3) Fermi-Hubbard model but also is expressed by an extended model version. In our case, we add a next-neighbor
interaction term at SU(3) Fermi-Hubbard model. The model obtained doesn’t have an exact solution, but we used the density matrix renormalization group method (DMRG) to find some model features. Our results reveal six different phases: spin density wave (SDW), charge density wave (CDW), phase separation (PS), metallic phase, pairing phase (PP), and a new phase which we call it Beat phase. Furthermore, we used Luttinger parameter and von Neumann entropy that worked well in determining transition points. With these results, we create the extended SU(3) Fermi-Hubbard model phases diagram,
which has different from the same SU(2) model. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Física | |
dc.publisher | Departamento de Física | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Roland Assaraf, Patrick Azaria, Michel Caffarel, and Philippe Lecheminant.
Metal-insulator transition in the one-dimensional su (n) hubbard model. Physical Review B, 60(4):2299, 1999. | |
dc.relation | JJ Vicente Alvarez, CA Balseiro, and HA Ceccatto. Spin-and charge-rotation
invariant approach to the hubbard model. Physical Review B, 54(16):11207,
1996. | |
dc.relation | Matteo Acciai, Alessio Calzona, Giacomo Dolcetto, Thomas L Schmidt, and
Maura Sassetti. Charge and energy fractionalization mechanism in onedimensional channels. Physical Review B, 96(7):075144, 2017. | |
dc.relation | Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman,
and Eric A Cornell. Observation of bose-einstein condensation in a dilute
atomic vapor. science, 269(5221):198–201, 1995. | |
dc.relation | K Aikawa, A Frisch, M Mark, S Baier, R Grimm, and F Ferlaino. Reaching
fermi degeneracy via universal dipolar scattering. Physical review letters,
112(1):010404, 2014. | |
dc.relation | Lei Ai, Guojia Fang, Longyan Yuan, Nishuang Liu, Mingjun Wang, Chun Li,
Qilin Zhang, Jun Li, and Xingzhong Zhao. Influence of substrate temperature
on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering. Applied Surface
Science, 254(8):2401–2405, 2008. | |
dc.relation | Henri Alloul. Strongly correlated electrons in solids. arXiv preprint arXiv:1504.05855, 2015. | |
dc.relation | Neil W Ashcroft and N David Mermin. Solid state physics (saunders college,
philadelphia, 1976). Appendix N, 2010. | |
dc.relation | Mikhail A Baranov. Theoretical progress in many-body physics with ultracold dipolar gases. Physics Reports, 464(3):71–111, 2008. | |
dc.relation | Dionys Baeriswyl, David K Campbell, and Sumit Mazumdar. An overview
of the theory of π-conjugated polymers. In Conjugated conducting polymers,
pages 7–133. Springer, 1992. | |
dc.relation | John Bardeen, Leon N Cooper, and J Robert Schrieffer. Microscopic theory
of superconductivity. Physical Review, 106(1):162, 1957. | |
dc.relation | Mikhail A Baranov, Marcello Dalmonte, Guido Pupillo, and Peter Zoller.
Condensed matter theory of dipolar quantum gases. Chemical Reviews,
112(9):5012–5061, 2012. | |
dc.relation | Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics
with ultracold gases. Reviews of modern physics, 80(3):885, 2008. | |
dc.relation | Jesper Fevre Bertelsen. Ultracold Atomic Gases. PhD thesis, PhD thesis,
University of Aarhus, 2007. | |
dc.relation | Hans Bethe. Zur theorie der metalle. Zeitschrift für Physik, 71(3-4):205–226,
1931. | |
dc.relation | Immanuel Bloch and Markus Greiner. Exploring quantum matter with ultracold atoms in optical lattices. Advances in Atomic, Molecular, and Optical
Physics, 52:1–47, 2005. | |
dc.relation | James W Bray, Leonard V Interrante, Israel S Jacobs, and Jill C Bonner. The
spin-peierls transition. In Extended linear chain compounds, pages 353–415.
Springer, 1983. | |
dc.relation | Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für physik, 52(7-8):555–600, 1929. | |
dc.relation | K Buchta, Ö Legeza, E Szirmai, and J Sólyom. Mott transition and dimerization in the one-dimensional su (n) hubbard model. Physical Review B,
75(15):155108, 2007. | |
dc.relation | MA Baranov, MS Marenko, Val S Rychkov, and GV Shlyapnikov. Superfluid
pairing in a polarized dipolar fermi gas. Physical Review A, 66(1):013606,
2002. | |
dc.relation | Max Born and Robert Oppenheimer. Zur quantentheorie der molekeln. Annalen der physik, 389(20):457–484, 1927. | |
dc.relation | Curtis Charles Bradley, CA Sackett, and RG Hulet. Bose-einstein condensation of lithium: Observation of limited condensate number. Physical Review
Letters, 78(6):985, 1997. | |
dc.relation | Cl C Bradley, CA Sackett, JJ Tollett, and Randall G Hulet. Evidence of bose-einstein condensation in an atomic gas with attractive interactions. Physical
review letters, 75(9):1687, 1995. | |
dc.relation | Guest CDT-CMP. What is condensed matter physics?, 2015. | |
dc.relation | Steven Chu, Leo Hollberg, John E Bjorkholm, Alex Cable, and Arthur Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical review letters, 55(1):48, 1985. | |
dc.relation | Sylvain Capponi, Philippe Lecheminant, and Keisuke Totsuka. Phases of one-dimensional su(n) cold atomic fermi gases from molecular luttinger liquids
to topological phases. Annals of Physics, 367:50–95, 2016 | |
dc.relation | Jit Kee Chin, DE Miller, Y Liu, C Stan, W Setiawan, C Sanner, K Xu, and
W Ketterle. Evidence for superfluidity of ultracold fermions in an optical
lattice. Nature, 443(7114):961, 2006. | |
dc.relation | Jit Kee Chin, DE Miller, Y Liu, C Stan, W Setiawan, C Sanner, K Xu, and
W Ketterle. Evidence for superfluidity of ultracold fermions in an optical
lattice. Nature, 443(7114):961, 2006. | |
dc.relation | Richard J Cook. Optical stern-gerlach effect. Physical Review A, 35(9):3844,
1987. | |
dc.relation | M Cyrot. Theory of mott transition: Applications to transition metal oxides.
Journal de Physique, 33(1):125–134, 1972. | |
dc.relation | Jozef Devreese. Highly conducting one-dimensional solids. Springer Science
& Business Media, 2013. | |
dc.relation | Pedro M Duarte, Russell A Hart, Tsung-Lin Yang, Xinxing Liu, Thereza
Paiva, Ehsan Khatami, Richard T Scalettar, Nandini Trivedi, and Randall G
Hulet. Compressibility of a fermionic mott insulator of ultracold atoms.
Physical review letters, 114(7):070403, 2015. | |
dc.relation | Brian DeMarco and Deborah S Jin. Onset of fermi degeneracy in a trapped
atomic gas. science, 285(5434):1703–1706, 1999. | |
dc.relation | Kendall B Davis, M-O Mewes, Michael R Andrews, NJ Van Druten, DS Durfee, DM Kurn, and Wolfgang Ketterle. Bose-einstein condensation in a gas
of sodium atoms. Physical review letters, 75(22):3969, 1995. | |
dc.relation | Brian J DeSalvo, Mi Yan, Pascal Gerry Mickelson, YN Martinez De Escobar,
and Thomas C Killian. Degenerate fermi gas of sr^87
. Physical Review Letters,
105(3):030402, 2010. | |
dc.relation | Fabian HL Essler, Holger Frahm, Frank G¨ohmann, Andreas Klümper, and
Vladimir E Korepin. The one-dimensional Hubbard model. Cambridge University Press, 2005. | |
dc.relation | Fabian HL Essler, Vladimir E Korepin, and Kareljan Schoutens. Complete solution of the one-dimensional hubbard model. Physical review letters,
67(27):3848, 1991. | |
dc.relation | VJ Emery. Theory of the one-dimensional electron gas. In Highly conducting
one-dimensional solids, pages 247–303. Springer, 1979. | |
dc.relation | Enrico Fermi et al. Motion of neutrons in hydrogenous substances. Ricerca
Scientifica, 7(2):13–52, 1936. | |
dc.relation | Jean-Pierre Farges. Organic conductors: fundamentals and applications. Marcel Dekker, 1994. | |
dc.relation | Patrik Fazekas. Lecture notes on electron correlation and magnetism, volume 5. World scientific, 1999. | |
dc.relation | Pavol Farkasovský and Hana Cencariková. Ferromagnetism in the two-dimensional hubbard model with long-range hopping. Open Physics,
11(1):119–123, 2013. | |
dc.relation | Michael E Fisher. The renormalization group in the theory of critical behavior. Reviews of Modern Physics, 46(4):597, 1974. | |
dc.relation | B Fourcade and G Spronken. Real-space scaling methods applied to the
one-dimensional extended hubbard model. ii. the finite-cell scaling method.
Physical Review B, 29(9):5096, 1984. | |
dc.relation | Shi-Jian Gu, Shu-Sa Deng, You-Quan Li, and Hai-Qing Lin. Entanglement
and quantum phase transition in the extended hubbard model. Physical
review letters, 93(8):086402, 2004. | |
dc.relation | Florian Gebbhard. The mott metal-insulator transition: Models and methods, 1997. | |
dc.relation | Markus Greiner and Simon Fölling. Condensed-matter physics: Optical lattices. Nature, 453(7196):736, 2008. | |
dc.relation | Alexey Vyacheslavovich Gorshkov, M Hermele, V Gurarie, C Xu, Paul S
Julienne, J Ye, Peter Zoller, Eugene Demler, Mikhail D Lukin, and AM Rey.
Two-orbital su (n) magnetism with ultracold alkaline-earth atoms. Nature
physics, 6(4):289, 2010. | |
dc.relation | Thierry Giamarchi. Quantum physics in one dimension, volume 121. Clarendon press, 2003. | |
dc.relation | S Glocke, A Klümper, and J Sirker. Half-filled one-dimensional extended
hubbard model: Phase diagram and thermodynamics. Physical Review B,
76(15):155121, 2007. | |
dc.relation | Vitaly L Ginzburg and Lev D Landau. On the theory of superconductivity.
In On Superconductivity and Superfluidity, pages 113–137. Springer, 2009. | |
dc.relation | Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W Hänsch, and
Immanuel Bloch. Quantum phase transition from a superfluid to a mott
insulator in a gas of ultracold atoms. nature, 415(6867):39, 2002. | |
dc.relation | Alexander O Gogolin, Alexander A Nersesyan, and Alexei M Tsvelik. Bosonization and strongly correlated systems. Cambridge university press, 2004. | |
dc.relation | Stefano Giorgini, Lev P Pitaevskii, and Sandro Stringari. Theory of ultracold
atomic fermi gases. Reviews of Modern Physics, 80(4):1215, 2008. | |
dc.relation | David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge University Press, 2018. | |
dc.relation | FDM Haldane. "luttinger liquid theory" of one-dimensional quantum fluids.
i. properties of the luttinger model and their extension to the general 1d
interacting spinless fermi gas. Journal of Physics C: Solid State Physics,
14(19):2585, 1981. | |
dc.relation | JE Hirsch. Charge-density-wave to spin-density-wave transition in the extended hubbard model. Physical review letters, 53(24):2327, 1984. | |
dc.relation | Christian Hofrichter, Luis Riegger, Francesco Scazza, Moritz Höfer, Diogo Rio Fernandes, Immanuel Bloch, and Simon Fölling. Direct probing of
the mott crossover in the su (n) fermi-hubbard model. Physical Review X,
6(2):021030, 2016. | |
dc.relation | Hideo Hosono, Keiichi Tanabe, Eiji Takayama-Muromachi, Hiroshi Kageyama, Shoji Yamanaka, Hiroaki Kumakura, Minoru Nohara, Hidenori Hiramatsu, and Satoru Fujitsu. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron
pnictides. Science and Technology of Advanced Materials, 16(3):033503, 2015. | |
dc.relation | John Hubbard. Electron correlations in narrow energy bands. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences,
276(1365):238–257, 1963. | |
dc.relation | Fernando Iemini, Thiago O Maciel, and Reinaldo O Vianna. Entanglement
of indistinguishable particles as a probe for quantum phase transitions in the
extended hubbard model. Physical Review B, 92(7):075423, 2015. | |
dc.relation | Janusz Jedrzejewski. On the phase diagram of the extended hubbard model.
Zeitschrift für Physik B Condensed Matter, 59(3):325–332, 1985. | |
dc.relation | AC Jacko, H Feldner, E Rose, F Lissner, M Dressel, Roser Valentí, and
Harald O Jeschke. Electronic properties of fabre charge-transfer salts
under various temperature and pressure conditions. Physical Review B,
87(15):155139, 2013. | |
dc.relation | Robert Jördens, Niels Strohmaier, Kenneth Günter, Henning Moritz, and
Tilman Esslinger. A mott insulator of fermionic atoms in an optical lattice.
Nature, 455(7210):204, 2008. | |
dc.relation | Junjiro Kanamori. Electron correlation and ferromagnetism of transition
metals. Progress of Theoretical Physics, 30(3):275–289, 1963. | |
dc.relation | Michael Köhl, Henning Moritz, Thilo Stöferle, Kenneth Günter, and Tilman Esslinger. Fermionic atoms in a three dimensional optical lattice: Observing fermi surfaces, dynamics, and interactions. Physical review letters,
94(8):080403, 2005. | |
dc.relation | J Kaczmarczyk, J Spalek, T Schickling, and J Buenemann. High-temperature
superconductivity in the hubbard model: Gutzwiller wave-function solution.
arXiv preprint arXiv:1210.6249, 2012. | |
dc.relation | G. Lang. Correlations in Low-Dimensional Quantum Gases. Springer Theses.
Springer International Publishing, 2018. | |
dc.relation | Mingwu Lu, Nathaniel Q Burdick, and Benjamin L Lev. Quantum degenerate
dipolar fermi gas. Physical Review Letters, 108(21):215301, 2012. | |
dc.relation | J Levinsen, NR Cooper, and GV Shlyapnikov. Topological p x+ ip y superfluid phase of fermionic polar molecules. Physical Review A, 84(1):013603,
2011. | |
dc.relation | John Edward Lennard-Jones. On the determination of molecular fields. ii.
from the equation of state of gas. Proc. Roy. Soc. A, 106:463–477, 1924. | |
dc.relation | Maciej Lewenstein, Anna Sanpera, and Veronica Ahufinger. Ultracold Atoms
in Optical Lattices: Simulating quantum many-body systems. Oxford University Press, 2012. | |
dc.relation | Elliott H Lieb and F Yu Wu. Absence of mott transition in an exact solution
of the short-range, one-band model in one dimension. In Exactly Solvable
Models Of Strongly Correlated Electrons, pages 9–12. World Scientific, 1994. | |
dc.relation | Gerald D Mahan. Many-particle physics. Springer Science & Business Media,
2013. | |
dc.relation | Albert Messiah. Quantum mechanics. vol. i. translated from the french by
gm temmer. North-Holland Publishing Co., Amsterdam, 5:26, 1961. | |
dc.relation | G Modugno, F Ferlaino, R Heidemann, G Roati, and M Inguscio. Production
of a fermi gas of atoms in an optical lattice. Physical Review A, 68(1):011601,
2003. | |
dc.relation | E Müller-Hartmann. Ferromagnetism in hubbard models: Low density route.
Journal of low temperature physics, 99(3-4):349–354, 1995. | |
dc.relation | Salvatore R Manmana, Kaden RA Hazzard, Gang Chen, Adrian E Feiguin,
and Ana Maria Rey. Su (n) magnetism in chains of ultracold alkaline-earth metal atoms: Mott transitions and quantum correlations. Physical Review
A, 84(4):043601, 2011. | |
dc.relation | E Miranda. Introduction to bosonization. Brazilian Journal of Physics,
33(1):3–35, 2003. | |
dc.relation | A Macridin, M Jarrell, Th Maier, and GA Sawatzky. Physics of cuprates
with the two-band hubbard model: The validity of the one-band hubbard
model. Physical Review B, 71(13):134527, 2005. | |
dc.relation | NF Mott and R Peierls. Discussion of the paper by de boer and verwey.
Proceedings of the Physical Society, 49(4S):72, 1937. | |
dc.relation | Arianna Montorsi and Marco Roncaglia. Nonlocal order parameters for the
1d hubbard model. Physical review letters, 109(23):236404, 2012. | |
dc.relation | CA Macedo and AMC Souza. Magnetic properties of nanotube structures.
Physica B: Condensed Matter, 354(1-4):290–292, 2004. | |
dc.relation | Yosuke Nagaoka. Ferromagnetism in a narrow, almost half-filled s band.
Physical Review, 147(1):392, 1966. | |
dc.relation | Masaaki Nakamura. Mechanism of cdw-sdw transition in one dimension.
Journal of the Physical Society of Japan, 68(10):3123–3126, 1999. | |
dc.relation | Masaaki Nakamura. Tricritical behavior in the extended hubbard chains.
Physical Review B, 61(24):16377, 2000. | |
dc.relation | H Nonne, P Lecheminant, Sylvain Capponi, G Roux, and E Boulat. Competing orders in one-dimensional half-filled multicomponent fermionic cold
atoms: The haldane-charge conjecture. Physical Review B, 84(12):125123,
2011. | |
dc.relation | Timo Bastian Ottenstein, T Lompe, M Kohnen, AN Wenz, and S Jochim.
Collisional stability of a three-component degenerate fermi gas. Physical
review letters, 101(20):203202, 2008. | |
dc.relation | Hideki Ozawa, Shintaro Taie, Yosuke Takasu, and Yoshiro Takahashi. Antiferromagnetic spin correlation of su (n) fermi gas in an optical superlattice.
Physical review letters, 121(22):225303, 2018. | |
dc.relation | Guido Pagano, Marco Mancini, Giacomo Cappellini, Pietro Lombardi, Florian Schäfer, Hui Hu, Xia-Ji Liu, Jacopo Catani, Carlo Sias, Massimo Inguscio, et al. A one-dimensional liquid of fermions with tunable spin. Nature
Physics, 10(3):198, 2014. | |
dc.relation | David Peter, Steffen Müller, Stefan Wessel, and Hans Peter Büchler. Anomalous behavior of spin systems with dipolar interactions. Physical review
letters, 109(2):025303, 2012. | |
dc.relation | William D Phillips, John V Prodan, and Harold J Metcalf. Laser cooling
and electromagnetic trapping of neutral atoms. JOSA B, 2(11):1751–1767,
1985. | |
dc.relation | Stéphane Pairault, David Sénéchal, and A-MS Tremblay. Strong-coupling
expansion for the hubbard model. Physical review letters, 80(24):5389, 1998. | |
dc.relation | H Rosner, H Eschrig, R Hayn, S-L Drechsler, and J Málek. Electronic structure and magnetic properties of the linear chain cuprates sr 2 cuo 3 and ca 2 cuo 3. Physical Review B, 56(6):3402, 1997. | |
dc.relation | C. A. Regal, M. Greiner, and D. S. Jin. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett., 92:040403, Jan 2004. | |
dc.relation | S Robaszkiewicz, R Micnas, and KA Chao. Thermodynamic properties of
the extended hubbard model with strong intra-atomic attraction and an arbitrary electron density. Physical Review B, 23(3):1447, 1981. | |
dc.relation | Subir Sachdev. Quantum phase transitions. Handbook of Magnetism and
Advanced Magnetic Materials, 2007. | |
dc.relation | P Schlottmann. Exact results for highly correlated electron systems in one
dimension. International Journal of Modern Physics B, 11(04n05):355–667,
1997. | |
dc.relation | Heinz J Schulz, Gianaurelio Cuniberti, and Pierbiagio Pieri. Fermi liquids
and luttinger liquids. In Field theories for low-dimensional condensed matter
systems, pages 9–81. Springer, 2000. | |
dc.relation | B Sriram Shastry. Mott transition in the hubbard model. Modern Physics
Letters B, 6(23):1427–1438, 1992. | |
dc.relation | Hiroyuki Shiba. Thermodynamic properties of the one-dimensional half filled-band hubbard model. ii: Application of the grand canonical method.
Progress of Theoretical Physics, 48(6):2171–2186, 1972. | |
dc.relation | U Schneider, L Hackermüller, S Will, Th Best, Immanuel Bloch, TA Costi,
RW Helmes, D Rasch, and A Rosch. Metallic and insulating phases of repulsively interacting fermions in a 3d optical lattice. Science, 322(5907):1520–
1525, 2008. | |
dc.relation | F Schreck, Lev Khaykovich, KL Corwin, G Ferrari, Thomas Bourdel, Julien
Cubizolles, and Christophe Salomon. Quasipure bose-einstein condensate
immersed in a fermi sea. Physical Review Letters, 87(8):080403, 2001. | |
dc.relation | MP López Sancho, MC Muñoz, and L Chico. Coulomb interactions in carbon
nanotubes. Physical Review B, 63(16):165419, 2001. | |
dc.relation | Seiji Sugawa, Shintaro Taie, Takeshi Fukuhara, Satoshi Uetake, Rekishu Yamazaki, Yosuke Takasu, and Yoshiro Takahashi. Ultracold ytterbium atoms
in optical lattices. In Laser Spectroscopy, pages 222–231. World Scientific,
2010. | |
dc.relation | Bill Sutherland. Model for a multicomponent quantum system. In Exactly
Solvable Models Of Strongly Correlated Electrons, pages 287–297. World
Scientific, 1994. | |
dc.relation | Hal Tasaki. From nagaoka’s ferromagnetism to flat-band ferromagnetism and
beyond: An introduction to ferromagnetism in the hubbard model. Progress
of Theoretical Physics, 99(4):489–548, 1998. | |
dc.relation | Hal Tasaki. The hubbard model-an introduction and selected rigorous results.
Journal of Physics: Condensed Matter, 10(20):4353, 1998. | |
dc.relation | Andrew G Truscott, Kevin E Strecker, William I McAlexander, Guthrie B
Partridge, and Randall G Hulet. Observation of fermi pressure in a gas of
trapped atoms. Science, 291(5513):2570–2572, 2001. | |
dc.relation | Yu-Chin Tzeng and Min-Fong Yang. Scaling properties of fidelity in the
spin-1 anisotropic model. Physical Review A, 77(1):012311, 2008. | |
dc.relation | Guifre Vidal. Entanglement renormalization. Physical review letters,
99(22):220405, 2007. | |
dc.relation | John Von Neumann. Mathematische grundlagen der quantenmechanik, volume 38. Springer-Verlag, 2013. | |
dc.relation | Gregory H Wannier. The structure of electronic excitation levels in insulating
crystals. Physical Review, 52(3):191, 1937. | |
dc.relation | Steven R White. Density matrix formulation for quantum renormalization
groups. Physical review letters, 69(19):2863, 1992. | |
dc.relation | Kenneth G Wilson. The renormalization group: Critical phenomena and the
kondo problem. Reviews of modern physics, 47(4):773, 1975. | |
dc.relation | Min-Fong Yang. Ground-state fidelity in one-dimensional gapless models.
Physical Review B, 76(18):180403, 2007. | |
dc.relation | Nouredine Zettili. Quantum mechanics: concepts and applications, 2003. | |
dc.relation | Huihuo Zheng. Entanglement in quantum phase transition. 2012. | |
dc.relation | Paolo Zanardi and Nikola Paunkovíc. Ground state overlap and quantum
phase transitions. Physical Review E, 74(3):031123, 2006. | |
dc.relation | Wilhelm Zwerger. The BCS-BEC crossover and the unitary Fermi gas, volume 836. Springer Science & Business Media, 2011. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Modelo de Hubbard extendido para fermiones con tres grados de libertad internos | |
dc.type | Otro | |