dc.contributorPérez Pérez, León Darío
dc.contributorGrupo de Investigación en Macromoléculas
dc.date.accessioned2020-02-25T13:01:56Z
dc.date.available2020-02-25T13:01:56Z
dc.date.created2020-02-25T13:01:56Z
dc.date.issued2019-11-14
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75714
dc.description.abstractEl presente trabajo tuvo como objetivo diseñar nanopartículas tipo core-shell por copolimerización en emulsión basados en copolímeros metacrílicos para determinar su potencial aplicación en la encapsulación y liberación de limoneno como componente mayoritario en algunos aceites esenciales. Para lo cual, la investigación se fraccionó en cuatro etapas. La primera fue establecer las condiciones experimentales para la copolimerización en emulsión tipo batch del metacrilato de laurilo (LMA) que es un monómero muy insoluble en medio acuoso, con un comonómero parcialmente soluble como metacrilato de metilo (MMA), en relación molar 1:1. Por tal motivo, se siguió un diseño experimental variable a variable mediante la modificación independiente de los siguientes parámetros: variación de la temperatura de copolimerización en un intervalo de 60 a 80 °C; adición de metanol como cosolvente en relaciones en masa respecto al agua de 0.8/15.2, 1.6/14.4, 2.4/13.6 y 3.2/12.8; modificación de la concentración en 6.2, 12.5 y 31.2 g/L de beta ciclodextrina (β-CD) como catalizador de transporte para monómeros insolubles; y la variación de la concentración del dodecilsulfato de sodio (SDS) en 0.7, 1.4, 2.9 y 4.4 veces la concentración micelar critica (CMC) en presencia de β-CD, empleado como surfactante y estabilizador coloidal. Con las condiciones experimentales establecidas para la copolimerización tipo batch del MMA y el LMA en relación 1:1, la segunda etapa consistió en sintetizar látex semillas compuestos de estos dos monómeros con relaciones molares 1:1, 2:1 y 1:2 para obtener el P(LMA-co-MMA), asimismo, sus respectivos homopolímeros (PMMA y PLMA). Obteniendo rendimientos de látex (RL) superiores al 90% con variaciones inferiores al 7 %, tamaños de partícula inferiores a 61 nm, con dispersiones en el tamaño de partícula bastante bajas (PdI ˂ 0.043), y una composición muy cercana a la nominal. De las semillas sintetizadas se produjeron seis nanopartículas core-shell (CSNs) de [P(MMA)/PMPS], [P(LMA)/PMPS], y [P(LMA-co-MMA)/PMPS] en relaciones semilla 1:1, 2:1 y 1:2 de los monómeros LMA:MMA por polimerización en emulsión vía semi-batch seed emulsion polymerization, mediante la lenta adición y el recubrimiento de γ-metacriloxipropil-trimetoxisilano (MPS). Obteniendo un rendimiento para las CSNs (R. CSNs) superiores al 78% con errores de medida menores al 6%, tamaños nanométricos en el rango de 54 a 100 nm, valores de potencial zeta inferiores a -30.0 mV, estableciendo la fijación del PMPS por espectroscopia infrarroja, calorimetría diferencial de barrido y la alta estabilidad térmica por análisis termogravimétrico. La cuarta etapa consistió en determinar la capacidad de encapsulación y liberación de las CSNs al emplear limoneno en tres relaciones de carga, mediante el uso de técnicas de análisis térmico para establecer la desorción de la sustancia, la capacidad de hinchamiento por dispersión de luz dinámica (DLS) y método gravimétrico para determinar la capacidad de carga y eficiencia de encapsulación, además de los perfiles de liberación. Donde se estableció que las CSNs presentan una capacidad máxima de hinchamiento por DLS, los análisis térmicos permitieron establecer la liberación acelerada del limoneno, favorecida por núcleos más ricos en LMA y por método gravimétrico se determinó la capacidad de carga y la eficiencia de encapsulación que también fue alta para núcleos ricos en LMA, demostrando que el limoneno también se encuentra adsorbido en las CSNs y la cinética de liberación acelerada a 50 °C.
dc.languagespa
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation(1) van Herk, A. M. Historical Overview of (Mini)Emulsion Polymerizations and Preparation of Hybrid Latex Particles. In Hybrid Latex Particles: Preparation with (Mini)emulsion Polymerization; Herk, A. M., Landfester. Katharina, Eds.; Springer, Berlin, Heidelberg: The Netherlands, 2010; pp 1–18. https://doi.org/10.1007/12_2010_62. (2) Yamak, H. B. Emulsion Polymerization : Effects of Polymerization Variables on the Properties of Vinyl Acetate Based Emulsion Polymers. In Emulsion Polymerization; Yılmaz, F., Ed.; InTech: Rijeka, Croatia, 2013; pp 35–73. https://doi.org/10.5772/51498. (3) Tauer, K.; Ali, A. M. I.; Yildiz, U.; Sedlak, M. On the Role of Hydrophilicity and Hydrophobicity in Aqueous Heterophase Polymerization. Polymer (Guildf). 2005, 46 (4), 1003–1015. https://doi.org/10.1016/J.POLYMER.2004.11.036. (4) Lau, W. Emulsion Polymerization of Hydrophobia Monomers. Macromol. Symp. 2002, 182 (1), 283–289. https://doi.org/10.1002/1521-3900(200206)182:1<283::AIDMASY283>3.0.CO;2-H. (5) Joseph Schork, F.; Back, A. Inhibition Effects in Emulsion and Miniemulsion Polymerization of Monomers with Extremely Low Water Solubility. J. Appl. Polym. Sci. 2004, 94 (6), 2555– 2557. https://doi.org/10.1002/app.21147. (6) Ahmad, H.; Hasan, M. K.; Miah, M. A. J.; Ali, A. M. I.; Tauer, K. Solvent Effect on the Emulsion Copolymerization of Methyl Methacrylate and Lauryl Methacrylate in Aqueous Media. Polymer (Guildf). 2011, 52 (18), 3925–3932. https://doi.org/10.1016/J.POLYMER.2011.07.004. (7) polymerdatabase. Poly(dodecyl methacrylate) http://polymerdatabase.com/polymers/polydodecylmethacrylate.html (accessed Jun 7, 2019). (8) Abbott, S. Practical Solubility Science: Hansen solubility parameters (HSPs) Basics https://www.stevenabbott.co.uk/practical-solubility/hsp-basics.php (accessed Jun 7, 2019). (9) Batista, M. M.; Guirardello, R.; Krähenbühl, M. A. Determination of the Hansen Solubility Parameters of Vegetable Oils, Biodiesel, Diesel, and Biodiesel–Diesel Blends. J. Am. Oil Chem. Soc. 2015, 92 (1), 95–109. https://doi.org/10.1007/s11746-014-2575-2. (10) Batista, M. M.; Guirardello, R.; Krähenbühl, M. A. Determination of the Solubility Parameters of Biodiesel from Vegetable Oils. Energy & Fuels 2013, 27 (12), 7497–7509. https://doi.org/10.1021/ef401690f. (11) Gilbert, M. Relation of Structure to Chemical Properties. In Brydson’s Plastics Materials; Gilbert, M., Ed.; Butterworth-Heinemann, 2017; pp 75–102. https://doi.org/10.1016/B978- 0-323-35824-8.00005-0. (12) Zhao, J.; Xiao, C.; Xu, N.; Ma, X. Preparation and Properties of Poly(Butyl Methacrylate/Lauryl Methacrylate) and Its Blend Fiber. Polym. Bull. 2012, 69 (6), 733–746. https://doi.org/10.1007/s00289-012-0766-2. (13) Sevgili, L. M.; Gök, A.; Kayman, Ü.; Çavuş, S. Swelling Behaviors of Poly(Dodecyl Methacrylate-Co-Methyl Eugenol) and Poly(Dodecyl Methacrylate-Co-Methyl Chavicol) Gels in Essential Oil Components. Chem. Pap. 2017, 71 (8), 1399–1408. https://doi.org/10.1007/s11696-017-0130-y. (14) Sun, J.; Xu, Y.; Chen, H.; Tan, Z.; Fan, L. Synthesis and Properties of High Oil-Absorbing Resins with Long Chain by High Internal Phase Emulsions as Template. Sep. Sci. Technol. 2014, 49 (16), 2518–2524. https://doi.org/10.1080/01496395.2014.928322. (15) Jang, J.; Kim, B.-S. Studies of Crosslinked Styrene-Alkyl Acrylate Copolymers for Oil Absorbency Application. II. Effects of Polymerization Conditions on Oil Absorbency. J. Appl. Polym. Sci. 2000, 77 (4), 914–920. https://doi.org/10.1002/(SICI)1097- 4628(20000725)77:4<914::AID-APP27>3.0.CO;2-7. (16) Bilia, A. R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M. C. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evid. Based. Complement. Alternat. Med. 2014, 2014, 651593. https://doi.org/10.1155/2014/651593. (17) Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils – A Review. Food Chem. Toxicol. 2008, 46 (2), 446–475. https://doi.org/10.1016/J.FCT.2007.09.106. (18) Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3 (4), 25. https://doi.org/10.3390/medicines3040025. (19) Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods— a Review. Int. J. Food Microbiol. 2004, 94 (3), 223–253. https://doi.org/10.1016/J.IJFOODMICRO.2004.03.022. (20) Jiménez Quintero, C. A.; Pantoja Estrada, A. H.; Leonel, H. F. Riesgos En La Salud de Agricultores Por Uso y Manejo de Plaguicidas, Microcuenca “La Pila.” Univ. y Salud 2016, 18 (3), 417. https://doi.org/10.22267/rus.161803.48. (21) Restrepo, L. D. Agroquímicos vs. agricultura orgánica: vida, salud y economía La Crónica del Quindío - Noticias Quindío, Colombia y el mundo https://www.cronicadelquindio.com/noticia-completa-titulo-agroquimicos-vs-agriculturaorganica-vida-salud-y-economia-cronica-del-quindio-nota-122179.htm (accessed Jun 22, 2019). (22) Pardo, T. &quot;Los pesticidas son los responsables de la muerte de 200.000 personas cada año&quot;: ONU https://www.elespectador.com/noticias/medio-ambiente/los-pesticidasson-los-responsables-de-la-muerte-de-200000-personas-cada-ano-onu-articulo-683570 (accessed Jun 1, 2018). (23) Turek, C.; Stintzing, F. C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12 (1), 40–53. https://doi.org/10.1111/1541-4337.12006. (24) Pérez, E. PLAGUICIDAS BOTÁNICOS: UNA ALTERNATIVA A TENER EN CUENTA. Fitosanidad 2012, 16 (1), 51–59. https://doi.org/1562-3009. (25) Matsumoto, A.; Murakami, N.; Aota, H.; Ikeda, J.; Capek, I. Emulsion Polymerization of Lauryl Methacrylate and Its Copolymerization with Trimethylolpropane Trimethacrylate. Polymer (Guildf). 1999, 40 (20), 5687–5690. https://doi.org/10.1016/S0032-3861(98)00789- 7. (26) You, X.; Dimonie, V. L.; Klein, A. Kinetic Study of Emulsion Copolymerization of Ethyl Methacrylate/Lauryl Methacrylate in Propylene Glycol, Stabilized with Poly(Ethylene Oxide)-Block-Polystyrene-Block-Poly(Ethylene Oxide) Triblock Copolymer. J. Appl. Polym. Sci. 2001, 82 (7), 1691–1704. https://doi.org/10.1002/app.2009. (27) Habibi, A.; Vasheghani-Farahani, E.; Semsarzadeh, M. A.; Sadaghiani, K. Estimation of Monomer Reactivity Ratios in Free-Radical Solution Copolymerization of Lauryl Methacrylate-Isobutyl Methacrylate. J. Polym. Sci. Part A Polym. Chem. 2004, 42 (1), 112– 129. https://doi.org/10.1002/pola.10964. (28) Shabnam, R.; Ali, A. M. I.; Miah, M. A. J.; Tauer, K.; Ahmad, H. Influence of the Third Monomer on Lauryl Methacrylate–Methyl Methacrylate Emulsion Terpolymerization. Colloid Polym. Sci. 2013, 291 (9), 2111–2120. https://doi.org/10.1007/s00396-013-2952-7. (29) Ahmad, H.; Abu-Waesmin, M.; Rahman, M. M.; Jalil Miah, M. A.; Tauer, K. Preparation of Hydrophobic Polymer Particles by Radical Polymerization and Subsequent Modification into Magnetically Doped Particles. J. Appl. Polym. Sci. 2013, 127 (1), 620–627. https://doi.org/10.1002/app.37827. (30) Boscán, F.; Paulis, M.; Barandiaran, M. J. Towards the Production of High Performance Lauryl Methacrylate Based Polymers through Emulsion Polymerization. Eur. Polym. J. 2017, 93, 44–52. https://doi.org/10.1016/J.EURPOLYMJ.2017.05.028. (31) Leyrer, R. J.; Mächtle, W. Emulsion Polymerization of Hydrophobic Monomers like Stearyl Acrylate with Cyclodextrin as a Phase Transfer Agent. Macromol. Chem. Phys. 2000, 201 (12), 1235–1243. https://doi.org/10.1002/1521-3935(20000801)201:12<1235::AIDMACP1235>3.0.CO;2-#. (32) Assem, Y.; Yehia, A. A. Studying the Effect of β-Cyclodextrin in Aqueous Polymerization of Some Acrylate Monomers Bearing Hydrophobic Moiety. Egypt. J. Chem. 2015, 58 (3), 387–401. https://doi.org/10.21608/ejchem.2015.1021. (33) Zheng, Z.; Tian, X.; Sun, J.; Yuan, J.; Yuan, Y. Effect of β-Cyclodextrin on the Preparation of Poly(Methyl Methacrylate-Co-Lauryl Methacrylate) Nanoparticles and Their Latex Blending with Natural Rubber. Polym. Sci. Ser. B 2018, 60 (5), 652–663. https://doi.org/10.1134/S1560090418050184. (34) Hansen, F. K. Historic Overview. In Chemistry and Technology of Emulsion Polymerisation; Van Herk, A. M., Ed.; John Wiley & Sons Ltd: Oxford, UK, 2013; pp 1–22. https://doi.org/10.1002/9781118638521.ch1. (35) Anderson, C. D.; Daniels, E. S. Emulsion Polymerisation and Latex Applications. Rapra Rev. Reports 2003, 14 (4), 146. https://doi.org/0889-3144. (36) Distler, D.; Neto, W. S.; Machado, F. Emulsion Polymerization. Ref. Modul. Mater. Sci. Mater. Eng. 2017. https://doi.org/10.1016/B978-0-12-803581-8.03746-2. (37) El-hoshoudy, A. N. M. B. Emulsion Polymerization Mechanism. In Recent Research in Polymerization; Spi-Global, Ed.; InTech: Croatia, 2018; pp 3–11. https://doi.org/10.5772/intechopen.72143. (38) van Herk, A. M.; Gilbert, R. G. Emulsion Polymerisation. In Chemistry and Technology of Emulsion Polymerisation; Van Herk, A. M., Ed.; John Wiley & Sons Ltd: Oxford, UK, 2013; pp 43–73. https://doi.org/10.1002/9781118638521.ch3. (39) Boscán Guerra, F. E. Emulsion Polymerization of Superhydrophobic Monomers, University of Basque Country, 2017. (40) Odian, G. Emulsion Polymerization. In Principles of Polymerization; Odian, G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp 350–371. https://doi.org/10.1002/047147875X.ch4. (41) Pletnev, M. Y. Chemistry of Surfactants. In Surfactants: Chemistry, Interfacial Properties, Applications; Möbius, D., Miller, R., Fainerman, V., Eds.; Elsevier, 2001; Vol. 13, pp 1–97. https://doi.org/10.1016/S1383-7303(01)80062-4. (42) Tadros, T. F. Emulsion Science and Technology: A General Introduction. In Emulsion Science and Technology; Tadros, T. F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp 1–56. https://doi.org/10.1002/9783527626564.ch1. (43) Ballard, N.; Urrutia, J.; Eizagirre, S.; Schäfer, T.; Diaconu, G.; De La Cal, J. C.; Asua, J. M. Surfactant Kinetics and Their Importance in Nucleation Events in (Mini)Emulsion Polymerization Revealed by Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir 2014, 30 (30), 9053–9062. https://doi.org/10.1021/la501028f. (44) Le Quéméner, F.; Subervie, D.; Morlet-Savary, F.; Lalevée, J.; Lansalot, M.; Bourgeat-Lami, E.; Lacôte, E. Visible-Light Emulsion Photopolymerization of Styrene. Angew. Chemie 2018, 130 (4), 969–973. https://doi.org/10.1002/ange.201710488. (45) Daniloska, V.; Tomovska, R.; Asua, J. M. Hybrid Miniemulsion Photopolymerization in a Continuous Tubular Reactor—A Way to Expand the Characteristics of Polyurethane/Acrylics. Chem. Eng. J. 2012, 184, 308–314. https://doi.org/10.1016/J.CEJ.2012.01.040. (46) Harikrishna, R.; Shaikh, A. W.; Ponrathnam, S.; Rajan, C. R.; Bhongale, S. Photopolymerization of High Internal Phase Emulsions Based on 2-Ethylhexyl (Meth)Acrylates and Ethylene Glycol Dimethacrylate. Des. Monomers Polym. 2014, 17 (1), 1–6. https://doi.org/10.1080/15685551.2013.771312. (47) Jasinski, F.; Zetterlund, P. B.; Braun, A. M.; Chemtob, A. Photopolymerization in Dispersed Systems. Prog. Polym. Sci. 2018, 84, 47–88. https://doi.org/10.1016/J.PROGPOLYMSCI.2018.06.006. (48) Tjiam, C.; Gomes, V. G. Optimal Operating Strategies for Emulsion Polymerization with Chain Transfer Agent. Ind. Eng. Chem. Res. 2014, 53 (18), 7526–7537. https://doi.org/10.1021/ie4032956. (49) Suzuki, S.; Kikuchi, K.; Suzuki, A.; Okaya, T.; Nomura, M. Effect of Chain Transfer Agents on the Kinetics and Mechanism of Particle Nucleation in the Emulsion Polymerization of Vinyl Pivalate. Colloid Polym. Sci. 2007, 285 (5), 523–534. https://doi.org/10.1007/s00396- 006-1600-x. (50) Zhang, X. J.; Wang, J. P.; Zhang, X. X.; Wang, X. C. The Effects of the Chain Transfer Agent (Dodecyl Mercaptan) on the Morphologies and Thermal Properties of Nanocapsules Containing &lt;I&gt;N&lt;/I&gt;-Octadecane. Sci. Adv. Mater. 2013, 5 (3), 254–259. https://doi.org/10.1166/sam.2013.1452. (51) Meena, M.; Umapathy, M. J. Efficiency of Single Site Phase Transfer Catalyst in Free Radical Polymerization of Butyl Methacrylate - A Kinetic Study. Brazilian Arch. Biol. Technol. 2016, 59 (spe2), 1–9. https://doi.org/10.1590/1678-4324-2016161045. (52) Murugesan, V.; Umapathy, M. J. Phase Transfer Catalyst Aided Radical Polymerization of N-Butyl Acrylate in Two-Phase System: A Kinetic Study. Int. J. Ind. Chem. 2016, 7 (4), 441– 448. https://doi.org/10.1007/s40090-016-0079-7. (53) Rimmer, S. Cyclodextrins in the Emulsion Polymerization of Vinyl Monomers. Macromol. Symp. 2000, 150 (1), 149–154. https://doi.org/10.1002/1521-3900(200002)150:1<149::AIDMASY149>3.0.CO;2-U. (54) Stefan Bernhardt; Patrick Glöckner; Theis, A.; Ritter, H. Cyclodextrins in Polymer Synthesis: Influence of Acrylate Side Groups on the Initial Rate of Radical Polymerization of Various Acrylate/Methylated β-Cyclodextrin Complexes in Water. Macromolecules 2001, 36 (6), 1647–1649. https://doi.org/10.1021/MA0016533. (55) Chauvet, J.; Asua, J. M.; Leiza, J. R. Independent Control of Sol Molar Mass and Gel Content in Acrylate Polymer/Latexes. Polymer (Guildf). 2005, 46 (23), 9555–9561. https://doi.org/10.1016/J.POLYMER.2005.08.061. (56) Wang, A. R.; Zhu, S. Control of the Polymer Molecular Weight in Atom Transfer Radical Polymerization with Branching/Crosslinking. J. Polym. Sci. Part A Polym. Chem. 2005, 43 (22), 5710–5714. https://doi.org/10.1002/pola.21106. (57) Erbil, H. Y. Properties and Roles of Ingredients in Vinyl Acetate Emulsion Homopolymerization. In Vinyl acetate emulsion polymerization and copolymerization with acrylic monomers; Erbil, H. Y., Ed.; CRC Press: U. S., 2000; p 38. (58) Chern, C.-S.; Lin, C.-H. Semibatch Surfactant-Free Emulsion Polymerization of Butyl Acrylate. Polym. J. 1995, 27 (11), 1094–1103. https://doi.org/10.1295/polymj.27.1094. (59) Chern, C. Interfacial Phenomena. In Principles and Applications of Emulsion Polymerization; Chern, C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp 23– 52. https://doi.org/10.1002/9780470377949.ch2. (60) Plessis, C.; Arzamendi, G.; Leiza, J. R.; Schoonbrood, H. A. S.; Charmot, D.; Asua, J. M. Seeded Semibatch Emulsion Polymerization of N-Butyl Acrylate. Kinetics and Structural Properties. Macromolecules 2000, 33 (14), 5041–5047. https://doi.org/10.1021/MA992053A. (61) Asua, J. M. Emulsion Polymerization: From Fundamental Mechanisms to Process Developments. J. Polym. Sci. Part A Polym. Chem. 2004, 42 (5), 1025–1041. https://doi.org/10.1002/pola.11096. (62) Nomura, M.; Tobita, H.; Suzuki, K. Emulsion Polymerization: Kinetic and Mechanistic Aspects. In Polymer Particles; Okubo, M., Ed.; Springer, Berlin, Heidelberg: Berlin Heidelberg , 2005; pp 1–128. https://doi.org/10.1007/b100116. (63) Chern, C. S. Emulsion Polymerization Mechanisms and Kinetics. Prog. Polym. Sci. 2006, 31 (5), 443–486. https://doi.org/10.1016/J.PROGPOLYMSCI.2006.02.001. (64) Su, W.-F. Radical Chain Polymerization. In Principles of Polymer Desing and Synthesis; Su, W.-F., Ed.; Springer, Berlin, Heidelberg: Verlag Berlin Heidelberg , 2013; pp 137–183. https://doi.org/10.1007/978-3-642-38730-2_7. (65) Rudin, A.; Choi, P. Free-Radical Polymerization. In The Elements of Polymer Science & Engineering; Rudin, A., Ed.; Elsevier: The Boulevard, Langford Lane, Kidlington, 2013; pp 341–389. https://doi.org/10.1016/B978-0-12-382178-2.00008-0. (66) Chanda, M. Free Radical Polymerization. In Introduction to polymer science and chemistry: a problem-solving approach; Chanda, M., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, 2013; pp 289–377. (67) Cifuentes, A.; Bernal, J. L.; Diez-Masa, J. C. Determination of Critical Micelle Concentration Values Using Capillary Electrophoresis Instrumentation. Anal. Chem. 1997, 69 (20), 4271– 4274. https://doi.org/10.1021/AC970696N. (68) Stepto, R. F. T. Dispersity in Polymer Science (IUPAC Recommendations 2009). Pure Appl. Chem. 2009, 81 (2), 351–353. https://doi.org/10.1351/PAC-REC-08-05-02. (69) Chern, C.-S.; Lin, S.-Y.; Hsu, T. J. Effects of Temperature on Styrene Emulsion Polymerization Kinetics. Polym. J. 1999, 31 (6), 516–523. https://doi.org/10.1295/polymj.31.516. (70) Capek, I.; Lin, S.-Y.; Hsu, T.-J.; Chern, C.-S. Effect of Temperature on Styrene Emulsion Polymerization in the Presence of Sodium Dodecyl Sulfate. II. J. Polym. Sci. Part A Polym. Chem. 2000, 38 (9), 1477–1486. https://doi.org/10.1002/(SICI)1099- 0518(20000501)38:9<1477::AID-POLA10>3.0.CO;2-Y. (71) Kohut-Svelko, N.; Pirri, R.; Asua, J. M.; Leiza, J. R. Effect of Reaction Temperature on the Gel Content of Acrylic Latexes. Macromol. React. Eng. 2009, 3 (1), 11–15. https://doi.org/10.1002/mren.200800034. (72) Wu, G.; Wang, C.; Tan, Z.; Zhang, H. Effect of Temperature on Emulsion Polymerization of N-Butyl Acrylate. Procedia Eng. 2011, 18, 353–357. https://doi.org/10.1016/J.PROENG.2011.11.056. (73) Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A. Thermodynamics of Micelle Formation as a Function of Temperature: A High Sensitivity Titration Calorimetry Study. J. Phys. Chem. 1995, 99 (30), 11742–11751. https://doi.org/10.1021/j100030a019. (74) Soeriyadi, A. H.; Trouillet, V.; Bennet, F.; Bruns, M.; Whittaker, M. R.; Boyer, C.; Barker, P. J.; Davis, T. P.; Barner-Kowollik, C. A Detailed Surface Analytical Study of Degradation Processes in (Meth)Acrylic Polymers. J. Polym. Sci. Part A Polym. Chem. 2012, 50 (9), 1801–1811. https://doi.org/10.1002/pola.25947. (75) Tommasini, F. J.; Ferreira, L. da C.; Tienne, L. G. P.; Aguiar, V. de O.; Silva, M. H. P. da; Rocha, L. F. da M.; Marques, M. de F. V.; Tommasini, F. J.; Ferreira, L. da C.; Tienne, L. G. P.; et al. Poly (Methyl Methacrylate)-SiC Nanocomposites Prepared Through in Situ Polymerization. Mater. Res. 2018, 21 (6). https://doi.org/10.1590/1980-5373-mr-2018-0086. (76) Sannigrahi, B.; Wadgaonkar, P. P.; Sehra, J. C.; Sivaram, S. Copolymerization of Methyl Methacrylate with Lauryl Methacrylate Using Group Transfer Polymerization. J. Polym. Sci. Part A Polym. Chem. 1997, 35 (10), 1999–2007. https://doi.org/10.1002/(SICI)1099- 0518(19970730)35:10<1999::AID-POLA15>3.0.CO;2-C. (77) Raghunadh, V.; Baskaran, D.; Sivaram, S. Efficiency of Ligands in Atom Transfer Radical Polymerization of Lauryl Methacrylate and Block Copolymerization with Methyl Methacrylate. Polymer (Guildf). 2004, 45 (10), 3149–3155. https://doi.org/10.1016/J.POLYMER.2004.03.042. (78) Pujari, B. R.; Barik, B.; Behera, B. Dielectric Constants of Some Miscible Aqueous-Organic Solvent Mixtures. Phys. Chem. Liq. 1998, 36 (2), 105–112. https://doi.org/10.1080/00319109808030599. (79) Adelnia, H.; Pourmahdian, S. Soap-Free Emulsion Polymerization of Poly (Methyl Methacrylate-Co-Butyl Acrylate): Effects of Anionic Comonomers and Methanol on the Different Characteristics of the Latexes. Colloid Polym. Sci. 2014, 292 (1), 197–205. https://doi.org/10.1007/s00396-013-3043-5. (80) Liu, B.; Wang, Y.; Zhang, M.; Zhang, H. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene. Polymers (Basel). 2016, 8 (2). https://doi.org/10.3390/polym8020055. (81) Liu, B.; Zhang, M.; Cheng, H.; Fu, Z.; Zhou, T.; Chi, H.; Zhang, H. Large-Scale and Narrow Dispersed Latex Formation in Batch Emulsion Polymerization of Styrene in Methanol–Water Solution. Colloid Polym. Sci. 2014, 292 (2), 519–525. https://doi.org/10.1007/s00396-013- 3113-8. (82) Leclercq, L. Interactions between Cyclodextrins and Cellular Components: Towards Greener Medical Applications? Beilstein J. Org. Chem. 2016, 12 (1), 2644–2662. https://doi.org/10.3762/bjoc.12.261. (83) Del Valle, E. M. M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39 (9), 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9. (84) Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Fundamentals and Applications of Cyclodextrins. In Cyclodextrin Fundamentals, Reactivity and Analysis; Fourmentin, S., Crini, G., Lichtfouse, E., Eds.; Springer, Cham: Dunkerque, France, 2018; pp 1–55. https://doi.org/10.1007/978-3-319-76159-6_1. (85) Joachim Storsberg, †,§; Huub van Aert, †; Christiaan van Roost, † and; Helmut Ritter*, ‡. Cyclodextrins in Polymer Synthesis:  A Simple and Surfactant Free Way to Polymer Particles Having Narrow Particle Size Distribution. 2002. https://doi.org/10.1021/MA020229U. (86) Yang, C.; Castelvetro, V.; Scalarone, D.; Bianchi, S.; Zhang, Y. Three Different βCyclodextrins Direct the Emulsion Copolymerization of a Highly Fluorinated Methacrylate toward Distinctive Nanostructured Particle Morphologies. J. Polym. Sci. Part A Polym. Chem. 2011, 49 (21), 4518–4530. https://doi.org/10.1002/pola.24921. (87) Vautier-Giongo, C.; Bales, B. L. Estimate of the Ionization Degree of Ionic Micelles Based on Krafft Temperature Measurements. J. Phys. Chem. B 2003, 107 (23), 5398–5403. https://doi.org/10.1021/jp0270957. (88) Krishnan, S.; Klein, A.; Mohamed S. El-Aasser; Sudol, E. D. Effect of Surfactant Concentration on Particle Nucleation in Emulsion Polymerization of N-Butyl Methacrylate. Macromolecules 2003, 36 (9), 3152–3159. https://doi.org/10.1021/MA021120P. (89) Cheng, D.; Ariafar, S.; Sheibat-Othman, N.; Pohn, J.; McKenna, T. F. L. Particle Coagulation of Emulsion Polymers: A Review of Experimental and Modelling Studies. Polym. Rev. 2018, 58 (4), 717–759. https://doi.org/10.1080/15583724.2017.1405979. (90) Singhal, A.; Dubey, K. A.; Bhardwaj, Y. K.; Jain, D.; Choudhury, S.; Tyagi, A. K. UVShielding Transparent PMMA/In2O3 Nanocomposite Films Based on In2O3 Nanoparticles. RSC Adv. 2013, 3 (43), 20913. https://doi.org/10.1039/c3ra42244e. (91) Ma, Y.; Zheng, X.; Shi, F.; Li, Y.; Sun, S. Synthesis of Poly(Dodecyl Methacrylate)s and Their Drag-Reducing Properties. J. Appl. Polym. Sci. 2003, 88 (7), 1622–1626. https://doi.org/10.1002/app.11710. (92) Warren, P. B. Flory−Huggins Theory for the Solubility of Heterogeneously Modified Polymers. Macromolecules 2007, 40 (18), 6709–6712. https://doi.org/10.1021/MA070809X. (93) Young, N. P.; Balsara, N. P. Flory–Huggins Equation. In Encyclopedia of Polymeric Nanomaterials; Kobayashi1, S., Müllen, K., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 1–7. https://doi.org/10.1007/978-3-642-36199-9_79-1. (94) Su, W.-F. Chain Copolymerization. In Principles of Polymer Design and Synthesis; Su, W.- F., Ed.; Springer, Berlin, Heidelberg: Verlag Berlin Heidelberg , 2013; pp 233–265. https://doi.org/10.1007/978-3-642-38730-2_10. (95) Polic, A. L.; Duever, T. A.; Penlidis, A. Case Studies and Literature Review on the Estimation of Copolymerization Reactivity Ratios. J. Polym. Sci. Part A Polym. Chem. 1998, 36 (5), 813–822. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5<813::AIDPOLA14>3.0.CO;2-J. (96) Alfrey, T.; Price, C. C. Relative Reactivities in Vinyl Copolymerization. J. Polym. Sci. 1947, 2 (1), 101–106. https://doi.org/10.1002/pol.1947.120020112. (97) Hrvatsko kemijsko društvo., E.; Hrvatsko prirodoslovno društvo., K.; Sveučilište u Zagrebu., Z. Copolymerization of Styrene with Dodecyl Methacrylate and Octadecyl Methacrylate. Croat. Chem. Acta 1956, 75 (3), 769–782. https://doi.org/https://hrcak.srce.hr/129320. (98) Stahl, G. A. Copolymerization of Methyl Methacrylate and Dodecyl Methacrylate. J. Polym. Sci. Polym. Chem. Ed. 1979, 17 (6), 1883–1886. https://doi.org/10.1002/pol.1979.170170636. (99) Álvarez-Paino, M.; Muñoz-Bonilla, A.; López-Fabal, F.; Gómez-Garcés, J. L.; Heuts, J. P. A.; Fernández-García, M. Functional Surfaces Obtained from Emulsion Polymerization Using Antimicrobial Glycosylated Block Copolymers as Surfactants. Polym. Chem. 2015, 6 (34), 6171–6181. https://doi.org/10.1039/C5PY00776C. (100) polymerdatabase. Half-Life of Initiators http://polymerdatabase.com/polymer chemistry/thalf2.html (accessed Jun 14, 2019). (101) Luo, Y.; Wang, X.; Li, B.-G.; Zhu, S. Toward Well-Controlled Ab Initio RAFT Emulsion Polymerization of Styrene Mediated by 2- (((Dodecylsulfanyl)Carbonothioyl)Sulfanyl)Propanoic Acid. Macromolecules 2011, 44 (2), 221–229. https://doi.org/10.1021/ma102378w. (102) Bourgeat-Lami, E.; Tissot, I.; Lefebvre, F. Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization. Macromolecules 2002, 35 (16), 6185–6191. https://doi.org/10.1021/MA012230J. (103) Li, H.; Yuan, J.; Qian, H.; Wu, L. Synthesis and Properties of SiO2/P(MMA-BA) Core–Shell Structural Latex with Siloxanes. Prog. Org. Coatings 2016, 97, 65–73. https://doi.org/10.1016/J.PORGCOAT.2016.03.027. (104) Li, G.; Li, W. Synthesis and Characterization of Microencapsulated N-Octadecane with Hybrid Shells Containing 3-(Trimethoxysilyl) Propyl Methacrylate and Methyl Methacrylate. J. Therm. Anal. Calorim. 2017, 129 (2), 915–924. https://doi.org/10.1007/s10973-017-6220-9. (105) Christopher, K. R.; Pal, A.; Mirchandani, G.; Dhar, T. Synthesis and Characterization of Polystyrene-Acrylate/Polysiloxane (PSA/PSi) Core Shell Polymers and Evaluation of Their Properties for High Durable Exterior Coatings. Prog. Org. Coatings 2014, 77 (6), 1063– 1068. https://doi.org/10.1016/J.PORGCOAT.2014.03.008. (106) Liu, B. L.; Zhang, B. T.; Cao, S. S.; Deng, X. B.; Hou, X.; Chen, H. Preparation of the Stable Core–Shell Latex Particles Containing Organic-Siloxane in the Shell. Prog. Org. Coatings 2008, 61 (1), 21–27. https://doi.org/10.1016/J.PORGCOAT.2007.08.008. (107) Pantoja, M.; Velasco, F.; Broekema, D.; Abenojar, J.; Real, J. C. del. The Influence of PH on the Hydrolysis Process of γ-Methacryloxypropyltrimethoxysilane, Analyzed by FT-IR, and the Silanization of Electrogalvanized Steel. J. Adhes. Sci. Technol. 2010, 24 (6), 1131–1143. https://doi.org/10.1163/016942409X12586283821559. (108) Ni, K. F.; Sheibat-Othman, N.; Shan, G. R.; Fevotte, G.; Bourgeat-Lami, E. Kinetics and Modeling of Hybrid Core−Shell Nanoparticles Synthesized by Seeded Emulsion (Co)Polymerization of Styrene and γ-Methacryloyloxypropyltrimethoxysilane. Macromolecules 2005, 38 (22), 9100–9109. https://doi.org/10.1021/MA050999G. (109) Bhattacharjee, S. DLS and Zeta Potential – What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. https://doi.org/10.1016/J.JCONREL.2016.06.017. (110) Tissot, I.; Reymond, J. P.; Lefebvre, F.; Bourgeat-Lami, E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles. Chem. Mater. 2002, 14 (3), 1325–1331. https://doi.org/10.1021/CM0112441. (111) Sabín Fernández, J. D. Estabilidad Coloidal de Nanoestructuras Liposómicas Tesis Doctoral, Universidade de Santiago de Compostela, 2007. (112) Leung, K.; Nielsen, I. M. B.; Criscenti, L. J. Elucidating the Bimodal Acid−Base Behavior of the Water−Silica Interface from First Principles. J. Am. Chem. Soc. 2009, 131 (51), 18358– 18365. https://doi.org/10.1021/ja906190t. (113) Ni, K. F.; G. R. Shan; Weng, Z. X.; Sheibat-Othman, N.; Fevotte, G.; Lefebvre, F.; BourgeatLami, E. Synthesis of Hybrid Core−Shell Nanoparticles by Emulsion (Co)Polymerization of Styrene and γ-Methacryloxypropyltrimethoxysilane. Macromolecules 2005, 38 (17), 7321– 7329. https://doi.org/10.1021/MA050334E. (114) Kopani, M.; Mikula, M.; Takahashi, M.; Rusnák, J.; Pinčík, E. FT IR Spectroscopy of Silicon Oxide Layers Prepared with Perchloric Acid. Appl. Surf. Sci. 2013, 269, 106–109. https://doi.org/10.1016/J.APSUSC.2012.09.081. (115) de Castro, D. T.; Valente, M. L. da C.; Aires, C. P.; Alves, O. L.; dos Reis, A. C. Elemental Ion Release and Cytotoxicity of Antimicrobial Acrylic Resins Incorporated with Nanomaterial. Gerodontology 2017, 34 (3), 320–325. https://doi.org/10.1111/ger.12267. (116) Lopez, J. F.; Pelaez, G. J.; Perez, L. D. Monitoring the Formation of Polystyrene/Silica Nanocomposites from Vinyl Triethoxysilane Containing Copolymers. Colloid Polym. Sci. 2013, 291 (5), 1143–1153. https://doi.org/10.1007/s00396-012-2842-4. (117) Skrdla, P. J.; Floyd, P. D.; Dell’Orco, P. C. The Amorphous State: First-Principles Derivation of the Gordon-Taylor Equation for Direct Prediction of the Glass Transition Temperature of Mixtures; Estimation of the Crossover Temperature of Fragile Glass Formers; Physical Basis of the &quot;Rule of 2/3&quot;. Phys. Chem. Chem. Phys. 2017, 19 (31), 20523–20532. https://doi.org/10.1039/c7cp04124a. (118) Zografi, G.; Newman, A. Interrelationships Between Structure and the Properties of Amorphous Solids of Pharmaceutical Interest. J. Pharm. Sci. 2017, 106 (1), 5–27. https://doi.org/10.1016/J.XPHS.2016.05.001. (119) polymerdatabase.com. Poly(methyl methacrylate) http://polymerdatabase.com/polymers/polymethylmethacrylate.html (accessed May 21, 2019). (120) Ngai, K. L.; Plazek, D. J. Temperature Dependences of the Viscoelastic Response of Polymer Systems. In Physical Properties of Polymers Handbook; Mark, J. E., Ed.; Springer New York: New York, NY, 2007; pp 455–478. https://doi.org/10.1007/978-0-387-69002-5_26. (121) Arua, U. N.; Blum, F. D. Disruptions in the Crystallinity of Poly(Lauryl Methacrylate) Due to Adsorption on Silica. J. Polym. Sci. Part B Polym. Phys. 2018, 56 (1), 89–96. https://doi.org/10.1002/polb.24525. (122) Sideridou, I. D.; Karabela, M. M. Effect of the Amount of 3-Methacyloxypropyltrimethoxysilane Coupling Agent on Physical Properties of Dental Resin Nanocomposites. Dent. Mater. 2009, 25 (11), 1315–1324. https://doi.org/10.1016/j.dental.2009.03.016. (123) Song, Y.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W.; Zheng, Q. Glass Transition of Poly (Methyl Methacrylate) Filled with Nanosilica and Core-Shell Structured Silica. Polymer (Guildf). 2017, 127, 141–149. https://doi.org/10.1016/J.POLYMER.2017.08.038. (124) Lin, G.; Chen, H.; Zhou, H.; Zhou, X.; Xu, H. Preparation of Tea Tree Oil/Poly(StyreneButyl Methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties. Mater. (Basel, Switzerland) 2018, 11 (5), 710. https://doi.org/10.3390/ma11050710. (125) Hofmeister, I.; Landfester, K.; Taden, A. PH-Sensitive Nanocapsules with Barrier Properties: Fragrance Encapsulation and Controlled Release. Macromolecules 2014, 47 (16), 5768– 5773. https://doi.org/10.1021/ma501388w. (126) Hofmeister, I.; Landfester, K.; Taden, A. Controlled Formation of Polymer Nanocapsules with High Diffusion-Barrier Properties and Prediction of Encapsulation Efficiency. Angew. Chemie Int. Ed. 2015, 54 (1), 327–330. https://doi.org/10.1002/anie.201408393. (127) Slomkowski, S.; Alemán, J. V.; Gilbert, R. G.; Hess, M.; Horie, K.; Jones, R. G.; Kubisa, P.; Meisel, I.; Mormann, W.; Penczek, S.; et al. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83 (12), 2229–2259. https://doi.org/10.1351/PAC-REC-10-06-03. (128) Clayton, K. N.; Salameh, J. W.; Wereley, S. T.; Kinzer-Ursem, T. L. Physical Characterization of Nanoparticle Size and Surface Modification Using Particle Scattering Diffusometry. Biomicrofluidics 2016, 10 (5), 054107. https://doi.org/10.1063/1.4962992.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSíntesis de Nanopartículas Tipo “Core-Shell” Empleando Polimerización en Emulsión y su Potencial Aplicación como Vehículos para Aceites Esenciales
dc.typeOtro


Este ítem pertenece a la siguiente institución