dc.relation | (1) van Herk, A. M. Historical Overview of (Mini)Emulsion Polymerizations and Preparation of
Hybrid Latex Particles. In Hybrid Latex Particles: Preparation with (Mini)emulsion
Polymerization; Herk, A. M., Landfester. Katharina, Eds.; Springer, Berlin, Heidelberg: The
Netherlands, 2010; pp 1–18. https://doi.org/10.1007/12_2010_62.
(2) Yamak, H. B. Emulsion Polymerization : Effects of Polymerization Variables on the
Properties of Vinyl Acetate Based Emulsion Polymers. In Emulsion Polymerization; Yılmaz,
F., Ed.; InTech: Rijeka, Croatia, 2013; pp 35–73. https://doi.org/10.5772/51498.
(3) Tauer, K.; Ali, A. M. I.; Yildiz, U.; Sedlak, M. On the Role of Hydrophilicity and
Hydrophobicity in Aqueous Heterophase Polymerization. Polymer (Guildf). 2005, 46 (4),
1003–1015. https://doi.org/10.1016/J.POLYMER.2004.11.036.
(4) Lau, W. Emulsion Polymerization of Hydrophobia Monomers. Macromol. Symp. 2002, 182
(1), 283–289. https://doi.org/10.1002/1521-3900(200206)182:1<283::AIDMASY283>3.0.CO;2-H.
(5) Joseph Schork, F.; Back, A. Inhibition Effects in Emulsion and Miniemulsion Polymerization
of Monomers with Extremely Low Water Solubility. J. Appl. Polym. Sci. 2004, 94 (6), 2555–
2557. https://doi.org/10.1002/app.21147.
(6) Ahmad, H.; Hasan, M. K.; Miah, M. A. J.; Ali, A. M. I.; Tauer, K. Solvent Effect on the
Emulsion Copolymerization of Methyl Methacrylate and Lauryl Methacrylate in Aqueous
Media. Polymer (Guildf). 2011, 52 (18), 3925–3932.
https://doi.org/10.1016/J.POLYMER.2011.07.004.
(7) polymerdatabase. Poly(dodecyl methacrylate)
http://polymerdatabase.com/polymers/polydodecylmethacrylate.html (accessed Jun 7,
2019).
(8) Abbott, S. Practical Solubility Science: Hansen solubility parameters (HSPs) Basics
https://www.stevenabbott.co.uk/practical-solubility/hsp-basics.php (accessed Jun 7, 2019).
(9) Batista, M. M.; Guirardello, R.; Krähenbühl, M. A. Determination of the Hansen Solubility
Parameters of Vegetable Oils, Biodiesel, Diesel, and Biodiesel–Diesel Blends. J. Am. Oil
Chem. Soc. 2015, 92 (1), 95–109. https://doi.org/10.1007/s11746-014-2575-2.
(10) Batista, M. M.; Guirardello, R.; Krähenbühl, M. A. Determination of the Solubility
Parameters of Biodiesel from Vegetable Oils. Energy & Fuels 2013, 27 (12), 7497–7509.
https://doi.org/10.1021/ef401690f.
(11) Gilbert, M. Relation of Structure to Chemical Properties. In Brydson’s Plastics Materials;
Gilbert, M., Ed.; Butterworth-Heinemann, 2017; pp 75–102. https://doi.org/10.1016/B978-
0-323-35824-8.00005-0.
(12) Zhao, J.; Xiao, C.; Xu, N.; Ma, X. Preparation and Properties of Poly(Butyl
Methacrylate/Lauryl Methacrylate) and Its Blend Fiber. Polym. Bull. 2012, 69 (6), 733–746.
https://doi.org/10.1007/s00289-012-0766-2.
(13) Sevgili, L. M.; Gök, A.; Kayman, Ü.; Çavuş, S. Swelling Behaviors of Poly(Dodecyl
Methacrylate-Co-Methyl Eugenol) and Poly(Dodecyl Methacrylate-Co-Methyl Chavicol)
Gels in Essential Oil Components. Chem. Pap. 2017, 71 (8), 1399–1408.
https://doi.org/10.1007/s11696-017-0130-y.
(14) Sun, J.; Xu, Y.; Chen, H.; Tan, Z.; Fan, L. Synthesis and Properties of High Oil-Absorbing
Resins with Long Chain by High Internal Phase Emulsions as Template. Sep. Sci. Technol.
2014, 49 (16), 2518–2524. https://doi.org/10.1080/01496395.2014.928322.
(15) Jang, J.; Kim, B.-S. Studies of Crosslinked Styrene-Alkyl Acrylate Copolymers for Oil
Absorbency Application. II. Effects of Polymerization Conditions on Oil Absorbency. J.
Appl. Polym. Sci. 2000, 77 (4), 914–920. https://doi.org/10.1002/(SICI)1097-
4628(20000725)77:4<914::AID-APP27>3.0.CO;2-7.
(16) Bilia, A. R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M. C.
Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic
Approach. Evid. Based. Complement. Alternat. Med. 2014, 2014, 651593.
https://doi.org/10.1155/2014/651593.
(17) Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils –
A Review. Food Chem. Toxicol. 2008, 46 (2), 446–475.
https://doi.org/10.1016/J.FCT.2007.09.106.
(18) Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical
Characterization and Investigation of Some Biological Activities: A Critical Review.
Medicines 2016, 3 (4), 25. https://doi.org/10.3390/medicines3040025.
(19) Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—
a Review. Int. J. Food Microbiol. 2004, 94 (3), 223–253. https://doi.org/10.1016/J.IJFOODMICRO.2004.03.022.
(20) Jiménez Quintero, C. A.; Pantoja Estrada, A. H.; Leonel, H. F. Riesgos En La Salud de
Agricultores Por Uso y Manejo de Plaguicidas, Microcuenca “La Pila.” Univ. y Salud 2016,
18 (3), 417. https://doi.org/10.22267/rus.161803.48.
(21) Restrepo, L. D. Agroquímicos vs. agricultura orgánica: vida, salud y economía La Crónica
del Quindío - Noticias Quindío, Colombia y el mundo
https://www.cronicadelquindio.com/noticia-completa-titulo-agroquimicos-vs-agriculturaorganica-vida-salud-y-economia-cronica-del-quindio-nota-122179.htm (accessed Jun 22,
2019).
(22) Pardo, T. "Los pesticidas son los responsables de la muerte de 200.000 personas cada
año": ONU https://www.elespectador.com/noticias/medio-ambiente/los-pesticidasson-los-responsables-de-la-muerte-de-200000-personas-cada-ano-onu-articulo-683570
(accessed Jun 1, 2018).
(23) Turek, C.; Stintzing, F. C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food
Saf. 2013, 12 (1), 40–53. https://doi.org/10.1111/1541-4337.12006.
(24) Pérez, E. PLAGUICIDAS BOTÁNICOS: UNA ALTERNATIVA A TENER EN CUENTA.
Fitosanidad 2012, 16 (1), 51–59. https://doi.org/1562-3009.
(25) Matsumoto, A.; Murakami, N.; Aota, H.; Ikeda, J.; Capek, I. Emulsion Polymerization of
Lauryl Methacrylate and Its Copolymerization with Trimethylolpropane Trimethacrylate.
Polymer (Guildf). 1999, 40 (20), 5687–5690. https://doi.org/10.1016/S0032-3861(98)00789-
7.
(26) You, X.; Dimonie, V. L.; Klein, A. Kinetic Study of Emulsion Copolymerization of Ethyl
Methacrylate/Lauryl Methacrylate in Propylene Glycol, Stabilized with Poly(Ethylene
Oxide)-Block-Polystyrene-Block-Poly(Ethylene Oxide) Triblock Copolymer. J. Appl.
Polym. Sci. 2001, 82 (7), 1691–1704. https://doi.org/10.1002/app.2009.
(27) Habibi, A.; Vasheghani-Farahani, E.; Semsarzadeh, M. A.; Sadaghiani, K. Estimation of
Monomer Reactivity Ratios in Free-Radical Solution Copolymerization of Lauryl
Methacrylate-Isobutyl Methacrylate. J. Polym. Sci. Part A Polym. Chem. 2004, 42 (1), 112–
129. https://doi.org/10.1002/pola.10964.
(28) Shabnam, R.; Ali, A. M. I.; Miah, M. A. J.; Tauer, K.; Ahmad, H. Influence of the Third
Monomer on Lauryl Methacrylate–Methyl Methacrylate Emulsion Terpolymerization.
Colloid Polym. Sci. 2013, 291 (9), 2111–2120. https://doi.org/10.1007/s00396-013-2952-7.
(29) Ahmad, H.; Abu-Waesmin, M.; Rahman, M. M.; Jalil Miah, M. A.; Tauer, K. Preparation of Hydrophobic Polymer Particles by Radical Polymerization and Subsequent Modification into
Magnetically Doped Particles. J. Appl. Polym. Sci. 2013, 127 (1), 620–627.
https://doi.org/10.1002/app.37827.
(30) Boscán, F.; Paulis, M.; Barandiaran, M. J. Towards the Production of High Performance
Lauryl Methacrylate Based Polymers through Emulsion Polymerization. Eur. Polym. J. 2017,
93, 44–52. https://doi.org/10.1016/J.EURPOLYMJ.2017.05.028.
(31) Leyrer, R. J.; Mächtle, W. Emulsion Polymerization of Hydrophobic Monomers like Stearyl
Acrylate with Cyclodextrin as a Phase Transfer Agent. Macromol. Chem. Phys. 2000, 201
(12), 1235–1243. https://doi.org/10.1002/1521-3935(20000801)201:12<1235::AIDMACP1235>3.0.CO;2-#.
(32) Assem, Y.; Yehia, A. A. Studying the Effect of β-Cyclodextrin in Aqueous Polymerization
of Some Acrylate Monomers Bearing Hydrophobic Moiety. Egypt. J. Chem. 2015, 58 (3),
387–401. https://doi.org/10.21608/ejchem.2015.1021.
(33) Zheng, Z.; Tian, X.; Sun, J.; Yuan, J.; Yuan, Y. Effect of β-Cyclodextrin on the Preparation
of Poly(Methyl Methacrylate-Co-Lauryl Methacrylate) Nanoparticles and Their Latex
Blending with Natural Rubber. Polym. Sci. Ser. B 2018, 60 (5), 652–663.
https://doi.org/10.1134/S1560090418050184.
(34) Hansen, F. K. Historic Overview. In Chemistry and Technology of Emulsion Polymerisation;
Van Herk, A. M., Ed.; John Wiley & Sons Ltd: Oxford, UK, 2013; pp 1–22.
https://doi.org/10.1002/9781118638521.ch1.
(35) Anderson, C. D.; Daniels, E. S. Emulsion Polymerisation and Latex Applications. Rapra Rev.
Reports 2003, 14 (4), 146. https://doi.org/0889-3144.
(36) Distler, D.; Neto, W. S.; Machado, F. Emulsion Polymerization. Ref. Modul. Mater. Sci.
Mater. Eng. 2017. https://doi.org/10.1016/B978-0-12-803581-8.03746-2.
(37) El-hoshoudy, A. N. M. B. Emulsion Polymerization Mechanism. In Recent Research in
Polymerization; Spi-Global, Ed.; InTech: Croatia, 2018; pp 3–11.
https://doi.org/10.5772/intechopen.72143.
(38) van Herk, A. M.; Gilbert, R. G. Emulsion Polymerisation. In Chemistry and Technology of
Emulsion Polymerisation; Van Herk, A. M., Ed.; John Wiley & Sons Ltd: Oxford, UK, 2013;
pp 43–73. https://doi.org/10.1002/9781118638521.ch3.
(39) Boscán Guerra, F. E. Emulsion Polymerization of Superhydrophobic Monomers, University
of Basque Country, 2017.
(40) Odian, G. Emulsion Polymerization. In Principles of Polymerization; Odian, G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp 350–371.
https://doi.org/10.1002/047147875X.ch4.
(41) Pletnev, M. Y. Chemistry of Surfactants. In Surfactants: Chemistry, Interfacial Properties,
Applications; Möbius, D., Miller, R., Fainerman, V., Eds.; Elsevier, 2001; Vol. 13, pp 1–97.
https://doi.org/10.1016/S1383-7303(01)80062-4.
(42) Tadros, T. F. Emulsion Science and Technology: A General Introduction. In Emulsion
Science and Technology; Tadros, T. F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2009; pp 1–56. https://doi.org/10.1002/9783527626564.ch1.
(43) Ballard, N.; Urrutia, J.; Eizagirre, S.; Schäfer, T.; Diaconu, G.; De La Cal, J. C.; Asua, J. M.
Surfactant Kinetics and Their Importance in Nucleation Events in (Mini)Emulsion
Polymerization Revealed by Quartz Crystal Microbalance with Dissipation Monitoring.
Langmuir 2014, 30 (30), 9053–9062. https://doi.org/10.1021/la501028f.
(44) Le Quéméner, F.; Subervie, D.; Morlet-Savary, F.; Lalevée, J.; Lansalot, M.; Bourgeat-Lami,
E.; Lacôte, E. Visible-Light Emulsion Photopolymerization of Styrene. Angew. Chemie 2018,
130 (4), 969–973. https://doi.org/10.1002/ange.201710488.
(45) Daniloska, V.; Tomovska, R.; Asua, J. M. Hybrid Miniemulsion Photopolymerization in a
Continuous Tubular Reactor—A Way to Expand the Characteristics of
Polyurethane/Acrylics. Chem. Eng. J. 2012, 184, 308–314.
https://doi.org/10.1016/J.CEJ.2012.01.040.
(46) Harikrishna, R.; Shaikh, A. W.; Ponrathnam, S.; Rajan, C. R.; Bhongale, S.
Photopolymerization of High Internal Phase Emulsions Based on 2-Ethylhexyl
(Meth)Acrylates and Ethylene Glycol Dimethacrylate. Des. Monomers Polym. 2014, 17 (1),
1–6. https://doi.org/10.1080/15685551.2013.771312.
(47) Jasinski, F.; Zetterlund, P. B.; Braun, A. M.; Chemtob, A. Photopolymerization in Dispersed
Systems. Prog. Polym. Sci. 2018, 84, 47–88.
https://doi.org/10.1016/J.PROGPOLYMSCI.2018.06.006.
(48) Tjiam, C.; Gomes, V. G. Optimal Operating Strategies for Emulsion Polymerization with
Chain Transfer Agent. Ind. Eng. Chem. Res. 2014, 53 (18), 7526–7537.
https://doi.org/10.1021/ie4032956.
(49) Suzuki, S.; Kikuchi, K.; Suzuki, A.; Okaya, T.; Nomura, M. Effect of Chain Transfer Agents
on the Kinetics and Mechanism of Particle Nucleation in the Emulsion Polymerization of
Vinyl Pivalate. Colloid Polym. Sci. 2007, 285 (5), 523–534. https://doi.org/10.1007/s00396-
006-1600-x.
(50) Zhang, X. J.; Wang, J. P.; Zhang, X. X.; Wang, X. C. The Effects of the Chain Transfer Agent
(Dodecyl Mercaptan) on the Morphologies and Thermal Properties of Nanocapsules
Containing <I>N</I>-Octadecane. Sci. Adv. Mater. 2013, 5 (3), 254–259.
https://doi.org/10.1166/sam.2013.1452.
(51) Meena, M.; Umapathy, M. J. Efficiency of Single Site Phase Transfer Catalyst in Free
Radical Polymerization of Butyl Methacrylate - A Kinetic Study. Brazilian Arch. Biol.
Technol. 2016, 59 (spe2), 1–9. https://doi.org/10.1590/1678-4324-2016161045.
(52) Murugesan, V.; Umapathy, M. J. Phase Transfer Catalyst Aided Radical Polymerization of
N-Butyl Acrylate in Two-Phase System: A Kinetic Study. Int. J. Ind. Chem. 2016, 7 (4), 441–
448. https://doi.org/10.1007/s40090-016-0079-7.
(53) Rimmer, S. Cyclodextrins in the Emulsion Polymerization of Vinyl Monomers. Macromol.
Symp. 2000, 150 (1), 149–154. https://doi.org/10.1002/1521-3900(200002)150:1<149::AIDMASY149>3.0.CO;2-U.
(54) Stefan Bernhardt; Patrick Glöckner; Theis, A.; Ritter, H. Cyclodextrins in Polymer Synthesis:
Influence of Acrylate Side Groups on the Initial Rate of Radical Polymerization of Various
Acrylate/Methylated β-Cyclodextrin Complexes in Water. Macromolecules 2001, 36 (6),
1647–1649. https://doi.org/10.1021/MA0016533.
(55) Chauvet, J.; Asua, J. M.; Leiza, J. R. Independent Control of Sol Molar Mass and Gel Content
in Acrylate Polymer/Latexes. Polymer (Guildf). 2005, 46 (23), 9555–9561.
https://doi.org/10.1016/J.POLYMER.2005.08.061.
(56) Wang, A. R.; Zhu, S. Control of the Polymer Molecular Weight in Atom Transfer Radical
Polymerization with Branching/Crosslinking. J. Polym. Sci. Part A Polym. Chem. 2005, 43
(22), 5710–5714. https://doi.org/10.1002/pola.21106.
(57) Erbil, H. Y. Properties and Roles of Ingredients in Vinyl Acetate Emulsion
Homopolymerization. In Vinyl acetate emulsion polymerization and copolymerization with
acrylic monomers; Erbil, H. Y., Ed.; CRC Press: U. S., 2000; p 38.
(58) Chern, C.-S.; Lin, C.-H. Semibatch Surfactant-Free Emulsion Polymerization of Butyl
Acrylate. Polym. J. 1995, 27 (11), 1094–1103. https://doi.org/10.1295/polymj.27.1094.
(59) Chern, C. Interfacial Phenomena. In Principles and Applications of Emulsion
Polymerization; Chern, C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp 23–
52. https://doi.org/10.1002/9780470377949.ch2.
(60) Plessis, C.; Arzamendi, G.; Leiza, J. R.; Schoonbrood, H. A. S.; Charmot, D.; Asua, J. M.
Seeded Semibatch Emulsion Polymerization of N-Butyl Acrylate. Kinetics and Structural
Properties. Macromolecules 2000, 33 (14), 5041–5047.
https://doi.org/10.1021/MA992053A.
(61) Asua, J. M. Emulsion Polymerization: From Fundamental Mechanisms to Process
Developments. J. Polym. Sci. Part A Polym. Chem. 2004, 42 (5), 1025–1041.
https://doi.org/10.1002/pola.11096.
(62) Nomura, M.; Tobita, H.; Suzuki, K. Emulsion Polymerization: Kinetic and Mechanistic
Aspects. In Polymer Particles; Okubo, M., Ed.; Springer, Berlin, Heidelberg: Berlin
Heidelberg , 2005; pp 1–128. https://doi.org/10.1007/b100116.
(63) Chern, C. S. Emulsion Polymerization Mechanisms and Kinetics. Prog. Polym. Sci. 2006, 31
(5), 443–486. https://doi.org/10.1016/J.PROGPOLYMSCI.2006.02.001.
(64) Su, W.-F. Radical Chain Polymerization. In Principles of Polymer Desing and Synthesis; Su,
W.-F., Ed.; Springer, Berlin, Heidelberg: Verlag Berlin Heidelberg , 2013; pp 137–183.
https://doi.org/10.1007/978-3-642-38730-2_7.
(65) Rudin, A.; Choi, P. Free-Radical Polymerization. In The Elements of Polymer Science &
Engineering; Rudin, A., Ed.; Elsevier: The Boulevard, Langford Lane, Kidlington, 2013; pp
341–389. https://doi.org/10.1016/B978-0-12-382178-2.00008-0.
(66) Chanda, M. Free Radical Polymerization. In Introduction to polymer science and chemistry:
a problem-solving approach; Chanda, M., Ed.; CRC Press, Taylor & Francis Group: Boca
Raton, 2013; pp 289–377.
(67) Cifuentes, A.; Bernal, J. L.; Diez-Masa, J. C. Determination of Critical Micelle Concentration
Values Using Capillary Electrophoresis Instrumentation. Anal. Chem. 1997, 69 (20), 4271–
4274. https://doi.org/10.1021/AC970696N.
(68) Stepto, R. F. T. Dispersity in Polymer Science (IUPAC Recommendations 2009). Pure Appl.
Chem. 2009, 81 (2), 351–353. https://doi.org/10.1351/PAC-REC-08-05-02.
(69) Chern, C.-S.; Lin, S.-Y.; Hsu, T. J. Effects of Temperature on Styrene Emulsion
Polymerization Kinetics. Polym. J. 1999, 31 (6), 516–523.
https://doi.org/10.1295/polymj.31.516.
(70) Capek, I.; Lin, S.-Y.; Hsu, T.-J.; Chern, C.-S. Effect of Temperature on Styrene Emulsion
Polymerization in the Presence of Sodium Dodecyl Sulfate. II. J. Polym. Sci. Part A Polym.
Chem. 2000, 38 (9), 1477–1486. https://doi.org/10.1002/(SICI)1099-
0518(20000501)38:9<1477::AID-POLA10>3.0.CO;2-Y.
(71) Kohut-Svelko, N.; Pirri, R.; Asua, J. M.; Leiza, J. R. Effect of Reaction Temperature on the
Gel Content of Acrylic Latexes. Macromol. React. Eng. 2009, 3 (1), 11–15. https://doi.org/10.1002/mren.200800034.
(72) Wu, G.; Wang, C.; Tan, Z.; Zhang, H. Effect of Temperature on Emulsion Polymerization of
N-Butyl Acrylate. Procedia Eng. 2011, 18, 353–357.
https://doi.org/10.1016/J.PROENG.2011.11.056.
(73) Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A. Thermodynamics of Micelle Formation as
a Function of Temperature: A High Sensitivity Titration Calorimetry Study. J. Phys. Chem.
1995, 99 (30), 11742–11751. https://doi.org/10.1021/j100030a019.
(74) Soeriyadi, A. H.; Trouillet, V.; Bennet, F.; Bruns, M.; Whittaker, M. R.; Boyer, C.; Barker,
P. J.; Davis, T. P.; Barner-Kowollik, C. A Detailed Surface Analytical Study of Degradation
Processes in (Meth)Acrylic Polymers. J. Polym. Sci. Part A Polym. Chem. 2012, 50 (9),
1801–1811. https://doi.org/10.1002/pola.25947.
(75) Tommasini, F. J.; Ferreira, L. da C.; Tienne, L. G. P.; Aguiar, V. de O.; Silva, M. H. P. da;
Rocha, L. F. da M.; Marques, M. de F. V.; Tommasini, F. J.; Ferreira, L. da C.; Tienne, L. G.
P.; et al. Poly (Methyl Methacrylate)-SiC Nanocomposites Prepared Through in Situ
Polymerization. Mater. Res. 2018, 21 (6). https://doi.org/10.1590/1980-5373-mr-2018-0086.
(76) Sannigrahi, B.; Wadgaonkar, P. P.; Sehra, J. C.; Sivaram, S. Copolymerization of Methyl
Methacrylate with Lauryl Methacrylate Using Group Transfer Polymerization. J. Polym. Sci.
Part A Polym. Chem. 1997, 35 (10), 1999–2007. https://doi.org/10.1002/(SICI)1099-
0518(19970730)35:10<1999::AID-POLA15>3.0.CO;2-C.
(77) Raghunadh, V.; Baskaran, D.; Sivaram, S. Efficiency of Ligands in Atom Transfer Radical
Polymerization of Lauryl Methacrylate and Block Copolymerization with Methyl
Methacrylate. Polymer (Guildf). 2004, 45 (10), 3149–3155.
https://doi.org/10.1016/J.POLYMER.2004.03.042.
(78) Pujari, B. R.; Barik, B.; Behera, B. Dielectric Constants of Some Miscible Aqueous-Organic
Solvent Mixtures. Phys. Chem. Liq. 1998, 36 (2), 105–112.
https://doi.org/10.1080/00319109808030599.
(79) Adelnia, H.; Pourmahdian, S. Soap-Free Emulsion Polymerization of Poly (Methyl
Methacrylate-Co-Butyl Acrylate): Effects of Anionic Comonomers and Methanol on the
Different Characteristics of the Latexes. Colloid Polym. Sci. 2014, 292 (1), 197–205.
https://doi.org/10.1007/s00396-013-3043-5.
(80) Liu, B.; Wang, Y.; Zhang, M.; Zhang, H. Initiator Systems Effect on Particle Coagulation
and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene. Polymers
(Basel). 2016, 8 (2). https://doi.org/10.3390/polym8020055.
(81) Liu, B.; Zhang, M.; Cheng, H.; Fu, Z.; Zhou, T.; Chi, H.; Zhang, H. Large-Scale and Narrow
Dispersed Latex Formation in Batch Emulsion Polymerization of Styrene in Methanol–Water
Solution. Colloid Polym. Sci. 2014, 292 (2), 519–525. https://doi.org/10.1007/s00396-013-
3113-8.
(82) Leclercq, L. Interactions between Cyclodextrins and Cellular Components: Towards Greener
Medical Applications? Beilstein J. Org. Chem. 2016, 12 (1), 2644–2662.
https://doi.org/10.3762/bjoc.12.261.
(83) Del Valle, E. M. M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39
(9), 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9.
(84) Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N.
Fundamentals and Applications of Cyclodextrins. In Cyclodextrin Fundamentals, Reactivity
and Analysis; Fourmentin, S., Crini, G., Lichtfouse, E., Eds.; Springer, Cham: Dunkerque,
France, 2018; pp 1–55. https://doi.org/10.1007/978-3-319-76159-6_1.
(85) Joachim Storsberg, †,§; Huub van Aert, †; Christiaan van Roost, † and; Helmut Ritter*, ‡.
Cyclodextrins in Polymer Synthesis: A Simple and Surfactant Free Way to Polymer Particles
Having Narrow Particle Size Distribution. 2002. https://doi.org/10.1021/MA020229U.
(86) Yang, C.; Castelvetro, V.; Scalarone, D.; Bianchi, S.; Zhang, Y. Three Different βCyclodextrins Direct the Emulsion Copolymerization of a Highly Fluorinated Methacrylate
toward Distinctive Nanostructured Particle Morphologies. J. Polym. Sci. Part A Polym.
Chem. 2011, 49 (21), 4518–4530. https://doi.org/10.1002/pola.24921.
(87) Vautier-Giongo, C.; Bales, B. L. Estimate of the Ionization Degree of Ionic Micelles Based
on Krafft Temperature Measurements. J. Phys. Chem. B 2003, 107 (23), 5398–5403.
https://doi.org/10.1021/jp0270957.
(88) Krishnan, S.; Klein, A.; Mohamed S. El-Aasser; Sudol, E. D. Effect of Surfactant
Concentration on Particle Nucleation in Emulsion Polymerization of N-Butyl Methacrylate.
Macromolecules 2003, 36 (9), 3152–3159. https://doi.org/10.1021/MA021120P.
(89) Cheng, D.; Ariafar, S.; Sheibat-Othman, N.; Pohn, J.; McKenna, T. F. L. Particle Coagulation
of Emulsion Polymers: A Review of Experimental and Modelling Studies. Polym. Rev. 2018,
58 (4), 717–759. https://doi.org/10.1080/15583724.2017.1405979.
(90) Singhal, A.; Dubey, K. A.; Bhardwaj, Y. K.; Jain, D.; Choudhury, S.; Tyagi, A. K. UVShielding Transparent PMMA/In2O3 Nanocomposite Films Based on In2O3 Nanoparticles.
RSC Adv. 2013, 3 (43), 20913. https://doi.org/10.1039/c3ra42244e.
(91) Ma, Y.; Zheng, X.; Shi, F.; Li, Y.; Sun, S. Synthesis of Poly(Dodecyl Methacrylate)s and Their Drag-Reducing Properties. J. Appl. Polym. Sci. 2003, 88 (7), 1622–1626.
https://doi.org/10.1002/app.11710.
(92) Warren, P. B. Flory−Huggins Theory for the Solubility of Heterogeneously Modified
Polymers. Macromolecules 2007, 40 (18), 6709–6712. https://doi.org/10.1021/MA070809X.
(93) Young, N. P.; Balsara, N. P. Flory–Huggins Equation. In Encyclopedia of Polymeric
Nanomaterials; Kobayashi1, S., Müllen, K., Eds.; Springer Berlin Heidelberg: Berlin,
Heidelberg, 2014; pp 1–7. https://doi.org/10.1007/978-3-642-36199-9_79-1.
(94) Su, W.-F. Chain Copolymerization. In Principles of Polymer Design and Synthesis; Su, W.-
F., Ed.; Springer, Berlin, Heidelberg: Verlag Berlin Heidelberg , 2013; pp 233–265.
https://doi.org/10.1007/978-3-642-38730-2_10.
(95) Polic, A. L.; Duever, T. A.; Penlidis, A. Case Studies and Literature Review on the Estimation
of Copolymerization Reactivity Ratios. J. Polym. Sci. Part A Polym. Chem. 1998, 36 (5),
813–822. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5<813::AIDPOLA14>3.0.CO;2-J.
(96) Alfrey, T.; Price, C. C. Relative Reactivities in Vinyl Copolymerization. J. Polym. Sci. 1947,
2 (1), 101–106. https://doi.org/10.1002/pol.1947.120020112.
(97) Hrvatsko kemijsko društvo., E.; Hrvatsko prirodoslovno društvo., K.; Sveučilište u Zagrebu.,
Z. Copolymerization of Styrene with Dodecyl Methacrylate and Octadecyl Methacrylate.
Croat. Chem. Acta 1956, 75 (3), 769–782. https://doi.org/https://hrcak.srce.hr/129320.
(98) Stahl, G. A. Copolymerization of Methyl Methacrylate and Dodecyl Methacrylate. J. Polym.
Sci. Polym. Chem. Ed. 1979, 17 (6), 1883–1886.
https://doi.org/10.1002/pol.1979.170170636.
(99) Álvarez-Paino, M.; Muñoz-Bonilla, A.; López-Fabal, F.; Gómez-Garcés, J. L.; Heuts, J. P.
A.; Fernández-García, M. Functional Surfaces Obtained from Emulsion Polymerization
Using Antimicrobial Glycosylated Block Copolymers as Surfactants. Polym. Chem. 2015, 6
(34), 6171–6181. https://doi.org/10.1039/C5PY00776C.
(100) polymerdatabase. Half-Life of Initiators http://polymerdatabase.com/polymer chemistry/thalf2.html (accessed Jun 14, 2019).
(101) Luo, Y.; Wang, X.; Li, B.-G.; Zhu, S. Toward Well-Controlled Ab Initio RAFT Emulsion
Polymerization of Styrene Mediated by 2-
(((Dodecylsulfanyl)Carbonothioyl)Sulfanyl)Propanoic Acid. Macromolecules 2011, 44 (2),
221–229. https://doi.org/10.1021/ma102378w.
(102) Bourgeat-Lami, E.; Tissot, I.; Lefebvre, F. Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion
Polymerization. Macromolecules 2002, 35 (16), 6185–6191.
https://doi.org/10.1021/MA012230J.
(103) Li, H.; Yuan, J.; Qian, H.; Wu, L. Synthesis and Properties of SiO2/P(MMA-BA) Core–Shell
Structural Latex with Siloxanes. Prog. Org. Coatings 2016, 97, 65–73.
https://doi.org/10.1016/J.PORGCOAT.2016.03.027.
(104) Li, G.; Li, W. Synthesis and Characterization of Microencapsulated N-Octadecane with
Hybrid Shells Containing 3-(Trimethoxysilyl) Propyl Methacrylate and Methyl
Methacrylate. J. Therm. Anal. Calorim. 2017, 129 (2), 915–924.
https://doi.org/10.1007/s10973-017-6220-9.
(105) Christopher, K. R.; Pal, A.; Mirchandani, G.; Dhar, T. Synthesis and Characterization of
Polystyrene-Acrylate/Polysiloxane (PSA/PSi) Core Shell Polymers and Evaluation of Their
Properties for High Durable Exterior Coatings. Prog. Org. Coatings 2014, 77 (6), 1063–
1068. https://doi.org/10.1016/J.PORGCOAT.2014.03.008.
(106) Liu, B. L.; Zhang, B. T.; Cao, S. S.; Deng, X. B.; Hou, X.; Chen, H. Preparation of the Stable
Core–Shell Latex Particles Containing Organic-Siloxane in the Shell. Prog. Org. Coatings
2008, 61 (1), 21–27. https://doi.org/10.1016/J.PORGCOAT.2007.08.008.
(107) Pantoja, M.; Velasco, F.; Broekema, D.; Abenojar, J.; Real, J. C. del. The Influence of PH on
the Hydrolysis Process of γ-Methacryloxypropyltrimethoxysilane, Analyzed by FT-IR, and
the Silanization of Electrogalvanized Steel. J. Adhes. Sci. Technol. 2010, 24 (6), 1131–1143.
https://doi.org/10.1163/016942409X12586283821559.
(108) Ni, K. F.; Sheibat-Othman, N.; Shan, G. R.; Fevotte, G.; Bourgeat-Lami, E. Kinetics and
Modeling of Hybrid Core−Shell Nanoparticles Synthesized by Seeded Emulsion
(Co)Polymerization of Styrene and γ-Methacryloyloxypropyltrimethoxysilane.
Macromolecules 2005, 38 (22), 9100–9109. https://doi.org/10.1021/MA050999G.
(109) Bhattacharjee, S. DLS and Zeta Potential – What They Are and What They Are Not? J.
Control. Release 2016, 235, 337–351. https://doi.org/10.1016/J.JCONREL.2016.06.017.
(110) Tissot, I.; Reymond, J. P.; Lefebvre, F.; Bourgeat-Lami, E. SiOH-Functionalized Polystyrene
Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles. Chem. Mater. 2002,
14 (3), 1325–1331. https://doi.org/10.1021/CM0112441.
(111) Sabín Fernández, J. D. Estabilidad Coloidal de Nanoestructuras Liposómicas Tesis Doctoral,
Universidade de Santiago de Compostela, 2007.
(112) Leung, K.; Nielsen, I. M. B.; Criscenti, L. J. Elucidating the Bimodal Acid−Base Behavior
of the Water−Silica Interface from First Principles. J. Am. Chem. Soc. 2009, 131 (51), 18358–
18365. https://doi.org/10.1021/ja906190t.
(113) Ni, K. F.; G. R. Shan; Weng, Z. X.; Sheibat-Othman, N.; Fevotte, G.; Lefebvre, F.; BourgeatLami, E. Synthesis of Hybrid Core−Shell Nanoparticles by Emulsion (Co)Polymerization of
Styrene and γ-Methacryloxypropyltrimethoxysilane. Macromolecules 2005, 38 (17), 7321–
7329. https://doi.org/10.1021/MA050334E.
(114) Kopani, M.; Mikula, M.; Takahashi, M.; Rusnák, J.; Pinčík, E. FT IR Spectroscopy of Silicon
Oxide Layers Prepared with Perchloric Acid. Appl. Surf. Sci. 2013, 269, 106–109.
https://doi.org/10.1016/J.APSUSC.2012.09.081.
(115) de Castro, D. T.; Valente, M. L. da C.; Aires, C. P.; Alves, O. L.; dos Reis, A. C. Elemental
Ion Release and Cytotoxicity of Antimicrobial Acrylic Resins Incorporated with
Nanomaterial. Gerodontology 2017, 34 (3), 320–325. https://doi.org/10.1111/ger.12267.
(116) Lopez, J. F.; Pelaez, G. J.; Perez, L. D. Monitoring the Formation of Polystyrene/Silica
Nanocomposites from Vinyl Triethoxysilane Containing Copolymers. Colloid Polym. Sci.
2013, 291 (5), 1143–1153. https://doi.org/10.1007/s00396-012-2842-4.
(117) Skrdla, P. J.; Floyd, P. D.; Dell’Orco, P. C. The Amorphous State: First-Principles Derivation
of the Gordon-Taylor Equation for Direct Prediction of the Glass Transition Temperature of
Mixtures; Estimation of the Crossover Temperature of Fragile Glass Formers; Physical Basis
of the "Rule of 2/3". Phys. Chem. Chem. Phys. 2017, 19 (31), 20523–20532.
https://doi.org/10.1039/c7cp04124a.
(118) Zografi, G.; Newman, A. Interrelationships Between Structure and the Properties of
Amorphous Solids of Pharmaceutical Interest. J. Pharm. Sci. 2017, 106 (1), 5–27.
https://doi.org/10.1016/J.XPHS.2016.05.001.
(119) polymerdatabase.com. Poly(methyl methacrylate)
http://polymerdatabase.com/polymers/polymethylmethacrylate.html (accessed May 21,
2019).
(120) Ngai, K. L.; Plazek, D. J. Temperature Dependences of the Viscoelastic Response of Polymer
Systems. In Physical Properties of Polymers Handbook; Mark, J. E., Ed.; Springer New
York: New York, NY, 2007; pp 455–478. https://doi.org/10.1007/978-0-387-69002-5_26.
(121) Arua, U. N.; Blum, F. D. Disruptions in the Crystallinity of Poly(Lauryl Methacrylate) Due
to Adsorption on Silica. J. Polym. Sci. Part B Polym. Phys. 2018, 56 (1), 89–96.
https://doi.org/10.1002/polb.24525.
(122) Sideridou, I. D.; Karabela, M. M. Effect of the Amount of 3-Methacyloxypropyltrimethoxysilane Coupling Agent on Physical Properties of Dental Resin
Nanocomposites. Dent. Mater. 2009, 25 (11), 1315–1324.
https://doi.org/10.1016/j.dental.2009.03.016.
(123) Song, Y.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W.; Zheng, Q. Glass Transition of Poly (Methyl
Methacrylate) Filled with Nanosilica and Core-Shell Structured Silica. Polymer (Guildf).
2017, 127, 141–149. https://doi.org/10.1016/J.POLYMER.2017.08.038.
(124) Lin, G.; Chen, H.; Zhou, H.; Zhou, X.; Xu, H. Preparation of Tea Tree Oil/Poly(StyreneButyl Methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties.
Mater. (Basel, Switzerland) 2018, 11 (5), 710. https://doi.org/10.3390/ma11050710.
(125) Hofmeister, I.; Landfester, K.; Taden, A. PH-Sensitive Nanocapsules with Barrier Properties:
Fragrance Encapsulation and Controlled Release. Macromolecules 2014, 47 (16), 5768–
5773. https://doi.org/10.1021/ma501388w.
(126) Hofmeister, I.; Landfester, K.; Taden, A. Controlled Formation of Polymer Nanocapsules
with High Diffusion-Barrier Properties and Prediction of Encapsulation Efficiency. Angew.
Chemie Int. Ed. 2015, 54 (1), 327–330. https://doi.org/10.1002/anie.201408393.
(127) Slomkowski, S.; Alemán, J. V.; Gilbert, R. G.; Hess, M.; Horie, K.; Jones, R. G.; Kubisa, P.;
Meisel, I.; Mormann, W.; Penczek, S.; et al. Terminology of Polymers and Polymerization
Processes in Dispersed Systems (IUPAC Recommendations 2011). Pure Appl. Chem. 2011,
83 (12), 2229–2259. https://doi.org/10.1351/PAC-REC-10-06-03.
(128) Clayton, K. N.; Salameh, J. W.; Wereley, S. T.; Kinzer-Ursem, T. L. Physical
Characterization of Nanoparticle Size and Surface Modification Using Particle Scattering
Diffusometry. Biomicrofluidics 2016, 10 (5), 054107. https://doi.org/10.1063/1.4962992. | |