| dc.relation | K. F. Ahmed, G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Global and Planetary Change, 100:320–332, 2013.
J. A. Amador. A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr, 5(2):1–13, 1998.
J. A. Amador. The intra-Americas sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146(1):153–188, 2008.
A. Amiri, R. Panahi, and S. Radfar. Parametric study of two-body floating-point wave absorber. Journal of marine science and application, 15(1):41–49, 2016.
S. G. Arias and L. F. C. Serna. Regionalización de curvas de duración de caudales en el Departamento de Antioquia-Colombia. Revista EIA, 14(27):21–30, 2017.
M. Bagatini, M. G. Benevit, A. Beluco, A. Risso, et al. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.
M. Belmonte Rivas and A. Stoffelen. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 2019.
A. Beluco, P. K. de Souza, and A. Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157– 2165, 2008.
E. L. Birch. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change” Intergovernmental Panel on Climate Change.(2014).(Contribution ofWorking Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). New York, NY: Cambridge University
P. J. Block, F. A. Souza Filho, L. Sun, and H.-H. Kwon. A streamflow forecasting framework using multiple climate and hydrological models 1. JAWRA Journal of the American Water Resources Association,
45(4):828–843, 2009.
J.-P. Boulanger, F. Martinez, and E. C. Segura. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Climate Dynamics, 28(2-3):255–271, 2007.
M. P. Cantão, M. R. Bessa, R. Bettega, D. H. Detzel, and J. M. Lima. Evaluation of hydrowind complementarity in the Brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.
L. Castro-Santos, M. I. Lamas-Galdo, and A. Filgueira-Vizoso. Managing the oceans: Site selection of a floating offshore wind farm based on GIS spatial analysis. Marine Policy, 113:103803, 2020a.
X. Costoya, M. deCastro, F. Santos, M. Sousa, and M. Gómez-Gesteira. Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178:356–367, 2019.
R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology, 27(8):1302–1317, 2010.
E. P. Bedoya and J. A. O. Osorio. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Todográficas, 2002.
F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.
F. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.
A. N. Celik. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable energy, 29(4):593–604, 2004.
M. Denault, D. Dupuis, and S. Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.
ECMWF. Copernicus Climate Change Service (C3S), “ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS).
J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall. International energy outlook 2016 with projections to 2040. Technical report, USDOE Energy Information Administration (EIA), Washington, DC (United States . . . , 2016.
ENES. European Network for Earth System Modelling - Multimodel comparison of CMIP6 SSP2-4.5 scenario. https:// portal.enes.org/data/data-metadata-service/analysis-platforms/ example-of-how-to-run-server-side-data-near-multimodel-comparisons, 2020. Accessed: 2020-11-20.
C.-w. Zheng, X.-y. Li, X. Luo, X. Chen, Y.-h. Qian, Z.-h. Zhang, Z.-s. Gao, Z.-b. Du, Y.-b. Gao, and Y.-g. Chen. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmosphere-Ocean, 57(2):134–148, 2019.
L. Castro-Santos, D. Silva, A. R. Bento, N. Salvação, and C. G. Soares. Economic feasibility of floating offshore wind farms in Portugal. Ocean Engineering, 207:107393, 2020b.
M. Esteban and D. Leary. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128–136, 2012.
D. Elliott, C. Holladay, W. Barchet, H. Foote, and W. Sandusky. Wind energy resource atlas of the United States. Technical report, Pacific Northwest Lab., Richland,WA (USA), 1987.
S. Gadad and P. C. Deka. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Applied Energy, 176:157–170, 2016.
C. Gómez and N. Bayly. Cruzando el Caribe: Identificación de sitios de parada críticos para aves migratorias Neotropicales en el norte de Colombia. SELVA: Investigación para la conservación en el Neotrópico, Bogotá. Informe técnico del primer año No. CEC03, 2010.
T. I. Hennemuth, D. Jacob, E. Keup-Thiel, S. Kotlarski, G. Nikulin, J. Otto, D. Rechid, K. Sieck, S. Sobolowski, P. Szabó, et al. Guidance for EURO-CORDEX climate projections data use. Version1. 0-2017.08. Retrieved on, 6:2019, 2017.
F. Johnson and A. Sharma. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resources Research, 47(4), 2011.
I. Koletsis, V. Kotroni, K. Lagouvardos, and T. Soukissian. Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renewable and Sustainable Energy Reviews, 60:234–245, 2016.
M. Meinshausen, Z. Nicholls, J. Lewis, M. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, et al. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. Discuss, 2019:1–77, 2019.
S. Keevallik and T. Soomere. Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981-2010. Proceedings of the Estonian Academy of Sciences, 63 (4):428, 2014.
G. Lenderink, A. Buishand, and W. Van Deursen. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. 2007.
R. Moss, W. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), 2008.
J. A. Marengo, S. C. Chou, G. Kay, L. M. Alves, J. F. Pesquero, W. R. Soares, D. C. Santos, A. A. Lyra, G. Sueiro, R. Betts, et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate dynamics, 38(9-10):1829–1848, 2012.
P. Ramírez and J. A. Carta. Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion and Management, 46(15-16):2419–2438, 2005.
. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.
N. Salvação and C. G. Soares. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy, 145:276–287, 2018.
J. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.
M. R. Shaner, S. J. Davis, N. S. Lewis, and K. Caldeira. Geophysical constraints on the reliability of solar and wind power in the United States. Energy & Environmental Science, 11(4):914–925, 2018.
A. Rott, B. Doekemeijer, J. K. Seifert, J.-W. v. Wingerden, and M. Kühn. Robust active wake control in consideration of wind direction variability and uncertainty. Wind energy science, 3(2):869–882, 2018.
Statoil. Technical report; Hywind, Statoil: Grampian,UK - Hywind. Building the World’s First Floating Offshore Wind Farm. http://www.statoil.com, 2015. Accessed: 2019-05- 28.
W. Yang, W. Tian, O. Hvalbye, Z. Peng, K. Wei, and X. Tian. Experimental research for stabilizing offshore floating wind turbines. Energies, 12(10):1947, 2019.
J. Widén. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2):177–184, 2011. | |