dc.contributor | Torres Trujillo, Pedro Ignacio | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.creator | González Valencia, Esteban | |
dc.date.accessioned | 2021-01-21T19:34:32Z | |
dc.date.available | 2021-01-21T19:34:32Z | |
dc.date.created | 2021-01-21T19:34:32Z | |
dc.date.issued | 2019-09-13 | |
dc.identifier | González-Valencia, E. Bloch surface waves in photonic crystal fibers. PhD Thesis, Universidad Nacional de Colombia - Sede Medellín. 2019 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78866 | |
dc.description.abstract | An electromagnetic surface wave (ESW) is a wave that travels at the interface between two media, and their fields decay exponentially on both sides of the boundary. ESWs are widely studied due to their potential applications in photonic devices and sensing applications, and some of the most relevant are the surface plasmon polaritons (SPPs), the lossy mode resonances (LMRs), and the Bloch surface waves (BSWs). BSWs are waves that propagate at the interface between an isotropic medium and a periodically non-homogeneous medium. This doctoral research is intended to demonstrate the excitation of Bloch surface waves in structures based on photonic crystal fibers (PCFs), seeking the development of new types of photonic devices and fiber-optic sensing applications. To achieve this objective, theoretical and numerical analysis were made, in addition to an experimental verification in D-shaped fibers. Multi-layer and a single-layer structures were proposed as sensing devices based on BSW excitations on PCFs. The designed structures have a high sensitivity and ultrahigh figure of merit, resulting in promising for high-resolution refractive index sensing. | |
dc.description.abstract | Una onda electromagnética superficial (ESW, por sus siglas en inglés) es una onda que se propaga en la interfaz entre dos medios, y sus campos decaen exponencialmente en ambos lados de la frontera. Las ESWs son ampliamente estudiadas debido a su potencial en aplicaciones de dispositivos fotónicos y aplicaciones de detección. Algunas de los más relevantes son los polaritones de plasmones de superficie (SPPs, por sus siglas en inglés), las resonancias de modos con pérdidas (LMRs, por sus siglas en inglés) y las ondas de superficiales de Bloch (BSW, por sus siglas en inglés). Los BSW son ondas que se propagan en la interfaz entre un medio isotrópico y un medio periódicamente no homogéneo. El objetivo de esta investigación doctoral es demostrar la excitación de las ondas de superficie de Bloch en estructuras basadas en fibras de cristal fotónico (PCF, por sus siglas en inglés), buscando el desarrollo de nuevos tipos de dispositivos fotónicos y aplicaciones de detección de fibra óptica. Para lograr este objetivo, se realizaron análisis teóricos y numéricos, además de una verificación experimental en fibras en forma de D. Se propuso una estructura de múltiples capas y otra de una sola capa como dispositivos de detección basados en la excitación de BSWs en PCF. Las estructuras diseñadas tienen una alta sensibilidad y una ultra alta figura de mérito, lo que resulta prometedor para la sensado de índice de refracción de alta resolución. | |
dc.language | eng | |
dc.publisher | Medellín - Ciencias - Doctorado en Ciencias - Física | |
dc.publisher | Escuela de física | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Junxi Zhang, Lide Zhang, and Wei Xu. Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 45(11):113001, 2012. | |
dc.relation | Xiangang Luo and Lianshan Yan. Surface plasmon polaritons and its applications.
IEEE Photonics Journal, 4(2):590 { 595, 2012. | |
dc.relation | R. C. Jorgenson and S. S. Yee. A fiber-optic chemical sensor based on surface plasmon
resonance. Sensors and Actuators B: Chemical, 12(3):213{220, 1993. | |
dc.relation | Sujan Chakma, Md Abdul Khalek, Bikash Kumar Paul, Kawsar Ahmed, Md Rabiul
Hasan, and Ali Newaz Bahar. Gold-coated photonic crystal fiber biosensor based on
surface plasmon resonance: Design and analysis. Sensing and Bio-Sensing Research,
18(February):7{12, 2018. | |
dc.relation | A. V. Kavokin, I. A. Shelykh, and G. Malpuech. Lossless interface modes at the
boundary between two periodic dielectric structures. Physical Review B, 72:233102,
2005 | |
dc.relation | Jr. John A. Polo, Tom G. Mackay, and Akhlesh Lakhtakia. Electromagnetic Surface
Waves. Elsevier, 2013 | |
dc.relation | Emiliano Descrovi, Tristan Sfez, Lorenzo Dominici, Wataru Nakagawa, Francesco Michelotti, Fabrizio Giorgis, and Hans-Peter Herzig. Near-field imaging of Bloch surface
waves on silicon nitride one-dimensional photonic crystals. Optic Express, 16(8):5453{
5464, 2008 | |
dc.relation | Dora Juan Juan Hu, Ho Pui Ho, and Received Month Day. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics,
9(2):257{314, 2017. | |
dc.relation | Michele Scaravilli, Alberto Micco, Giuseppe Castaldi, Giuseppe Coppola, Mariano
Gioffr`e, Mario Iodice, Vera La Ferrara, Vincenzo Galdi, and Andrea Cusano. Excitation of Bloch Surface Waves on an Optical Fiber Tip. Advanced Optical Materials,
6(19):1{10, 2018. | |
dc.relation | Marco Consales, Marco Pisco, and Andrea Cusano. Lab-on-fiber technology: A new
avenue for optical nanosensors. Photonic Sensors, 2(4):289{314, 2012 | |
dc.relation | R. M. Wynne. A fabrication process for microstructured optical fibers. Journal of
Lightwave Technology, 24:4304 { 4313, 2006 | |
dc.relation | T. A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly single-mode photonic crystal
fiber. Optics Letters, 22(13):961{963, 1997. | |
dc.relation | J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blancha, W.J. Wadsworth, and P.St.J.
Russell. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology
Letters, 12(7):807{809, 2000 | |
dc.relation | Chuang Wu, Bai-Ou Guan, Zhi Wang, and Xinhuan Feng. Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers. Optics Letters,
30(14):1785{1787, 2005 | |
dc.relation | Kazunori Suzuki, Hirokazu Kubota, Satoki Kawanishi, Masatoshi Tanaka, and Moriyuki Fujita. Optical properties of a low-loss polarization-maintaining photonic crystal
fibers. Optics Express, 9(13):676{680,, 2001. | |
dc.relation | Andrew Michie, John Canning, Mattias ˚ Aslund Katja Lyytik¨ainen, and Justin Digweed. Temperature independent highly birefringent photonic crystal fibre. Optics
Express, 12(21):5160{5165, 2004 | |
dc.relation | Hyun-Min Kim, Tae-Hun Kim, Bongkyun Kim, and Youngjoo Chung. Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger
air holes on one axis. Aplied Optics, 49(20):3841{3845, 2010 | |
dc.relation | J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres. Spectral properties of
locally pressed fiber Bragg gratings written in polarization maintaining fibers. Journal
of Lightwave Technology, 28(9):1291{1297,, 2010. | |
dc.relation | Charles Jewart, Kevin P. Chen, Ben McMillen, Michael M. Bails, and Steven P. Levitan. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using
microstructural fibers. Optics Letters, 31(15):2260{2262, 2006 | |
dc.relation | Cicero Martelli, John Canning, Nathaniel Groothoff, and Katja Lyytikainen. Strain
and temperature characterization of photonic crystal fiber Bragg gratings. Optics
Letters, 30(14):1785{1787, 2005. | |
dc.relation | G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C.
Knight, C. H. B. Cruz, and H. L. Fragnito. Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics, 1(2):115{118, 2007. | |
dc.relation | E. Reyes-Vera, E. Gonz´alez-Valencia, J. F. Botero-Cadavid, P. Torres, G. Chesini, and
C.M.B. Cordeiro. Induced birefringence analysis in an all-fiber device based on photonic crystal fiber with integrated electrodes. In Latin America Optics and Photonics
Conference (LAOP) (Optical Society of America, Washington, DC), ThF2, 2010 | |
dc.relation | Erick Estefen Reyes Vera. An´alisis de una fibra Optica microestructurada con elec- ´
trodos internos. Thesis (physical engineer), Universidad Nacional de Colombia { Sede
Medell´ın, Facultad de Ciencias, 2009 | |
dc.relation | Anuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based on surface
plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7(8):1118{1129,
2007 | |
dc.relation | R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys.Rev, 106(5):874{881,
1957 | |
dc.relation | John A. Polo and A. Lakhtakia. Surface electromagnetic waves: A review. Laser and
Photonics Reviews, 5(2):234{246, 2011. | |
dc.relation | T. Turbadar. Complete absorption of light by thin metal films. Proc. Phys. Soc,
73(1):40{44, 1959. | |
dc.relation | Andreas Otto. Excitation of nonradiative surface plasma waves in silver by the method
of frustrated total reflection. Zeitschrift fur Physik, 216(4):398{410, 1968 | |
dc.relation | E. Kretschmann and H. Raether. Radiative decay of non radiative surface plasmons
excited by light. Z. Naturforsch., A 23:2135{2136, 1968. | |
dc.relation | Jir´ı Homola, Sinclair S. Yee, and Gunter Gauglitz. Surface plasmon resonance sensors:
review. Sensors and Actuators B: Chemical, 54(1-2):3{15, 1999 | |
dc.relation | Raman Kashyap and Galina Nemova. Surface plasmon resonance-based fiber and
planar waveguide sensors. Journal of Sensors, 2009:1{9, 2009 | |
dc.relation | Hyungseok Pang, HyoungJ. Cho, and PatrickL. Likamwa. On-Chip Surface Plasmon Resonance Sensor. Journal of Nanoscience and Nanotechnology, 8(10):4968{4971,
2008. | |
dc.relation | Jae Heon Ahn, Tae Yeon Seong, Won Mok Kim, Taek Sung Lee, Inho Kim, and KyeongSeok Lee1. Fiber-optic waveguide coupled surface plasmon resonance sensor. Optic
Express, 20(19):21729{21738, 2012. | |
dc.relation | Mikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, Jose Luis Santos, and Hanne Ludvigsen. Comprehensive numerical analysis of a surface-plasmonresonance sensor based on an H-shaped optical fiber. Optics Express, 19(15):13980{
13988, 2011 | |
dc.relation | Amrit Patnaik, K. Senthilnathan, and Rajan Jha. Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor. IEEE Photonics Technology
Letters, 27(23):2437{2440, 2015 | |
dc.relation | Nelson G´omez-Cardona and Pedro Torres. Sensitivity analysis of SPR sensors based on
suspended-core microstructured optical fibers. In Latin America Optics and Photonics
Conference (Optical Society of America, 2012), LS4C.2, 2012 | |
dc.relation | Nelson Dario Gomez Cardona. Modelizaci´on y realizaci´on experimental de sensores de
campo evanescente basados en resonancia de plasmones de superficie en fibras ´opticas. Master thesis, Universidad Nacional de Colombia { Sede Medell´ın, Facultad de
Ciencias, 2011. | |
dc.relation | Ignacio Del Villar, Francisco J. Arregui, Carlos R. Zamarre~no, Jesus M. Corres, Candido Bariain, Javier Goicoechea, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero,
Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, Joaquin Ascorbe, and Ignacio R. Matias. Optical sensors based on
lossy-mode resonances. Sensors and Actuators, B: Chemical, 240:174{185, 2017. | |
dc.relation | F Yang and J.R. Sambles. Determination of the optical permittivity and thickness of
absorbing films using long range modes. Journal of Modern Optics, 44(6):1155{1163,
1997. | |
dc.relation | I. Del Villar, C. R. Zamarre~no, M. Hernaez, P. Sanchez, F. J. Arregui, and I. R.
Matias. Generation of Surface Plasmon Resonance and Lossy Mode Resonance by
thermal treatment of ITO thin-films. Optics and Laser Technology, 69:1{7, 2015. | |
dc.relation | Ignacio Del Villar, Victor Torres, and Miguel Beruete. Experimental demonstration of
lossy mode and surface plasmon resonance generation with Kretschmann configuration.
Optics Letters, 40(20):4739, 2015. | |
dc.relation | V. Torres, M. Beruete, P. S´anchez, and I. Del Villar. Indium tin oxide refractometer
in the visible and near infrared via lossy mode and surface plasmon resonances with
Kretschmann configuration. Applied Physics Letters, 108(4):043507, 2016. | |
dc.relation | M. I. D’yakonov. New type of electromagneticwave propagating at an interface. Sov.
Phys. JETP, 67(4):714{716, 1988 | |
dc.relation | Osamu Takayama, Lucian Crasovan, David Artigas, and Lluis Torner. Observation of
Dyakonov surface waves. Physical Review Letters, 102(4):043903, 2009. | |
dc.relation | Kartiek Agarwal, John A. Polo, and Akhlesh Lakhtakia. Theory of Dyakonov{Tamm
waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material. Journal of Optics A: Pure and Applied Optics, 11(7):074003, 2009 | |
dc.relation | Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia. Observation of
the Dyakonov{Tamm wave. Physical Review Letters, 111(24):243902, 2013. | |
dc.relation | Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia. Parametric investigation of prism-coupled excitation of Dyakonov{Tamm waves. Journal of Optical
Society of America B, 30(8):2081{2089, 2013 | |
dc.relation | Farhat Abbas, Akhlesh Lakhtakia, Qaisar A. Naqvi, and Muhammad Faryad. An
optical-sensing modality that exploits Dyakonov{Tamm waves. Phonotincs Research,
3(1):5{8, 2015 | |
dc.relation | Felix Bloch. Uber die quantenmechanik der elektronen in kristallgittern. ¨ Zeitschrift
f¨ur Physik, 52(7):555{600, Jul 1929. | |
dc.relation | Igor Yevgenyevich Tamm. Uber eine m¨ogliche art der elektronenbindung an kristallo- ¨
berfl¨achen. Zeitschrift f¨ur Physik, 72(11):849{850, 1932. | |
dc.relation | Pochi Yeh, Amnon Yariv, and Chi-Shain Hong. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America,
67(4):423{438, 1977. | |
dc.relation | Pochi Yeh, Amnon Yariv, and A. Y. Cho. Optical surface waves in periodic layered
media. Applied Physics Letters, 32(2):105{105, 1978. | |
dc.relation | Muhammad Umar Khan and Brian Corbett. Bloch surface wave structures for high
sensitivity detection and compact waveguiding. Science and Technology of Advanced
Materials, 17(1):398{409, 2016. | |
dc.relation | Yanhui Li, Tianlin Yang, Zhiyong Pang, Guiqiang Du, Shumei Song, and Shenghao
Han. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic
ellipsometry. Optic Express, 22(18):21403{21410, 2014 | |
dc.relation | Weijing Kong, Zheng Zheng, Yuhang Wan, Shuna Li, and Jiansheng Liu. Highsensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sensors
and Actuators B: Chemical, 193:467{471, 2014. | |
dc.relation | Shuna Li, Jiansheng Liu, Zheng Zheng, Yuhang Wan, Weijing Kong, and Yu Sun.
Highly sensitive, Bloch surface wave D-type fiber sensor. IEEE Sensors Journal,
16(5):1200{1204, 2016. | |
dc.relation | Marco Liscidini and J. E. Sipe. Enhancement of diffraction for biosensing applications
via Bloch surface waves. Applied Physics Letters, 91(25):253125{3, 2007. | |
dc.relation | T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.S. Kim, H.P Herzig, M.P. Bernal, and
T. Grosjean. Polarization controlled directional propagation of Bloch surface wave.
Optic Express, 25(6):5710{5715, 2017 | |
dc.relation | Emiliano Descrovi, Tristan Sfez, Marzia Quaglio, Daniele Brunazzo, Lorenzo Dominici,
Francesco Michelotti, Hans Peter Herzig, Olivier J. F. Martin, , and Fabrizio Giorgis.
Guided Bloch surface waves on ultrathin polymeric ridges. Nano Letters, 10(6):2087{
2091, 2010 | |
dc.relation | Bobo Du, Yangwu Li, Dexing Yang, and Hua Lu. High-performance optical sensing
based on electromagnetically induced transparency-like effect in Tamm plasmon multilayer structures. Applied Optics, 58(17):4569, 2019. | |
dc.relation | A. Y. Cho, A. Yariv, and P. Yeh. Observation of confined propagation in Bragg
waveguides. Applied Physics Letters, 30(9):471{472, 1977 | |
dc.relation | W. M. Robertson and M. S. May. Surface electromagnetic wave excitation on onedimensional photonic band-gap arrays. Applied Physics Letters, 74(13):1800{1802,
1999. | |
dc.relation | F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-R´ıos.
Photonic crystal sensor based on surface waves for thin-film characterization. Optics
Letters, 27(8):646{648, 2002. | |
dc.relation | Valery N. Konopsky and Elena V. Alieva. Photonic crystal surface waves for optical
biosensors. Analytical chemistry, 79(12):4729{4735, 2007 | |
dc.relation | Marco Liscidini, Dario Gerace, Daniele Sanvitto, and Daniele Bajoni. Guided Bloch
surface wave polaritons. Applied Physics Letters, 98(12):121118, 2011. | |
dc.relation | T. Tu, F. Pang, S. Zhu, J. Cheng, H. Liu, J. Wen, and T. Wang. Excitation of
Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for
refractive index sensing. Optic Express, 25(8):9019{9027, 2017 | |
dc.relation | Qi Wang and Wan Ming Zhao. A comprehensive review of lossy mode resonance-based
fiber optic sensors. Optics and Lasers in Engineering, 100:47{60, 2018 | |
dc.relation | Letizia De Maria, Mario Martinelli, and Giorgio Vegetti. Fiber-optic sensor based on
surface plasmon interrogation. Sensors and Actuators B: Chemical, 12(3):221{223,
1993 | |
dc.relation | Radan Slav´ık, Jir´ı Homola, and Jir´ı Ctyrok´y. Single-mode optical fiber surface plasmon ´
resonance sensore optical fiber surface plasmon resonance. Sensors and Actuators B:
Chemical, 54(1-2):74{79, 1999. | |
dc.relation | M. Piliarik, J. Homola, Z. Man´ıkov´a, and J. Ctyrok´y. Surface plasmon resonance sensor ´
based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators
B: Chemical, 90(1-3):236{242, 2003. | |
dc.relation | A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire. Chemical sensing by surface
plasmon resonance in a multimode optical fibre. Pure and Applied Optics: Journal of
the European Optical Society Part A, 5(2):227{237, 1995 | |
dc.relation | Carlos Avelino de Jesus Gouveia. Refractometric Platforms for Label-Free Biochemical
Sensing. PhD thesis, Universidade da Madeira, 2013. | |
dc.relation | A. Di´ez, M.V. Andr´es, and J.L. Cruz. In-line fiber-optic sensors based on the excitation
of surface plasma modes in metal-coated tapered fibers. Sensors and Actuators B:
Chemical, 73(2-3):95{99, 2001. | |
dc.relation | Yoon-Chang Kim, Wei Peng, Soame Banerji, and Karl S. Booksh. Tapered fiber optic
surface plasmon resonance sensor for analyses of vapor and liquid phases. Optics
Letters, 30(17):2218{2220, 2005. | |
dc.relation | Ming-Hung Chiu, Shinn-Fwu Wang, and Rong-Seng Chang. D-type fiber biosensor
based on surface-plasmon resonance technology and heterodyne interferometry. Optic
Letters, 30(3):233{235, 2005. | |
dc.relation | Ming-Hung Chiu, Chih-Hsien Shih, and Ming-Hsin Chi. Optimum sensitivity of singlemode D-type optical fiber sensor in the intensity measurement. Sensors and Actuators
B: Chemical, 123(2):1120{1124, 2007 | |
dc.relation | Mikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, Jos´e Luis Santos, and Hanne Ludvigsen. Comprehensive numerical analysis of a surface-plasmonresonance sensor based on an H-shaped optical fiber. Optics Express, 19(15):13980{
13988, 2011. | |
dc.relation | Maksim Skorobogatiy and Andrei V. Kabashin. Photon crystal waveguide-based surface plasmon resonance biosensor. Applied Physics Letters, 89(14):143518, 2006. | |
dc.relation | A. Hassani and M. Skorobogatiy. Design of the microstructured optical fiberbased surface plasmon resonance sensors with enhanced microfluidics. Optic Express,
14(24):11616{11621, 2006. | |
dc.relation | A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu. Suspended-core holey fiber
for evanescent-field sensing. Optical Engineering Letters, 46(1):010503, 2007. | |
dc.relation | M. Bravo, A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster. High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer.
Optics Letters, 37(2):202{204, 2012. | |
dc.relation | Salvador Torres-Peiro, Antonio Dıez, Jose Luis Cruz, and Miguel Vicente Andres.
Temperature sensor based on Ge-doped microstructured fibers. Journal of Sensors,
2009:1{5, 2009 | |
dc.relation | Markus Hautakorpi, Maija Mattinen, and Hanne Ludvigsen. Surface-plasmonresonance sensor based on three-hole microstructured optical fiber. Optics Express,
16(12):8427{8432, 2008. | |
dc.relation | Xia Yu, Ying Zhang, Shanshan Pan, Ping Shum, Min Yan, Yehuda Leviatan, and
Changming Li. A selectively coated photonic crystal fiber based surface plasmon
resonance sensor. Journal of Optics, 22(1):1{4, 2010 | |
dc.relation | Jianrong Xue, Shuguang Li, Yuzhe Xiao, Wei Qin, Xujun Xin, and Xingping Zhu.
Polarization filter characters of the gold-coated and the liquid filled photonic crystal
fiber based on surface plasmon resonance. Optics Express, 21(11):13733{13740, 2013. | |
dc.relation | Nelson D. G´omez-Cardona, Erick Reyes-Vera, and Pedro Torres. Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors
and a multi-analyte sensing technique. IEEE Sens. J., 18(18):7492{7498, 2018 | |
dc.relation | Ignacio Del Villar, Carlos R. Zamarre~no, Miguel Hernaez, Francisco J. Arregui, and
Ignacio R. Matias. Lossy mode resonance generation with indium-tin-oxide-coated
optical fibers for sensing applications. Journal of Lightwave Technology, 28(1):111{
117, 2010 | |
dc.relation | A. Tz Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov.
Highly sensitive refractometers based on a side-polished single-mode fibre coupled with
a metal oxide thin-film planar waveguide. Journal of Optics A: Pure and Applied
Optics, 10(3):035303, 2008 | |
dc.relation | Pedro Sanchez, Carlos R. Zamarre~no, Miguel Hernaez, Ignacio R. Matias, and Francisco J. Arregui. Optical fiber refractometers based on Lossy Mode Resonances by means of SnO2 sputtered coatings. Sensors and Actuators, B: Chemical, 202:154{159, 2014 | |
dc.relation | Aritz Ozcariz, Inaki Martinez, Carlos Ruiz Zamarre~no, and Francisco Javier Arregui.
Development of Copper Oxide Thin Film for Lossy Mode Resonance-Based Optical
Fiber Sensor. Proceedings, 2(13):893, 2018. | |
dc.relation | Miguel Hernaez, Ignacio Del Villar, Carlos R. Zamarreno, Francisco J. Arregui, and
Ignacio R. Matias. Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Sensors and Actuators, B: Chemical, 49(20):3980{3985,
2010. | |
dc.relation | P. Sanchez, C. R. Zamareno, M. Hernaez, I. Del Villar, C. Fernandez-Valdivielso, I. R.
Matias, and F. J. Arregui. Lossy mode resonances toward the fabrication of optical
fiber humidity sensors. Measurement Science and Technology, 23(1):014002, 2012. | |
dc.relation | J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui. High sensitivity humidity
sensor based on cladding-etched optical fiber and lossy mode resonances. Sensors and
Actuators, B: Chemical, 233:7{16, 2016. | |
dc.relation | P. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui. D-shape optical fiber pH sensor based on Lossy Mode Resonances (LMRs). 2015 IEEE SENSORS
- Proceedings, pages 1{4, 2015 | |
dc.relation | P. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui. Tunable
optical fiber pH sensors based on TE and TM Lossy Mode Resonances (LMRs). Sensors
and Actuators, B: Chemical, 231:484{490, 2016. | |
dc.relation | Satyendra K. Mishra, Sruthi P. Usha, and Banshi D. Gupta. A lossy mode resonancebased fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin
film and nanoparticles. Measurement Science and Technology, 27(4):045103, 2016 | |
dc.relation | Uilian Jose Dreyer, Aritz Ozcariz, Joaquın Ascorbe, Pablo Zubiate, Ignacio Vitoria,
Cicero Martelli, Jean Carlos Cardozo da Silva, and Carlos Ruiz Zamarre~no. Gas Detection Using LMR-Based Optical Fiber Sensors. Proceedings, 2(13):890, 2018. | |
dc.relation | A. B. Socorro, J. M. Corres, I. Del Villar, F. J. Arregui, and I. R. Matias. Fiberoptic biosensor based on lossy mode resonances. Sensors and Actuators, B: Chemical,
174:263{269, 2012. | |
dc.relation | A.B. Socorro-Leranoz, D. Santano, I. Del Villar, and I.R. Matias. Trends in the design
of wavelength-based optical fibre biosensors (2008{2018). Biosensors and Bioelectronics: X, 1(1):100015, 2019. | |
dc.relation | Abian B. Socorro, Ignacio Del Villar, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias. Tapered single-mode optical fiber pH sensor based on lossy mode
resonances generated by a polymeric thin-film. IEEE Sensors Journal, 12(8):2598{
2603, 2012. | |
dc.relation | M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi. Grating-coupling-based excitation
of Bloch surface waves for lab-on-fiber optrodes. Optic Express, 24(24):27771{27784,
2016 | |
dc.relation | M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi. High-sensitivity label-free optical
fiber optrodes based on the excitation of Bloch surface waves. In Sixth European
Workshop on Optical Fibre Sensors, 2016 | |
dc.relation | Xiao-Jie Tan and Xiao-Song Zhu. Optical fiber sensor based on Bloch surface wave in
photonic crystals. Optic Express, 24(14):16016{16026, 2016. | |
dc.relation | Rajesh V. Nair and R. Vijaya. Photonic crystal sensors: An overview. Progress in
Quantum Electronics, 34(3):89{134, 2010 | |
dc.relation | Arismar Cerqueira. Recent progress and novel applications of photonic crystal fibers.
Reports on Progress in Physics, 73(2):024401{21, 2009 | |
dc.relation | F. Poli, A. Cucinotta, and S. Selleri. Photonic Crystal Fibers: Properties and Applications. Springer Netherlands, 2007 | |
dc.relation | Esteban Gonzalez Valencia. Redes de Bragg en fibras opticas microestructuradas. Master thesis, Universidad Nacional de Colombia { Sede Medellın, Facultad de Ciencias,
2013. | |
dc.relation | J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. All-silica single-mode
optical fiber with photonic crystal cladding. Optics Letters, 21(19):1547{1549, 1996 | |
dc.relation | F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan,
L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell. Visualizing the photonic band
gap in hollow core photonic crystal fibers. Optics Express, 13(2):558, 2005 | |
dc.relation | Bai-Ou Guan, Da Chen, Yang Zhang, Hong-Jun Wang, and Hwa-Yaw Tam. Bragg
gratings in pure-silica polarization-maintaining photonic crystal fiber. IEEE Photonics
Technology Letters, 20(3):1980{1982, 2008 | |
dc.relation | Guofeng Yan, A. Ping Zhang, Guiying Ma, Binhao Wang, Bongkyun Kim, Jooeun Im,
Sailing He, and Youngjoo Chung. Fiber-optic acetylene gas sensor based on microstructured optical fiber Bragg gratings. IEEE Photonics Technology Letters, 23(21):1588-1590, 2011 | |
dc.relation | Wenyuan Wang, Xiaojin Yin, Jian Wu, Youfu Geng, Xiaoling Tan, Yongqin Yu, Xueming Hong, Yu Du, and Xuejin Li. Realization of all-in-fiber liquid-core microstructured optical fiber. IEEE Photonics Technology Letters, 28(6):609 { 612, 2016. | |
dc.relation | S. L. DeHaven, S. Albin, and W.C. Kelliher. Liquid filled microstructured optical fiber
for x-ray detection. Optics Express, 18(13):13754{13760, 2010. | |
dc.relation | Erick Estefen Reyes Vera. Estudio teorico y experimental de un dispositivo de fibra
optica micro-estructurada con electrodos internos. Master thesis, Universidad Nacional
de Colombia { Sede Medellin, Facultad de Ciencias, 2013 | |
dc.relation | Toshihito Hosaka, Yutaka Sasaki, Katsunari Okamoto, and Juichi Noda. Stress-applied
polarization-maintaining optical fibers. design and fabrication. Electronics and Communications in Japan, 68(3):37{47, 1985. | |
dc.relation | Qi Mo, Zhikun Hong, Dawei Yu, Songnian Fu, Liang Wang, Kyunghwan Oh, Ming
Tang, and Deming Liu. All-fiber spatial rotation manipulation for radially asymmetric
modes. Scientific Reports, 7(1):2539{9, 2017 | |
dc.relation | Arismar Cerqueira, K. Z. Nobrega, F. Di Pasquale, and H. E. Hernandez-Figueroa. A
powerful tool based on finite element method for designing photonic crystal devices.
In Jos´e Neuman de Souza, Petre Dini, and Pascal Lorenz, editors, Telecommunications
and Networking - ICT 2004, pages 287{295, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg | |
dc.relation | D. Marcuse. Coupled-mode theory for anisotropic optical waveguides. The Bell System
Technical Journal, 54(6):985{995, 1975 | |
dc.relation | Xiaoming Xi. Helically twisted solid-core photonic crystal fibers. Doctoral thesis,
University of Erlangen-Nuremberg, 2015 | |
dc.relation | Allan W. Snyder and John D. Love. Optical waveguide theory. Springer US, 1983 | |
dc.relation | Esteban Gonzalez-Valencia, Rodrigo Acuna Herrera, and Pedro Torres. Bloch surface
wave resonance in photonic crystal fibers: towards ultra-wide range refractive index
sensors. Optics Express, 27(6):8236{8245, 2019. | |
dc.relation | Matthias Saba and Gerd Schr¨oder-Turk. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation. Crystals, 5(1):14{44, 2015 | |
dc.relation | Linfei Gao, Liangxiao Tang, Feifei Hu, Ruimin Guo, Xingjun Wang, and Zhiping Zhou.
Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics
Express, 20(10):11487, 2012 | |
dc.relation | V. Shahraam Afshar, T. M. Monro, and C. Martijn de Sterke. Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides.
Optics Express, 21(15):18558, 2013 | |
dc.relation | S. Torres-Peiro, A. Dıez, J. L. Cruz, and M. V. Andres. Fundamental-mode cutoff
in liquid-filled Y-shaped microstructured fibers with Ge-doped core. Optics Letters,
33(22):2578{2580, 2008 | |
dc.relation | Guanjun Wang, Chao Wang, Shen Liu, Jing Zhao, Changrui Liao, Xizhen Xu, Haijian
Liang, Guolu Yin, and Yiping Wang. Side-opened suspended core fiber-based surface
plasmon resonance sensor. IEEE Sens. J., 15(7):4086{4092, 2015 | |
dc.relation | Rongrui He, Pier J. A. Sazio, Anna C. Peacock, Noel Healy, Justin R. Sparks, Mahesh
Krishnamurthi, Venkatraman Gopalan, and John V. Badding. Integration of gigahertzbandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics, 6:174{179, 2012 | |
dc.relation | Bahaa E. A. Saleh and Malvin Carl Teich. Fundamentals of photonics. Wiley, 2007 | |
dc.relation | Volkmar Br¨uckner. Elements of optical networking. Vieweg+Teubner Verlag, 2011 | |
dc.relation | Aleksei P. Vinogradov, Aleksandr V. Dorofeenko, Aleksandr M. Merzlikin, and Aleksandr A. Lisyansky. Surface states in photonic crystals. Phys.-Usp., 53(3):243{256,
2010 | |
dc.relation | Gilberto A. Rodriguez, Judson D. Ryckman, Yang Jiao, and Sharon M. Weiss. A size
selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor.
Biosens. Bioelectron., 53:486{493, 2014 | |
dc.relation | Gilberto A. Rodriguez, John D. Lonai, Raymond L. Mernaugh, and Sharon M. Weiss.
Porous silicon bloch surface and sub-surface wave structure for simultaneous detection
of small and large molecules. Nanoscale Research Letters, 9:383, 2014 | |
dc.relation | Bing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi.
Hollow fiber surface plasmon resonance sensor for the detection of liquid with high
refractive index. Optics Express, 21(26):32349{32357, 2013 | |
dc.relation | Yong-Xiang Jiang, Bing-Hong Liu, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi.
Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit. Optics Letters, 40(5):744{747, 2015 | |
dc.relation | Qingli Xie, Yuzhi Chen, Xuejin Li, Zhen Yin, Lele Wang, Youfu Geng, and Xueming
Hong. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance
sensors with different side-polished lengths. Applied Optics, 56(5):1550, 2017 | |
dc.relation | Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang. Surface plasmon
resonance biosensor based on gold-coated side-polished hexagonal structure photonic
crystal fiber. Optics Express, 25(17):20313, 2017 | |
dc.relation | Xianchao Yang, Ying Lu, Baolin Liu, and Jianquan Yao. Simultaneous measurement
of refractive index and temperature based on SPR in D-shaped MOF. Applied Optics,
56(15):4369, 2017 | |
dc.relation | Yuhang Wan, Zheng Zheng, Weijing Kong, Ya Liu, Zhiting Lu, and Yusheng Bian. Direct experimental observation of giant Goos { H¨anchen shifts from bandgap-enhanced
total internal reflection. Optics Letters, 36(18):3539{3541, 2011 | |
dc.relation | Shuna Li, Jiansheng Liu, Zheng Zheng, Yuhang Wan, Weijing Kong, and Sun Yu.
Characteristic optimization of multilayer dielectric for the Bloch-surface-wave based
sensor. In Green Computing and Communications (GreenCom), 2013 | |
dc.relation | Francesca Frascella, Serena Ricciardi, Paola Rivolo, Valeria Moi, Fabrizio Giorgis, Emiliano Descrovi, Francesco Michelotti, Peter Munzert, Norbert Danz, Lucia Napione,
Maria Alvaro, and Federico Bussolino. A fluorescent one-dimensional photonic crystal
for label-free biosensing based on bloch surface waves. Sensors, 13:2011{2022, 2013 | |
dc.relation | Maksim Skorobogatiya and Andrei V. Kabashin. Photon crystal waveguide-based
surface plasmon resonance biosensor. Applied Physics Letters, 89(14):143518, 2006 | |
dc.relation | Yuhang Wan, Weijing Kong, Zheng Zheng, Xin Zhao, Ya Liu, and Yusheng Bian. Fiberpigtailed optical switch based on gigantic bloch-surface-wave-induced Goos-Hanchen
shifts. In 2012 IEEE Photonics Conference, IPC 2012, volume 4, pages 36{37, 2012 | |
dc.relation | Yuhang Wan, Zheng Zheng, Weijing Kong, Xin Zhao, and Jiansheng Liu. Fiber-to-fiber
optical switching based on gigantic bloch-surface-wave- induced goos-hanchen shifts.
IEEE Photonics Journal, 5(1), 2013 | |
dc.relation | Eun Jung Lee, Sun Young Choi, Hwanseong Jeong, Nam Hun Park, Woongbin Yim,
Mi Hye Kim, Jae Ku Park, Suyeon Son, Sukang Bae, Sang Jin Kim, Kwanil Lee,
Yeong Hwan Ahn, Kwang Jun Ahn, Byung Hee Hong, Ji Yong Park, Fabian Rotermund, and Dong Il Yeom. Active control of all-fibre graphene devices with electrical gating. Nature Communications, 6(6851):1{6, 2015 | |
dc.relation | Angelos Xomalis, Iosif Demirtzioglou, Eric Plum, Yongmin Jung, Venkatram Nalla,
Cosimo Lacava, Kevin F. MacDonald, Periklis Petropoulos, David J. Richardson, and
Nikolay I. Zheludev. Fibre-optic metadevice for all-optical signal modulation based on
coherent absorption. Nature Communications, 9(1):1{7, 2018 | |
dc.relation | Dietmar Korn, Matthias Lauermann, Sebastian Koeber, Patrick Appel, Luca Alloatti,
Robert Palmer, Pieter Dumon, Wolfgang Freude, Juerg Leuthold, and Christian Koos.
Lasing in silicon-organic hybrid waveguides. Nature Communications, 7:1{9, 2016 | |
dc.relation | Matteo Menotti and Marco Liscidini. Optical resonators based on Bloch surface waves.
Journal of the Optical Society of America B, 32(3):431, 2015 | |
dc.relation | Barak Freedman, Ron Lifshitz, Jason W. Fleischer, and Mordechai Segev. Phason
dynamics in nonlinear photonic quasicrystals. Nature Materials, 6(10):776{781, 2007 | |
dc.relation | Zhengyu Huang, Theodore B. Norris, and Evgenii Narimanov. Nanoscale fingerprinting
with hyperbolic metamaterials. APL Photonics, 4(2):026103, 2019 | |
dc.relation | Denis Trager, Robert Fischer, Dragomir N. Neshev, Andrey A. Sukhorukov, Cornelia
Denz, Wieslaw Kr´olikowski, and Yuri S. Kivshar. Nonlinear Bloch modes in twodimensional photonic lattices. Optics Express, 14(5):1913, 2006. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Bloch surface waves in photonic crystal fibers | |
dc.type | Otro | |