dc.contributor | Gil Chaves, Iván Darío | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Nava García, Paola Andrea | |
dc.date.accessioned | 2022-06-06T16:36:00Z | |
dc.date.available | 2022-06-06T16:36:00Z | |
dc.date.created | 2022-06-06T16:36:00Z | |
dc.date.issued | 2022-04-22 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81509 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La destilación reactiva es una operación unitaria que combina la reacción y la separación en un solo equipo, la cual la convierte en una propuesta económica y energéticamente viable. En este trabajo se estudia el proceso de producción del lactato de n-butilo por medio de la destilación reactiva, desde los fundamentos de la operación, como el equilibrio de fases y la cinética de reacción, hasta un diseño completo a partir de un enfoque conceptual. Se evaluó información experimental del equilibrio de fases y se describieron adecuadamente las interacciones de la mezcla cuaternaria usando un modelo de coeficientes de actividad para la fase líquida (NRTL, α=0,3), mientras que para la fase vapor se asumió ideal. Una expresión cinética con base en ecuaciones pseudo-homogéneas se empleó para describir el proceso de esterificación con un catalizador heterogéneo. Posteriormente, se desarrolló el diseño conceptual del proceso de destilación reactiva, empleando simultáneamente el equilibrio de fases y la cinética previamente seleccionada utilizando el simulador Aspen Plus. Finalmente, con un caso base de una simulación rigurosa de la operación, se estudió la optimización y el control del proceso de destilación reactiva, para obtener las condiciones de operación más adecuadas para la producción del lactato de n-butilo a escala industrial. (Texto tomado de la fuente) | |
dc.description.abstract | Reactive distillation is a unitary operation that combines reaction and separation into a single unit, thus making this technology an economic and energy-efficient proposal. This work studies the reactive distillation process for the production of n-butyl lactate, from the fundamentals of the operation, such as phase equilibria and reaction kinetics, to a complete design using a conceptual approach. Equilibrium data of the experimental phase was evaluated and the quaternary mixture interactions were accurately described using a model of activity coefficients for the liquid phase (NRTL, α=0,3), while the vapor phase was assumed to be ideal. A kinetic expression based on pseudo-homogeneous equations was used to describe the esterification process with a heterogeneous catalyst. Subsequently, the conceptual design of the reactive distillation process was developed using simultaneously the previously selected phase equilibrium and kinetics with the Aspen Plus simulator. Finally, with a base case of a rigorous simulation of the operation, optimization and control of the reactive distillation process were studied to obtain the best operating conditions for n-butyl lactate production at industrial scale. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Departamento de Ingeniería Química y Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res., 5251−5257. | |
dc.relation | Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res., 5251-5257. | |
dc.relation | Barbosa, D., & Doherty, M. F. (1988). Chemical Engineering Science, 1523-1537. | |
dc.relation | Behroozsarand, A., & Shafiei, S. (2011). Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. Nat Gas Sci Eng, 365–374. | |
dc.relation | Castillo, F., Eduardo, M., Salgado, J., Domínguez, J., Convertí, A., & Pinheiro, S. (2013). Lactic acid properties, applications and production: A review. . Trends in Food Science & Technology, 70-83. | |
dc.relation | Castro Aguirre, Iñiguez Franco, F., Samsudinb, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, , and end of life. Advanced Drug Delivery Reviews, 333–366. | |
dc.relation | Chandrakant R., K., & Kailas L., W. (2018). Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Springer. | |
dc.relation | Chaves , I., López , J., Zapata , J., Robayo , A., & Niño , G. (2016). Chemical Reactors. En Process Analysis and Simulation in Chemical Engineering (págs. 195-240). Springer, Cham. | |
dc.relation | Chaves , I., López , J., Zapata, J., Robayo, A., & Niño, G. (2016). Process Optimization in Chemical Engineering. En Process Analysis and Simulation in Chemical Engineering (págs. 343-369). Springer, Cham. | |
dc.relation | Chaves, I. D., López , J. R., Zapata, J. L., Robayo , A. L., & Niño , G. R. (2016). Thermodynamic and Property Models. En Process Analysis and Simulation in Chemical Engineering. (págs. 53-102). Springer, Cham. | |
dc.relation | Chaves, I., López, J., Zapata, J., Robayo, A., & Niño, G. (2016). Dynamic Process Analysis. En Process Analysis and Simulation in Chemical Engineering. (págs. 371-424). Springer, Cham. | |
dc.relation | Daful, A., Halgh, K., Vaskan, P., & Görgens, J. (2016). (2016). Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food and Bioproducts Processing, 58-70. | |
dc.relation | Dassy, S., Wiame, H., & Thyrion, F. C. (1994). Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalysed by Cation-Exchange Resin. J. Chem. Tech. Biotechnol., 149-156. | |
dc.relation | Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective-optimization: NSGA-II, KanGAL report 200001. Kanpur: Indian Institute of Technology. | |
dc.relation | Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 17-23. | |
dc.relation | Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 111–118. | |
dc.relation | Delgado, P., Sanz, M. T., Beltrán, S., & Núñez, L. A. (2010). Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chemical Engineering Journal, 693–700. | |
dc.relation | Dey, P., & Pal, P. (2012). Direct production of L(þ) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 355-362. | |
dc.relation | Doble, M., & Kruthiventi, A. K. (2007). Green Chemistry & Engineering. Academic Press, Burlington, MA. | |
dc.relation | Domingues , L., Pinheiro , C., & Oliveira , N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng , 81–94. | |
dc.relation | Domingues, L., Cussolin, P. A., Lopes da Silva Jr, J., Hadlich de Oliveira, L., & Aznar, M. (2013). Liquid–liquid equilibrium data for ternary systems of water + lactic acid + C4–C7 alcohols at 298.2 K and atmospheric pressure. Fluid Phase Equilibria, 12-18. | |
dc.relation | Domingues, L., Pinheiro, C., & Oliveira, N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng, 81–94. | |
dc.relation | Edgar, T. F., Himmelblau, D. M., & Lasdon, L. S. (2001). Optimization of chemical processes. McGraw-Hill, New York. | |
dc.relation | FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 8915-8922. | |
dc.relation | Fogler, H. (2008). Elementos de Ingeniería de las Reacciones Químicas. Naucalpan: Pearson Prentice Hall. | |
dc.relation | Gezae, A., & Görgens, J. (2017). Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chemical Engineering Science, 53-65. | |
dc.relation | Goedecke , R. (2011). Fluidverfahrenstechnik: Grundlagen, Methodik, Technik. Wiley, Praxis. | |
dc.relation | Halvorsen, I., & Skogestad, S. (2011). Energy Efficient Distillation. Journal of Natural Gas Science and Engineering. | |
dc.relation | Hernández Rodríguez, M. A., & Hernández Zárate, J. A. (2015). Verdades y Mitos de los Biocombustibles. Ciencia y Cultura, 15-88. | |
dc.relation | Jenkins, S. (20 de Marzo de 2020). 2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE. Obtenido de https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/ | |
dc.relation | Jiménez, L., Wanhschafft, O., & Julka, V. (2001). Analysis of residue curve maps of reactive and extractive distillation units. Computers and Chemical Engineering, 635-642. | |
dc.relation | Joglekar, H. G., Rahman, I., Babu, S., Kulkarni, B. D., & Joshi, A. (2006). Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 1-17. | |
dc.relation | Kasinathan, P., Lee, U., Hwang, D. W., & Chang, J.-S. (2011). Effect of solvent and impurity on synthesis of ethyl lactate from fermentation-derived ammonium lactate. Chemical Engineering Science, 4549-4554. | |
dc.relation | Kiss, A., Segovia-Hernández, J., Bildea, C., Miranda-Galindo, E., & Hernández, S. (2012). Reactive DWC leading the way to FAME and fortune. Fuel, 352–359. | |
dc.relation | Kister, H. Z. (1992). Distillation Design. United Kingdom: McGraw-Hill. | |
dc.relation | Komescu, A., Wolf Maciel, M., Rocah de Oliveira, J. A., da Silva Martins, L. H., & Maciel Filho, R. (2017). Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Separation and Purification Reviews, 1-14. | |
dc.relation | Kumar, R., & Mahajani, S. M. (2007). Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res, 6873−6882. | |
dc.relation | Kumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distllation. Journal of Chemical Technology and Biotechnology, 1767-1777. | |
dc.relation | Lancheros, S. (2015). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia. | |
dc.relation | Li, K.-T., Wanga, C.-K., Wang, I., & Wang, C.-M. (2011). Esterification of lactic acid over TiO2–ZrO2 catalysts. Elsevier B.V., 180–183. | |
dc.relation | Luyben, W. (2006). Distillation design and control using AspenTM simulation. Wiley, Hoboken, 232–250. | |
dc.relation | Luyben, W. L. (1992). Practical Distillation Control. New York: Van Nostrand Reinhold. | |
dc.relation | Luyben, W. L. (2002). Plantwide dynamic simulators in chemical processing and control. New York: Marcel Dekker. | |
dc.relation | LUYBEN, W. L., & YU, C.-C. (2008). REACTIVE DISTILLATION DESIGN AND CONTROL. Hoboken, New Jersey: John Wiley & Sons, Inc. | |
dc.relation | Luyben, W. L., Tyréus, D. B., & Luyben, M. L. (1998). Plantwide process control. New York: McGraw-Hill. | |
dc.relation | Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 506-577. | |
dc.relation | Malone, M. F., & Doherty, M. F. (2000). Reactive distillation. Industrial and Engineering Chemistry Research, 3953-3957. | |
dc.relation | MathWorks. (18 de 06 de 2021). Particle Swarm Optimization Algorithm. Obtenido de https://la.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html | |
dc.relation | MathWorks. (18 de 06 de 2021). What Is Particle Swarm Optimization? Obtenido de https://la.mathworks.com/help/gads/what-is-particle-swarm-optimization.html | |
dc.relation | Matsumoto, M., Takahashi, T., & Fukushima, K. (2003). Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation Purification Technology, 89-93. | |
dc.relation | Maya-Yescas, R., Aguilar-López, R., & Jiménez-García, G. (2016). Dynamics, Controllability, and Control of Intensified Processes. En J. Segovia-Hernández, & A. Bonilla-Petriciolet, Process Intensification in Chemical Engineering (págs. 293-325). Mexico: Springer, Cham. | |
dc.relation | Merck. (06 de 12 de 2020). Amberlyst® 15 hydrogen form. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/216399 | |
dc.relation | Merck. (18 de 06 de 2021). Butyl lactate. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/283320 | |
dc.relation | Miranda-Galindo, E., Segovia-Hernández, J., Hernández, S., Gutiérrez-Antonio, C., & Briones-Ramírez, A. (2011). Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res, 926–938. | |
dc.relation | Nova Institute. (2016). Obtenido de http://www.nova-institut.de/bio/index.php?tpl=startlist&lng=en | |
dc.relation | Orjuela, Á., Santaella, M. A., & Molano , P. A. (2016). Process Intensification by Reactive Distillation. Process Intensification in Chemical Engineering. | |
dc.relation | Parrado, E. (2016). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia. | |
dc.relation | Peña Tejedor, S., Murga, R., Sanz, M. T., & Beltrán, S. (2005). Vapor–liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa. Fluid Phase Equilibria, 197–203. | |
dc.relation | Pereira M., C. S., Silva, V., & Rodrígues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chemistry. | |
dc.relation | QU , Y., PENG , S., WANG , S., ZHANG , Z., & WANG , J. (2009). Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chin. J. Chem. Eng., 773-780. | |
dc.relation | Quiroga, I. G. (1995). Introducción a la Ingeniería Química. Bogotá: Universidad Nacional de Colombia. | |
dc.relation | Rangaiah, G. P. (2009). Multi-Objective Optimization- Techniques and Applications in Chemical Engineering. Singapur: World Scientific. | |
dc.relation | Rangaiah, G. P. (2010). Stochastic Global Optimization. Singapore: World Scientific Publishing. | |
dc.relation | Rathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor. Procedia Engineering, 456 – 460. | |
dc.relation | Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1978). The properties of gases and liquids. McGraw-Hill. | |
dc.relation | Satyro, M. A. (2008). Thermodynamics and the simulation engineer. Chem Prod Process Model , 1–41. | |
dc.relation | Schembecker, G., & Tlatlik, S. (2003). Process synthesis for reactive separations. Chemical Engineering and Processing, 179-189. | |
dc.relation | Segovia-Hernández , J., Hernández-Vargas, E., Márquez-Muñoz, J., Hernández , S., & Jiménez, A. (2005). Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chem Biochem Eng, 325–332. | |
dc.relation | Seider, J., & Warren, D. (2003). roduct & process design principles: synthesis, analysis and evaluation. Wiley, Somerset. | |
dc.relation | Seider, W. D., Seader, J., & Lewin, D. R. (2003). Product & Process Design Principles: Synthesis, Analysis and Evaluation. Pennsylvania: Wiley. | |
dc.relation | Shatma, N., & Singh, K. (2010). Control of reactive distillation column: a review. Int J Chem React Eng, 1542–6580. | |
dc.relation | Smith, J., Van Ness, H., & Abbot, M. (2007). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill. | |
dc.relation | Stichlmair, J., & Frey, T. (1999). Review: Reactive distillation process. Chemical Engineering and Technology, 95-103. | |
dc.relation | Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2013). Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res., 11070−11083. | |
dc.relation | Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2015). Control of Highly Interconnected Reactive Distillation Processes: Purification of Raw Lactic Acid by Esterification and Hydrolysis. Industrial & Engineering Chemistry Research, 6932−6940. | |
dc.relation | Subawalla, H., & Fair, J. (1999). Design guidelines for solid-catalyzed reactive distillation systems. Industrial and Engineering Chemistry Research, 3696-3709. | |
dc.relation | Sundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and future directions. | |
dc.relation | Tsai, M.-L., & Chien, I.-L. (2021). Design and control of an energy-efficient process for the separation of benzene/isopropanol/water ternary mixture. Separation and Purification Technology, 255. | |
dc.relation | Urselmann , M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng, 787–805. | |
dc.relation | Vázquez-Ojeda, M., Segovia-Hernández, J., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Ind Eng Chem, 5856–5865. | |
dc.relation | Yadav, G. D., & Kulkarni, H. B. (2000). Ion-exchange resin catalysis in the synthesis of isopropyl lactate. Reactive & Functional Polymers, 153 –165. | |
dc.relation | Zhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive & Functional Polymers, 101–114. | |
dc.relation | Zhongkai, J., Jumei , X., Zuoxiang , Z., Weilan , X., & Shating , L. (2018). Kinetics of the Esterification between Lactic Acid and Isoamyl Alcohol in the Presence of Silica Gel-Supported Sodium Hydrogen Sulphate. Can. J. Chem. Eng., 1–7. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva | |
dc.type | Trabajo de grado - Maestría | |