dc.contributor | Cortes-Rodriguez, Carlos Julio | |
dc.contributor | Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb | |
dc.creator | Niño Barrera, Javier Laureano | |
dc.date.accessioned | 2022-06-14T15:35:37Z | |
dc.date.available | 2022-06-14T15:35:37Z | |
dc.date.created | 2022-06-14T15:35:37Z | |
dc.date.issued | 2022-06-03 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81578 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | This thesis tackles the problem of endodontic fi les fractures from two views; In
the fi rst instance, alternative materials to the classic Nickel-Titanium alloy such as
Titanium-Niobium and Titanium-Molybdenum were analyzed. This analysis found
that Titanium-Niobium could be proposed as an alternative for manufacturing endodontic files. Secondly, the shot peening procedure was proposed and analyzed to
increase the resistance to fatigue fracture both in the proposed alternative alloys and
in Nickel-Titanium fi les, fi nding a signi cant increase in the resistance to a fatigue
fracture in the fi les and wires subjected to shot peening. | |
dc.description.abstract | Esta tesis aborda el problema de las fracturas de las limas endodonticas desde dos puntos de vista; En primera instancia se analizaron materiales alternativos a la clasica aleacion de Niquel-Titanio como son el Titanio-Niobio y el Titanio-Molibdeno. Este analisis encontro que el Titanio-Niobio se puede proponer como una alternativa para la fabricacion de limas endodonticas. En segundo lugar, se propuso y analizado el procedimiento de shot peening para aumentar la resistencia a la fractura por fatiga tanto en las aleaciones alternativas propuestas como en las limas de Niquel-Titanio, encontrando un aumento signi cativo de la resistencia a la fractura por fatiga en las limas y alambres sometidos al shot peening. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | |
dc.publisher | Departamento de Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] Schilder H. Cleaning and shaping the root canal. Dent Clin North Am.
1974;18(2):269-96. | |
dc.relation | [2] Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod
J. 2006;39(4):249-81. | |
dc.relation | [3] Fouad AF. Endodontic Microbiology and Pathobiology: Current State of Knowledge.
Dent Clin North Am. 2017;61(1):1-15. | |
dc.relation | [4] Garcia-Godoy F, Pulver F. Treatment of trauma to the primary and young permanent
dentitions. Dent Clin North Am. 2000;44(3):597-632. | |
dc.relation | [5] Torabinejad M, Eby WC, Naidorf IJ. Inflammatory and immunological aspects of the pathogenesis of human periapical lesions. J Endod. 1985;11(11):479-88. | |
dc.relation | [6] Peters O. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review. J Endod. 2004;30(8):559-67. | |
dc.relation | [7] Hulsmann M, Peters OA, Dummer PMH. Mechanical preparation of root canals: shaping goals, techniques and means. Endodontic Topics. 2005;10(1):30-76. | |
dc.relation | [8] Schafer E. Root canal instruments for manual use: a review. Endod Dent Traumatol.
1997;13(2):51-64. | |
dc.relation | [9] Craig RG, Mc Ilwain ED, Peyton FA. Comparison of Theoretical and Experimental
Bending and Torsional Moments of Endodontic Files and Reamers. J
Dent Res. 2016;46(5):1058-63. | |
dc.relation | [10] Barrs JT, Miller DA, Howard JR, Gilbert JL, Lautenschlager EP. The evaluation
of corrosion in stainless steel endodontic files. Northwest Dent Res. 1996;7(1):27-
31.
[ | |
dc.relation | [11] Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and
torsional properties of Nitinol root canal fi les. J Endod. 1988;14(7):346-51. | |
dc.relation | [12] Peters, Ove A., Rotary Instrumentation: An Endodontic Perspective. American
association of endodontists. 2008. All Dugoni School of Dentistry Faculty Books
and Book Chapters. 22. | |
dc.relation | [13] Buchanan S. New additions to the NiTi rotary file market: What to bring in and
what to leave out. Dental Tribune. 2011. | |
dc.relation | [14] International academy for rotary endodontics U. Types of Rotary Endodontic
Instruments. http://wwwhealthmantracom/rotary/typesshtml2016. | |
dc.relation | [15] Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel -
titanium les after clinical use. J Endod. 2000;26(3):161-5. | |
dc.relation | [16] Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences.
J Endod. 2006;32(11):1031-43. | |
dc.relation | [17] Cheung GSP. Instrument fracture: mechanisms, removal of fragments, and clinical
outcomes. Endodontic Topics. 2007;16(1):1-26. | |
dc.relation | [18] Nino-Barrera J, Sanchez-Aleman J, Acosta-Humanez M, Gamboa-Martinez L,
Cortes-Rodriguez C. Shot peening increases resistance to cyclic fatigue fracture
of endodontic fi les. Sci Rep. 2021;11(1):12961. | |
dc.relation | [19] Nino-Barrera J, Aguilera-Canon M, Cortes-Rodriguez C. Utilidad de la conformación del túnel liso antes de usar limas rotatorias endodónticas de níquel titanio.
Rev Cubana Estomatol [Internet]. 2014 ; 51 (3) :[aprox. 6 p.]. Disponible
en: http://www.revestomatologia.sld.cu/index.php/est/article/view/371 | |
dc.relation | [20] Niño-Barrera J. Analisis comparativo del comportamiento biomecanico de dos
limas rotatorias de niquel titanio Bogota, Colombia: Tesis de Maestria. Universidad
Nacional de Colombia; 2013.
[ | |
dc.relation | [21] Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and
concepts of the thermomechanical treatment of nickel-titanium instruments. J
Endod. 2013;39(2):163-72. | |
dc.relation | [22] Kosti E, Zinelis S, Molyvdas I, Lambrianidis T. Effect of root canal curvature on
the failure incidence of ProFile rotary Ni-Ti endodontic instruments. Int Endod
J. 2011 Oct;44(10):917-25. | |
dc.relation | [23] Pawar AM, Barwala D, Pawar M, Metzger Z, Kr A, Jain N. Assessment of
the fracture resistance of teeth instrumented using 2 rotary and 2 reciprocating
files versus the Self-Adjusting File (SAF): An ex vivo comparative study on
mandibular premolars. J Conserv Dent. 2016 Mar-Apr;19(2):138-42. | |
dc.relation | [24] Ha JH, Cheung GS, Versluis A, Lee CJ, Kwak SW, Kim HC. 'Screw-in' tendency
of rotary nickel-titanium files due to design geometry. Int Endod J. 2015
Jul;48(7):666-72. | |
dc.relation | [25] Wyco RC, Berzins DW. An in vitro comparison of torsional stress properties of
three different rotary nickel-titanium fi les with a similar cross-sectional design.
J Endod. 2012 Aug;38(8):1118-20. | |
dc.relation | [26] Inan U, Gonulol N. Deformation and fracture of Mtwo rotary nickel-titanium
instruments after clinical use. J Endod. 2009 Oct;35(10):1396-9. | |
dc.relation | [27] Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In Vitro Comparison of Cyclic
Fatigue Resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper
Universal Instruments in a Canal with a Double Curvature. J Endod. 2016
Jun;42(6):969-71. | |
dc.relation | [28] Bueno CSP, Oliveira DP, Pelegrine RA, Fontana CE, Rocha DGP, Bueno C.
Fracture Incidence of WaveOne and Reciproc Files during Root Canal Preparation of up to 3 Posterior Teeth: A Prospective Clinical Study. J Endod. 2017
May;43(5):705-8. | |
dc.relation | [29] Plotino G, Grande NM, Porciani PF. Deformation and fracture incidence of
Reciproc instruments: a clinical evaluation. Int Endod J. 2015 Feb;48(2):199-
205. | |
dc.relation | [30] Bouska J, Justman B, Williamson A, DeLong C, Qian F. Resistance to cyclic
fatigue failure of a new endodontic rotary file. J Endod. 2012 May;38(5):667-9. | |
dc.relation | [31] Craig RG, McIlwain ED, Peyton FA. Bending and torsion properties of endodontic
instruments. Oral Surg, Oral Med, Oral Pathol. 1968;25(2):239-54. | |
dc.relation | [32] Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic
instruments failure. J Endod. 2001 Aug;27(8):516-20. | |
dc.relation | [33] Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic
instruments. J Endod. 2002 Oct;28(10):716-20. | |
dc.relation | [34] Peters OA, Gluskin AK, Weiss RA, Han JT. An in vitro assessment of the physical
properties of novel Hyflex nickel-titanium rotary instruments. Int Endod J.
2012 Nov;45(11):1027-34. | |
dc.relation | [35] Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, et al. Structural
analysis of HyFlex EDM instruments. Int Endod J. 2017 Mar;50(3):303-13. | |
dc.relation | [36] Haapasalo M, Shen Y. Evolution of nickel-titanium instruments: from past to
future. Endodontic Topics. 2013;29(1):3-17. | |
dc.relation | [37] Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al.
Fatigue resistance of engine-driven rotary nickel-titanium instruments produced
by new manufacturing methods. J Endod. 2008 Aug;34(8):1003-5. | |
dc.relation | [38] Hatch D, Gutmann JL. Meyer L. Rhein and Mortarization - Controlling the Root
Apex During Focal Infection. J Hist Dent. 2020;68(2):93-100. | |
dc.relation | [39] Sayed ME, Jurado CA, Tsujimoto A. Factors Affecting Clinical Decision-Making
and Treatment Planning Strategies for Tooth Retention or Extraction: An Exploratory
Review. Niger J Clin Pract. 2020;23(12):1629-38. | |
dc.relation | [40] Strindberg L.Z.The dependence of the results of pulp therapy on certain factors.
An analytic study based on radiographic and clinical follow-up examinations.
Acta Odontol Scand.1956; 14: 1175. | |
dc.relation | [41] Kitchens GG, Jr., Liewehr FR, Moon PC. The effect of operational speed on the
fracture of nickel-titanium rotary instruments. J Endod. 2007 Jan;33(1):52-4. | |
dc.relation | [42] Grossman LI. Guidelines for the prevention of fracture of root canal instruments.
Oral Surg Oral Med Oral Pathol. 1969 Nov;28(5):746-52. | |
dc.relation | [43] Jonker CH, Van der Vyver PJ, De Wet FA. The influence of glide path preparation
on the failure rate of WaveOne reciprocating instruments. SADJ : J South
African Dent Assoc . 2014 Jul;69(6):266-9. | |
dc.relation | [44] Leeb J. Canal orifice enlargement as related to biomechanical preparation. J
Endod. 1983 Nov;9(11):463-70. | |
dc.relation | [45] Martin B, Zelada G, Varela P, Bahillo JG, Magan F, Ahn S, et al. Factors
influencing the fracture of nickel-titanium rotary instruments. Int Endod J. 2003
Apr;36(4):262-6. | |
dc.relation | [46] Madarati AA,Watts DC, Qualtrough AJ. Factors contributing to the separation
of endodontic files. Br Dent J. 2008 Mar 08;204(5):241-5. | |
dc.relation | [47] Pruett JP, Clement DJ, Carnes DL, Jr. Cyclic fatigue testing of nickel-titanium
endodontic instruments. J Endod. 1997 Feb;23(2):77-85. | |
dc.relation | [48] Fava LR. The double-flared technique: an alternative for biomechanical preparation.
J Endod. 1983 Feb;9(2):76-80. | |
dc.relation | [49] Suter B, Lussi A, Sequeira P. Probability of removing fractured instruments from
root canals. Int Endod J. 2005 Feb;38(2):112-23. | |
dc.relation | [50] Leroy AM, Bahia MG, Ehrlacher A, Buono VT. An analytical mechanical model
to describe the response of NiTi rotary endodontic files in a curved root canal.
Mater Sci Eng C Mater Biol Appl. 2012 Aug 01;32(6):1594-600. | |
dc.relation | [51] Capar ID, Arslan H. A review of instrumentation kinematics of engine-driven
nickel-titanium instruments. Int Endod J. 2016 Feb;49(2):119-35. | |
dc.relation | [52] Yared GM, Bou Dagher FE, Machtou P. Influence of rotational speed, torque
and operator's proficiency on ProFile failures. Int Endod J. 2001 Jan;34(1):47- 53. | |
dc.relation | [53] Bardsley S, Peters CI, Peters OA. The effect of three rotational speed settings on
torque and apical force with vortex rotary instruments in vitro. J Endod. 2011
Jun;37(6):860-4. | |
dc.relation | [54] Koch KA, Brave DG. Real World Endo Sequence File. Dent Clin North Am.
2004 Jan;48(1):159-82. | |
dc.relation | [55] Nino-Barrera J, Sanchez-Aleman J, Lopez L, Cortes-Rodriguez C. Application of
Cutting-Tool Concepts to Endodontic Files to Achieve Better Design: A Review.
Crit Rev Biomed Eng. 2020;48(4):223-34. | |
dc.relation | [56] Versluis A, Kim HC, Lee W, Kim BM, Lee CJ. Flexural stiffness and stresses in
nickel-titanium rotary files for various pitch and cross-sectional geometries. J
Endod. 2012 Oct;38(10):1399-403. | |
dc.relation | [57] Baek SH, Lee CJ, Versluis A, Kim BM, Lee W, Kim HC. Comparison of torsional
stiffness of nickel-titanium rotary files with different geometric characteristics. J
Endod. 2011 Sep;37(9):1283-6. | |
dc.relation | [58] He R, Ni J. Design improvement and failure reduction of endodontic files through
finite element analysis: application to V-Taper file designs. J Endod. 2010
Sep;36(9):1552-7. | |
dc.relation | [59] Nino-Barrera JL, Aguilera-Canon MC, Cortes-Rodriguez CJ. Theoretical evaluation
of Nickel-Titanium Mtwo series rotary files. Acta Odontol Latinoam.
2013;26(2):90-6. | |
dc.relation | [60] Prieto-Cárdenas SM, Cortés-Rodríguez CJ, Gamboa-Martínez LF, Niño-Barrera
JL. Evaluación de la resistencia teórica a la
flexión de tres instrumentos utilizados
en endodoncia mediante análisis de elementos finitos. Universitas Odontologica.
2015;34(73):23-8. | |
dc.relation | [61] Lee MH, Versluis A, Kim BM, Lee CJ, Hur B, Kim HC. Correlation between
experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium
rotary files. J Endod. 2011 Aug;37(8):1152-7. | |
dc.relation | [62] Mohd-Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy
research, applications and opportunities. Mater and Design. 2014;56:1078- 113. | |
dc.relation | [63] Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod
J. 2000 Jul;33(4):297-310. | |
dc.relation | [64] Miyazaki S, Kim HY. Basic characteristics of titanium-nickel (TiNi)-based and
titanium-niobium (TiNb)-based alloys. In: K.Yamauchi, Ohkata I, Tsuchiya K,
Miyazaki S, editors. Shape Memory and Superelastic Alloys: Applications and
Technologies: Elsevier; 2011. p. 15-42. | |
dc.relation | [65] Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys
and their potential application in ocean engineering. Ocean Engineering.
1968;1(1):105-20. | |
dc.relation | [66] Zhou H, Peng B, Zheng Y-F. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endodontic Topics. 2013;29(1):42-54. | |
dc.relation | [67] Cash A, Curtis R, Garrigia-Majo D, McDonald F. A comparative study of the
static and kinetic frictional resistance of titanium molybdenum alloy archwires
in stainless steel brackets. Eur J Orthod. 2004 Feb;26(1):105-11. | |
dc.relation | [68] Aldana-Ojeda LM, Niño-Barrera J, Cortés-Rodríguez C. Comparación de las
propiedades mecánicas y estructurales en tres tipos de alambre: aleación níquel
titanio convencional, aleación titanio-molibdeno y aleación titanio niobio Bogotá
Colombia: Universidad Nacional de Colombia; 2016. | |
dc.relation | [69] Burstone CJ, Goldberg AJ. Beta titanium: a new orthodontic alloy. Am J Orthod.
1980;77(2):121-32. | |
dc.relation | [70] Kuroda S, Watanabe H, Nakajima A, Shimizu N, Tanaka E. Evaluation of
torque moment in a novel elastic bendable orthodontic wire. Dent Mater J.
2014;33(3):363-7. | |
dc.relation | [71] Polák J. - Cyclic Deformation, Crack Initiation, and Low-cycle Fatigue. In:
Milne I, Ritchie RO, Karihaloo B, editors. Comprehensive Structural Integrity.
Oxford: Pergamon; 2003. p. 1-39. | |
dc.relation | [72] Figueiredo A, Modenesi P, Buono V. Low-cycle fatigue life of superelastic NiTi
wires. Int J Fatigue. 2009;31(4):751-8. | |
dc.relation | [73] Meyers MA, Chawla KK. Mechanical Behavior of Materials. 2 ed. Cambridge:
Cambridge University Press; 2008. | |
dc.relation | [74] Jaramillo H. El Shot Peening y la vida a la fatiga de elementos de máquinas.
Universidad Autónoma de Occidente. 2013. | |
dc.relation | [75] Jaramillo H, Suarez N, Sanchez A, Canizales J, Toro A, Introducción a la
mecánica de la fractura y análisis de fallas En: Colombia 2008. ed: Programa
Editorial Universidad Autónoma de Occidente. | |
dc.relation | [76] Hernández Albañil, H, Espejo Mora, E. Mecánica de fractura y análisis de falla.
[Internet]. Universidad Nacional de Colombia; 2002 . Universidad Nacional de
Colombia Editorial UN. | |
dc.relation | [77] López Montero, T. Efecto del envejecimiento y de la acción del agua en la fisuración de las mezclas asfálticas. Tesis doctoral, UPC, Departament d'Enginyeria Civil
i Ambiental, 2018. | |
dc.relation | [78] Castellucci AWJD. Endodontics. Vol. 2 Vol. 2. Florence: IL Tridente; 2005. | |
dc.relation | [79] https://present5.com/separated-instruments-why-access-canal-curvature/ | |
dc.relation | [80] Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A Review
of Cyclic Fatigue Testing of Nickel-Titanium Rotary Instruments. J Endod.
2009;35(11):1469-76. | |
dc.relation | [81] De-Deus, G., Moreira, E. J., Lopes, H. P. & Elias, C. N. Extended cyclic fatigue
life of F2 ProTaper instruments used in reciprocating movement. Int. Endod. J.
43, 1063{1068. | |
dc.relation | [82] Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium
files in a dynamic model. J Endod. 2006;32(1):55-7. | |
dc.relation | [83] Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished rotary
nickel-titanium endodontic instruments. J Endod. 2007;33(10):1212-6. | |
dc.relation | [84] Cheung GS, Shen Y, Darvell BW. Does electropolishing improve the low-cycle
fatigue behavior of a nickel-titanium rotary instrument in hypochlorite? J Endod.
2007;33(10):1217-21. | |
dc.relation | [85] Bui TB, Mitchell JC, Baumgartner JC. Effect of electropolishing ProFile nickel-titanium
rotary instruments on cyclic fatigue resistance, torsional resistance, and
cutting efficiency. J Endod. 2008;34(2):190-3. | |
dc.relation | [86] Cheung GS, Darvell BW. Low-cycle fatigue of rotary NiTi endodontic instruments
in hypochlorite solution. Dent Mater. 2008;24(6):753-9. | |
dc.relation | [87] Gambarini G, Galli M, Seracchiani M, Di Nardo D, Versiani MA, Piasecki L,
Testarelli L. In Vivo Evaluation of Operative Torque Generated by Two Nickel-
Titanium Rotary Instruments during Root Canal Preparation. Eur J Dent. 2019
Oct;13(4):556-562. | |
dc.relation | [88] Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex
EDM: superficial features, metallurgical analysis and fatigue resistance of innovative
electro-discharge machined NiTi rotary instruments. Int Endod J.
2016;49(5):483-93. | |
dc.relation | [89] Kirk D. Shot peening. Aircraft Engineering and Aerospace Technology: An International
Journal. 1999;71(4):349-61. | |
dc.relation | [90] McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes
and prevention. Br Dent J. 2013;214(7):341-8. | |
dc.relation | [91] Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi
alloys - a review. Int Endod J. 2018;51(10):1088-103. | |
dc.relation | [92] Jyothikiran H, Shantharaj R, Batra P, Subbiah P, Lakshmi B, Kudagi V. Total
recall: an update on orthodontic wires. Int J Orthod Milwaukee. 2014;25(3):47-
56. | |
dc.relation | [93] Dalstra M, Denes G, Melsen B. Titanium-niobium, a new finishing wire alloy.
Clin Orthod Res. 2000;3(1):6-14. | |
dc.relation | [94] Wood RM. Martensitic alpha and omega phases as deformation products in a
titanium-15% molybdenum alloy. Acta Metallurgica. 1963;11(8):907-14. | |
dc.relation | [95] Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, et al. Multifunctional
Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism.
Science. 2003;300(5618):464-7. | |
dc.relation | [96] Nino-Barrera JL, Aldana-Ojeda L, Gamboa-Martínez LF, Acosta-Humanez M,
Silva-Castellanos C, Cortés-Rodríguez CJ. Comparison of Mechanical and Structural
Properties of Nickel-titanium Alloy with Titanium-molybdenum Alloy and
Titanium-niobium Alloy as Potential Metals for Endodontic Files. Iranian Endod
J. 2021;16(1):49-55. | |
dc.relation | [97] Divakarla SK, Yamaguchi S, Kokubo T, Han DW, Lee JH, Chrzanowski W. Improved
bioactivity of GUMMETAL((R)), Ti59Nb36Ta2Zr3O0.3, via formation
of nanostructured surfaces. J Tissue Eng. 2018;9:2041731418774178. | |
dc.relation | [98] Mishchenko O, Ovchynnykov O, Kapustian O, Pogorielov M. New Zr-Ti-Nb Alloy
for Medical Application: Development, Chemical and Mechanical Properties, and
Biocompatibility. Materials (Basel). 2020;13(6). | |
dc.relation | [99] Es-Souni M, Es-Souni M, Fischer-Brandies H. Assessing the biocompatibility of
NiTi shape memory alloys used for medical applications. Anal Bioanal Chem.
2005;381(3):557-67. | |
dc.relation | [100] Puertolas S, Perez-Garcia JM, Gracia L, Cegonino J, Ibarz E, Puertolas JA, et
al. Design of splints based on the NiTi alloy for the correction of joint deformities
in the fingers. Biomed Eng Online. 2010;9:49. | |
dc.relation | [101] Stepan LL, Levi DS, Carman GP. A thin film nitinol heart valve. J Biomech
Eng. 2005;127(6):915-8. | |
dc.relation | [102] Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire
for use in orthodontics. J Am Dent Assoc. 1971;82(6):1373-5. | |
dc.relation | [103] ANSI/ADA Speci cation N° 28-2002. Root canal files and reamers, type K for
hand use. Chicago, IL: American Dental Association. | |
dc.relation | [104] Nino-Barrera JL, Sánchez-Aleman JA, Gamboa-Martínez L, Cortés-Rodríguez
C. Resistance to fracture due to cyclic fatigue of stainless steel manual files and
its association to surface roughness. Acta Odontol Latinoam. 2021;34(1):18-26. | |
dc.relation | [105] Larsen CM, Watanabe I, Glickman GN, He J. Cyclic fatigue analysis of a new
generation of nickel-titanium rotary instruments. J Endod. 2009;35(3):401-3. | |
dc.relation | [106] Rodrigues RC, Lopes HP, Elias CN, Amaral G, Vieira VT, De Martin AS. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium
endodontic instruments. J Endod. 2011;37(11):1553-7. | |
dc.relation | [107] Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL.
Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary
Endodontic Instruments. J Endod. 2016 Jun;42(6):965-8. | |
dc.relation | [108] Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending
fatigue life of NiTi and stainless steel root canal instruments. Int Endod J.
2011;44(4):357-61. | |
dc.relation | [109] Kruml T, Petrenec M, Obrtlíka K, Polák J, Bucek P. Influence of niobium alloying
on the low cycle fatigue of cast TiAl alloys at room and high temperatures.
Procedia Engineering. 2010;2(1):2297-305. | |
dc.relation | [110] Cao J, Bai F, Li Z. High temperature low cycle fatigue behavior of titanium
aluminide Ti{24Al{15Nb{1Mo alloy. Materials Science and Engineering: A.
2006;424(1-2):47-52. | |
dc.relation | [111] Murakami T, Iijima M, Muguruma T, Yano F, Kawashima I, Mizoguchi I.
High-cycle fatigue behavior of beta-titanium orthodontic wires. Dent Mater J.
2015;34(2):189-95. | |
dc.relation | [112] Viana AC, Chaves Craveiro de Melo M, Guiomar de Azevedo Bahia M, Lopes
Buono VT. Relationship between
flexibility and physical, chemical, and geometric
characteristics of rotary nickel-titanium instruments. Oral Surg Oral Med
Oral Pathol Oral Radiol Endod. 2010;110(4):527-33. | |
dc.relation | [113] Goldberg J, Burstone CJ. An evaluation of beta titanium alloys for use in orthodontic
appliances. J Dent Res. 1979;58(2):593-99. | |
dc.relation | [114] Nagasako N, Asahi R, Isheim D, Seidman DN, Kuramoto S, Furuta T. Microscopic
study of gum-metal alloys: A role of trace oxygen for dislocation-free
deformation. Acta Materialia. 2016;105:347-54. | |
dc.relation | [115] Cheung GS, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2:
Fractographic analysis. Int Endod J. 2007;40(8):619-25. | |
dc.relation | [116] Elnaghy AM, Elsaka SE. Laboratory comparison of the mechanical properties
of TRUShape with several nickel-titanium rotary instruments. Int Endod J.
2017;50(8):805-12. | |
dc.relation | [117] Sugano M, Tsuchida Y, Satake T, Ikeda M. A microstructural study of fatigue
fracture in titanium molybdenum alloys. Materials Science and Engineering A structural
Materials Properties Microstructure and Processing. 1998;243:163-8. | |
dc.relation | [118] Acosta EC, Resende PD, Peixoto IF, Pereira ES, Buono VT, Bahia MG. Influence
of Cyclic Flexural Deformation on the Torsional Resistance of Controlled Memory
and Conventional Nickel-titanium Instruments. J Endod. 2017;43(4):613-8. | |
dc.relation | [119] Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic
fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium
rotary systems. Int Endod J. 2006;39(10):755-63. | |
dc.relation | [120] Azimi S, Delvari P, Hajarian HC, Saghiri MA, Karamifar K, Lot M. Cyclic
Fatigue Resistance and Fractographic Analysis of Race and Protaper Rotary
NiTi Instruments. Iran Endod J. 2011;6(2):80-6. | |
dc.relation | [121] Montalvao D, Shengwen Q, Freitas M. A study on the influence of NiTi MWire
in the
flexural fatigue life of endodontic rotary files by using Finite Element
Analysis. Materials Science and Engineering: C. 2014;40:172-9. | |
dc.relation | [122] Scattina A, Alovisi M, Paolino DS, Pasqualini D, Scotti N, Chiandussi G, et
al. Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual
Modeling and Finite Elements Analysis. J Endod. 2015;41(11):1867-70. | |
dc.relation | [123] Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A review of the various surface
treatments of NiTi instruments. Iran Endod J. 2014;9(4):235-40. | |
dc.relation | [124] da Silva MA, Ponciano Gomes JA, Ormiga F. Influence of electrochemical polishing
on the mechanical behaviour of nickel-titanium rotary files. Aust Endod
J. 2013 Aug;39(2):73-7. | |
dc.relation | [125] Vaara J, Kunnari A, Frondelius T. Literature review of fatigue assessment methods
in residual stressed state. Engineering Failure Analysis. 2020;110:104379. | |
dc.relation | [126] Dalaei K, Karlsson B, Svensson LE. Stability of residual stresses created by shot
peening of pearlitic steel and their influence on fatigue behaviour. Proced Eng.
2010;2(1):613-22. | |
dc.relation | [127] Li X, Zhang J, Yang B, Zhang J, Wu M, Lu L. Effect of micro-shot peening,
conventional shot peening and their combination on fatigue property of EA4T
axle steel. J Mater Process Techn. 2020;275:116320. | |
dc.relation | [128] Kumar D, Idapalapati S, Wang W, Child DJ, Haubold T, Wong CC.
Microstructure-mechanical property correlation in shot peened and vibro-peened
Ni-based superalloy. J Mater Process Tech. 2019;267:215-29. | |
dc.relation | [129] Ipar-Blast SL, Vázquez. E. El Shot Peening y sus aplicaciones. AIAS Informativo
de la Asociación de industrias de acabados de superficies. 2009;79(Abril):3-9. | |
dc.relation | [130] Burrell NK. Controlled Shot Peening of Automotive Components. SAE Transactions.
1985;94:44-51. | |
dc.relation | [131] Watanabe Y. Effective production techniques designed to improve the contact
fatigue strength of automatic transmission gear teeth. JSAE Review.
2003;24(2):215-20. | |
dc.relation | [132] Zebrowski R, Walczak M, Korga A, Iwan M, Szala M. Effect of Shot Peening
on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants
Produced by 3D Printing Technology. Journal of Healthcare Engineering.
2019;2019:8169538. | |
dc.relation | [133] Tokue A, Hayakawa T, Ohkubo C. Fatigue resistance and retentive force of cast
clasps treated by shot peening. J Prosth Res. 2013;57(3):186-94. | |
dc.relation | [134] Zhou F, Jiang W, Du Y, Xiao C. A Comprehensive Numerical Approach for
Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot
Peening. Materials. 2019;12(20):3338. | |
dc.relation | [135] Kirk D, Abyaneh M. Theoretical basis of shot peening coverage control. Shot
Peener(USA). 1995;9(2):28-30. | |
dc.relation | [136] Gundogar M, Uslu G, Ozyurek T, Plotino G. Comparison of the cyclic fatigue
resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium
rotary les at body temperature. Restor Dent Endod. 2020;45(3):e37-e. | |
dc.relation | [137] Sathyajith S, Kalainathan S. Effect of laser shot peening on precipitation
hardened aluminum alloy 6061-T6 using low energy laser. Opt Las Eng.
2012;50(3):345-8. | |
dc.relation | [138] Chen M, Jiang C, Xu Z, Zhan K, Ji V. Experimental study on macro- and microstress
state, microstructural evolution of austenitic and ferritic steel processed
by shot peening. Surf Coat Tech. 2019;359:511-9. | |
dc.relation | [139] Chateigner D. Thin film analysis by X-ray scattering. By Mario Birkholz, with
contributions by P. F. Fewster and C. Genzel. Pp. xxii+356. Weinheim: Wiley-
VCH Verlag GmbH Co., 2005. Price (hardcover) EUR 119, SFR 188. ISBN-10:
3-527-31052-5; ISBN-13: 978-3-527-31052-4. J Appl Crystallogr. 2006;39(6):925-
6. | |
dc.relation | [140] Rogers KD, Daniels P. An X-ray diffraction study of the effects of heat treatment
on bone mineral microstructure. Biomaterials. 2002;23(12):2577-85. | |
dc.relation | [141] Zhang Z, Zhou F, Lavernia EJ. On the analysis of grain size in bulk
nanocrystalline materials via x-ray diffraction. Metall Mater Transactions A.
2003;34(6):1349-55. | |
dc.relation | [142] Dorset DL. X-ray Diffraction: A Practical Approach. Microsc Microanal.
2005;4(5):513-5. | |
dc.relation | [143] Ceglias RB, Alves JM, Botelho RA, Baeta Junior EdS, Santos ICd, Moraes
NRDCd, et al. Residual Stress Evaluation by X-Ray Diffraction and Hole-Drilling
in an API 5L X70 Steel Pipe Bent by Hot Induction. Mater Res. 2016;19(5):1176-
9. | |
dc.relation | [144] Lai H-H, Cheng H-C, Lee C-Y, Lin C-M, Wu W. Effect of shot peening
time on d/g residual stress profiles of AISI 304 weld. J Mater Process Tech.
2020;284:116747. | |
dc.relation | [145] Deng Z, Ma J, Yin B, Li W, Liu J, Yang J, et al. Surface characteristics of and in
vitro behavior of osteoblast-like cells on titanium with nanotopography prepared
by high-energy shot peening. International J Nanomed. 2014:5565. | |
dc.relation | [146] Jindal S, Bansal R, Singh BP, Pandey R, Narayanan S,Wani MR, et al. Enhanced
Osteoblast Proliferation and Corrosion Resistance of Commercially Pure Titanium
Through Surface Nanostructuring by Ultrasonic Shot Peening and Stress
Relieving. J Oral Implantol. 2014;40(S1):347-55. | |
dc.relation | [147] Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M, Pederzolli C, et
al. The effect of post-sintering treatments on the fatigue and biological behavior
of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed
Mater. 2017;71:295-306. | |
dc.relation | [148] Martins JNR, Nogueira Leal Silva EJ, Marques D, Ginjeira A, Braz Fernandes
FM, De Deus G, et al. Influence of Kinematics on the Cyclic Fatigue Resistance of
Replicalike and Original Brand Rotary Instruments. J Endod. 2020;46(8):1136-
43. | |
dc.relation | [149] Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation
of contemporary resin-containing dental materials. J Dent. 2005;33(7):593-
602. | |
dc.relation | [150] Kwon S-J, Park Y-J, Jun S-H, Ahn J-S, Lee I-B, Cho B-H, et al. Thermal
irritation of teeth during dental treatment procedures. Restor Dent Endod.
2013;38(3):105-12. | |
dc.relation | [151] Keles A, Eymirli A, Uyanik O, Nagas E. Influence of static and dynamic cyclic
fatigue tests on the lifespan of four reciprocating systems at different temperatures.
Int Endod J. 2019 Jun;52(6):880-886. | |
dc.relation | [152] Dosanjh A, Paurazas S, Askar M. The Effect of Temperature on Cyclic Fatigue of
Nickel-titanium Rotary Endodontic Instruments. J Endod. 2017 May;43(5):823-
826. | |
dc.relation | [153] Huang X, Shen Y, Wei X, Haapasalo M. Fatigue Resistance of Nickel titanium
Instruments Exposed to High-concentration Hypochlorite. J Endod.
2017 Nov;43(11):1847-1851. | |
dc.relation | [154] Peral LB, Zafra A, Bagherifard S, Guagliano M, Fern andez-Pariente I. Effect of
warm shot peening treatments on surface properties and corrosion behavior of
AZ31 magnesium alloy. Surf Coat Tech. 2020;401:126285. | |
dc.relation | [155] Lopes HP, Elias CN, Siqueira JF Jr, Soares RG, Souza LC, Oliveira JC, Lopes
WS, Mangelli M. Mechanical behavior of pathfinding endodontic instruments. J
Endod. 2012 Oct;38(10):1417-21. | |
dc.relation | [156] Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance
of 5 different rotary pathfinding instruments made of conventional
nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015
Apr;41(4):535-8. | |
dc.relation | [157] Canalda-Sahli C, Brau-Aguade E, Berastegui-Jimeno E. A comparison of bending
and torsional properties of K- files manufactured with different metallic alloys. Int
Endod J. 1996 May;29(3):185-9. | |
dc.relation | [158] Ratti, G., Mariani, U., Giglio, M. & Guagliano, M. In ICAF 2009, Effect of
residual stresses from shot peening on fatigue strength and threshold to crack
propagation of al 7475 alloy components Bridging the Gap between Theory and
Operational Practice (ed. Bos M.J.) 859{870 (Springer). | |
dc.relation | [159] Lin Q, Liu H, Zhu C, Chen D, Zhou S. Effects of different shot peening parameters
on residual stress, surface roughness and cell size. Surf Coat Tech.
2020;398:126054. | |
dc.relation | [160] Soyama H, Chighizola CR, Hill MR. Effect of compressive residual stress introduced
by cavitation peening and shot peening on the improvement of fatigue
strength of stainless steel. J Mater Process Tech. 2021;288:116877. | |
dc.relation | [161] Shen X, Shukla P, Nath S, Lawrence J. Improvement in mechanical properties of
titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening. Surf Coat
Tech. 2017;327:101-9. | |
dc.relation | [162] Dorr T., Wagner L, editor Fatigue response of various titanium alloys to shot
peening. Transactions on Engineering Sciences 1999; Germany. | |
dc.relation | [163] Prevey, P. S. In Shot Peening Theory and Application (ed IITT-International A.
Niku-Lari) 81{93 (www.lambdatechs.com, Gournay-Sur-Marne, France, 1990). | |
dc.relation | [164] Wang Z, Luan W, Huang J, Jiang C. XRD investigation of microstructure
strengthening mechanism of shot peening on laser hardened 17-4PH. Mater Sci
Eng: A. 2011;528(21):6417-25 | |
dc.relation | [165] Karimbaev R, Pyun Y-S, Maleki E, Unal O, Amanov A. An improvement in
fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal
surface modifi cation. Mater Sci Eng: A. 2020;791:139752. | |
dc.relation | [166] Shen J-N, Zeng Y-B, Xu M-H, Zhu L-H, Liu B-L, Guo H. Effects of annealing
parameters on residual stress and piezoelectric performance of ZnO thin films
studied by X-ray diffraction and atomic force microscopy. J Appl Crystallogr.
2019;52(5):951-9. | |
dc.relation | [167] Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology
for metal additive manufacturing: a review. Precis Eng. 2016;46:34-47. | |
dc.relation | [168] Kaplonek W, Nadolny K, Krolczyk GM. The Use of Focus-Variation Microscopy
for the Assessment of Active Surfaces of a New Generation of Coated Abrasive
Tools. Sci Review. 2016;16(2):42-53. | |
dc.relation | [169] Scholtes B, Voehringer O. Mechanical Surface Treatment. In: Buschow KHJ,
Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors.
Encyclopedia of Materials: Science and Technology. Oxford: Elsevier; 2001. p.
5253-61. | |
dc.relation | [170] Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic
fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod.
1999 Jun;25(6):434-40. | |
dc.relation | [171] Tu ST, Zhang XC. Fatigue Crack Initiation Mechanisms. Reference Module in
Materials Science and Materials Engineering: Elsevier; 2016. | |
dc.relation | [172] Bogachev I, Knowles KM, Gibson GJ. Electron backscattered diffraction analysis
of cold work in a shot peened single crystal nickel superalloy. Materialia.
2020;14:100860. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluation of materials and micro shot peening to increase resistance to failure due to cyclic fatigue in rotary endodontic files | |
dc.type | Trabajo de grado - Doctorado | |