dc.contributor | Velásquez Márquez, León Mauricio | |
dc.contributor | Carriazo Baños, José Gregorio | |
dc.contributor | Estado Sólido y Catálisis Ambiental | |
dc.creator | Paredes Quevedo, Laura Camila | |
dc.date.accessioned | 2021-08-04T23:59:40Z | |
dc.date.available | 2021-08-04T23:59:40Z | |
dc.date.created | 2021-08-04T23:59:40Z | |
dc.date.issued | 2021-07-30 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79889 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Este trabajo centra su atención en la valorización catalítica de glicerol mediante su transformación en productos de mayor valor comercial. Para alcanzar este objetivo se estudió la reacción de oxidación de glicerol en medio acuoso, ya que la vía oxidativa es una de más promisorias respecto a otro tipo de reacciones. Se sintetizaron catalizadores soportados basados en óxidos mixtos de Cu y Co (espinela CuCo2O4) por medio del método de impregnación húmeda, se utilizó como soporte una metacaolinita dealuminizada, un sólido que se obtiene del tratamiento térmico y ácido a la caolinita natural colombiana, con el fin de generar elevada micro y mesoporosidad.
Mediante la aplicación de diferentes técnicas de caracterización se confirma la síntesis exitosa de la espinela CuCo2O4 y la obtención de sólidos con elevada área superficial y dispersión de la fase metálica gracias al tratamiento realizado al soporte. La estrategia experimental se enfocó en el estudio de parámetros como la optimización de temperatura, concentración de peróxido de hidrógeno y tiempo de reacción. Posteriormente se verificó el efecto cooperativo que existe entre el Cu y Co, se evaluaron diferentes cargas de fase metálica sobre el soporte y la estabilidad del mejor catalizador a través de la aplicación de cinco ciclos de reacción. En general, estos materiales demostraron ser catalíticamente activos y selectivos en la oxidación de glicerol. Se observaron 5 productos de reacción, entre ellos la dihidroxiacetona (producto mayoritario), ácido glicérico, gliceraldehído, ácido hidroxipirúvico y ácido mesoxálico. Finalmente, estos catalizadores exhibieron actividad catalítica favorable a condiciones suaves de reacción (80 °C y presión atmosférica). (Texto tomado de la fuente) | |
dc.description.abstract | This work focuses on glycerol catalytic valorization through its transformation into added
value products. To achieve this objective, the oxidation reaction of glycerol in aqueous
media was studied, the oxidative pathway is one of the most promising compared to other
types of reactions. Supported catalysts were synthesized based on mixed oxides of Cu and
Co (CuCo2O4 spinel) by the wet impregnation method, a dealuminated metakaolinite was
used as support, a solid that is obtained by thermic and acid treatment to enhance micro
and mesoporosity.
Through the application of different characterization techniques, the successful synthesis
of the CuCo2O4 spinel and the solids with high surface area and dispersion of the metallic
phase is confirmed. The experimental strategy is focused on the study of parameters such
as the optimization of temperature, hydrogen peroxide concentration and reaction time.
Subsequently, the cooperative effect that exists between Cu and Co was verified, different
loads of the metallic phase on the support and the stability of the best catalyst were
evaluated through the application of five reaction cycles. In general, these materials proved
to be catalytically active and selective in the oxidation of glycerol. Five reaction products
were found, among them dihydroxyacetone (the main product), glyceric acid and
glyceraldehyde, hydroxypyruvic acid and mesoxalic acid were identified. Finally, these
catalysts have favorable catalytic activity under mild reaction conditions (80 ° C and
atmospheric pressure). (Text taken from source) | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Departamento de Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] M. Di Serio, R. Tesser, L. Pengmei, and E. Santacesaria, “Heterogeneous Catalysts for Biodiesel Production,” Energy & Fuels, vol. 22, no. 1, pp. 207–217, 2008. | |
dc.relation | [2] OCDE/FAO, “Biocombustibles, Situación del mercado Aspectos relevantes de la proyección,” in OCDE-FAO Perspectivas Agrícolas 2017-2026, Éditions OCDE, Ed. París, 2017, pp. 130–143. | |
dc.relation | [3] C. Mota and B. Peres, “Glycerol Utilization,” in Glycerol : A versatile Renewable Feedstock for the Chemical Industry, 1st ed., Springer International Publishing, 2007, pp. 11–19. | |
dc.relation | [4] G. Dodekatos, S. Schünemann, and H. Tüysüz, “Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation,” ACS Catal., vol. 8, no. 7, pp. 6301–6333, 2018. | |
dc.relation | [5] C. Sci et al., “Oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts,” Catal. Sci. Technol., vol. 1, pp. 111–122, 2011. | |
dc.relation | [6] X. Deng et al., “Pseudomorphic Generation of Supported Catalysts for Glycerol Oxidation,” ChemCatChem, vol. 7, pp. 3832–3837, 2015. | |
dc.relation | [7] J. A. Torres-Luna and J. G. Carriazo, “Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay,” Solid State Sci., vol. 88, pp. 29–35, 2019. | |
dc.relation | [8] I. E. Sitaras and P. A. Siskos, “The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study,” Environ. Chem. Lett., vol. 6, no. 2, pp. 59–69, 2008. | |
dc.relation | [9] J. Skea, “Environmental issues facing the oil industry,” Energy Policy, vol. 20, no. 10, pp. 950–958, 1992. [10] “Global CO2 emissions in 2019 – Analysis - IEA.” [Online]. Available: https://www.iea.org/articles/global-co2-emissions-in-2019. [Accessed: 23-Jul-2020]. | |
dc.relation | [11] “Energías renovables, puerta de acceso de Colombia a la Ocde.” [Online]. Available: https://www.elcolombiano.com/negocios/energias-renovables-puerta-de-acceso-de-colombia-a-la-ocde-HA2705382. [Accessed: 05-Aug-2020]. | |
dc.relation | [12] J. Tollefson, “COVID curbed carbon emissions in 2020 — but not by much,” Nature, vol. 589, pp. 343-undefined, Jan. 2021. | |
dc.relation | [13] S. Pan, A. Roy, Y. Choi, S. Q. Sun, and H. O. Gao, “The air quality and health impacts of projected long-haul truck and rail freight transportation in the United States in 2050,” Environ. Int., vol. 130, p. 104922, 2019. | |
dc.relation | [14] P. Yin et al., “Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter,” Environ. Sci. Technol. Lett., vol. 7, no. 2, pp. 95–101, 2020. | |
dc.relation | [15] A. Frontera, L. Cianfanelli, K. Vlachos, G. Landoni, and G. Cremona, “Severe air pollution links to higher mortality in COVID-19 patients: The ‘double-hit’ hypothesis.,” J. Infect., vol. 81, no. 2, pp. 255–259, 2020. | |
dc.relation | [16] N. Ali and F. Islam, “The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence,” Front. Public Heal., vol. 8, no. 2, pp. 1–7, 2020. | |
dc.relation | [17] G. Dodekatos, S. Schünemann, and H. Tüysüz, “Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation,” ACS Catal., vol. 8, no. 7, pp. 6301–6333, 2018. [18] J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, pp. 1097–1107, 2005. | |
dc.relation | [19] F. Ya, “Comparision of fuel properties of biodiesel fuels produced from di ff erent oils to determine the most suitable feedstock type,” vol. 264, no. August 2019, 2020. | |
dc.relation | [20] H. Wang, S. Zhang, X. Bi, and R. Clift, “Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia , Canada,” Energy Policy, vol. 138, no. July 2019, p. 111285, 2021. | |
dc.relation | [21] J. Ding, S. Qu, E. Lv, J. Lu, and W. Yi, “Mini review of biodiesel by integrated membrane separation technologies that enhanced esterification/transesterification,” Energy and Fuels, vol. 34, no. 12, pp. 15614–15633, 2020. | |
dc.relation | [22] I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016. | |
dc.relation | [23] J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, pp. 1097–1107, 2005. | |
dc.relation | [24] M. Hájek and F. Skopal, “Treatment of glycerol phase formed by biodiesel production,” Bioresour. Technol., vol. 101, no. 9, pp. 3242–3245, 2010. | |
dc.relation | [25] D. T. Johnson and K. A. Taconi, “The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production,” Environ. Prog., vol. 26, no. 4, pp. 338–348, 2007. | |
dc.relation | [26] H. W. Tan, A. R. A. Aziz, and M. K. Aroua, “Glycerol production and its applications as a raw material : A review,” vol. 27, pp. 118–127, 2013. | |
dc.relation | [27] S. Hu, X. Luo, C. Wan, and Y. Li, “Characterization of Crude Glycerol from Biodiesel Plants,” J. Agric. Food Chem., vol. 60, pp. 5915–5921, 2012. | |
dc.relation | [28] J. A. Posada-Duque and C. A. Cardona-Alzate, “Validation of glycerin refining obtained as a by-product of biodiesel production,” Ing. y Univ., vol. 14, no. 1, pp. 9–27, 2010. | |
dc.relation | [29] W. Isahak, M. Ismail, M. Yarmo, J. M. Jahim, and J. Salimon, “Purification of crude glycerol from transesterification RBD Palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation,” J. Appl. Sci., vol. 21, pp. 2590–2595, 2010. | |
dc.relation | [30] Y. Xiao, G. Xiao, and A. Varma, “A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: Experimental and simulation study,” Ind. Eng. Chem. Res., vol. 52, no. 39, pp. 14291–14296, 2013. | |
dc.relation | [31] A. A. Abdul Raman, H. W. Tan, and A. Buthiyappan, “Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process,” Front. Chem., vol. 7, Nov. 2019. | |
dc.relation | [32] H. Mousavi, M. Rahimi, and M. Mohadesi, “Purification of glycerol using organic solvent extraction in a microreactor,” Biomass Convers. Biorefinery, 2020. | |
dc.relation | [33] J. E. Delgado and J. J. Salgado, “Perspectivas de los biocombustibles en Colombia Prospects of biofuels in Colombia,” Rev. Ing. Univ. Medellín, vol. 14, no. 27, pp. 13–28, 2015. [34] Federación Nacional de Biocombustibles de Colombia, “Precios del Biodiésel,” 2020. [Online]. Available: https://www.fedebiocombustibles.com/estadistica-precios-titulo-Biodiesel.htm. [Accessed: 26-Apr-2020]. [35] Federación Nacional de Biocombustibles de Colombia, “B12: un aliado para mejorar la calidad del aire en Colombia,” 2020. [Online]. Available: https://www.fedebiocombustibles.com/nota-web-id-3202.htm. [Accessed: 26-Apr-2020]. [36] Portafolio, “Por baja en mezcla, cierran once plantas de biodiésel,” 2019. [Online]. Available: https://www.portafolio.co/negocios/por-baja-en-mezcla-cierran-once-plantas-de-biodiesel-534333. [Accessed: 26-Apr-2020]. [37] Federación Nacional de Biocombustibles de Colombia, “Lo que nos dejó el 2020 y lo que promete el 2021.” [Online]. Available: http://www.fedebiocombustibles.com/v3/nota-web-id-3300.htm. [Accessed: 08-Mar-2021]. [38] Federación Nacional de Biocombustibles de Colombia, “2019 un año de retos [Editorial-Boletín 206].” [Online]. Available: http://www.fedebiocombustibles.com/nota-web-id-3252.htm. [Accessed: 08-Mar-2021]. [39] E. Ali, M. Rahman, S. M. Sarkar, S. Bee, and A. Hamid, “Heterogeneous Metal Catalysts for Oxidation Reactions,” J. Nanomater., vol. 2012, pp. 1–23, 2014. [40] C. Y. Ma et al., “Characteristics of Au / HMS catalysts for selective oxidation of benzyl alcohol to benzaldehyde,” Catal. Today, vol. 158, no. 3–4, pp. 246–251, 2010. [41] P. Sudarsanam, L. Katta, G. Thrimurthulu, and B. M. Reddy, “Vapor phase synthesis of cyclopentanone over nanostructured ceria – zirconia solid solution catalysts,” J. Ind. Eng. Chem., vol. 19, no. 5, pp. 1517–1524, 2013. | |
dc.relation | [42] Y. Wang, Y. Xiao, and G. Xiao, “Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes,” Chinese J. Chem. Eng., vol. 27, no. 7, pp. 1536–1542, 2019. | |
dc.relation | [43] H. Kimura, “Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor,” Appl. Catal. A Gen., vol. 105, pp. 147–158, 1993. | |
dc.relation | [44] H. Kimura and K. Tsuto, “Selective oxidation of glycerol on a platinum-bismuth catalyst,” Appl. Catal. A Gen., vol. 96, pp. 217–228, 1993. | |
dc.relation | [45] R. Garcia, M. Besson, and P. Gallezot, “Chemoslective catalytic oxidation of glycerol with air on platinum metals,” Appl. Catal. A Gen., vol. 127, pp. 165–176, 1995. [46] L. Prati and M. Rossi, “Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols,” J. Catal., vol. 176, no. 2, pp. 552–560, 1998. | |
dc.relation | [47] S. Carrettin, P. Mcmorn, P. Johnston, K. Griffin, J. Kiely, and G. J. Hutchings, “Oxidation of glycerol using supported Pt , Pd and Au catalysts,” Phys. Chem. Chem. Phys., vol. 5, pp. 1329–1336, 2003. | |
dc.relation | [48] C. Minero, A. Bedini, and V. Maurino, “Environmental Glycerol as a probe molecule to uncover oxidation mechanism in photocatalysis,” Appl. Catal. B, Environ., vol. 128, pp. 135–143, 2012. | |
dc.relation | [49] V. Maurino, A. Bedini, M. Minella, F. Rubertelli, E. Pelizzetti, and C. Minero, “Glycerol transformation through photocatalysis: A possible route to value added chemicals,” J. Adv. Oxid. Technol., vol. 11, no. 2, pp. 184–192, 2008. | |
dc.relation | [50] L. Guo et al., “Photocatalytic glycerol oxidation on AuxCu-CuS@TiO2 plasmonic heterostructures,” J. Mater. Chem. A, vol. 6, no. 44, pp. 22005–22012, 2018. | |
dc.relation | [51] T. Jedsukontorn, N. Saito, and M. Hunsom, “Photoinduced glycerol oxidation over plasmonic au and aum (M = Pt, Pd and Bi) nanoparticle-decorated TiO2 photocatalysts,” Nanomaterials, vol. 8, no. 4, pp. 1–25, 2018. | |
dc.relation | [52] X. Han et al., “Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo 2O4 Spinel Oxide Nanostructure Catalysts,” ACS Appl. Polym. Mater., 2020. | |
dc.relation | [53] S. Feng, J. Yi, H. Miura, N. Nakatani, M. Hada, and T. Shishido, “Experimental and Theoretical Investigation of the Role of Bismuth in Promoting the Selective Oxidation of Glycerol over Supported Pt − Bi Catalyst under Mild Conditions,” ACS Appl. Polym. Mater., vol. 10, pp. 6071–6083, 2020. | |
dc.relation | [54] S. Davis, M. Ide, and R. Davis, “Selective oxidation of alcohols and aldehydes over supported metal nanoparticles,” Green Chem., vol. 15, no. 1, pp. 1–268, 2013. | |
dc.relation | [55] L. Chen, S. Ren, and X. P. Ye, “Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 93–108, 2015. | |
dc.relation | [56] P. N. Amaniampong et al., “Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst,” Green Chem., vol. 20, pp. 2730–2741, 2018. | |
dc.relation | [57] M. Sankar et al., “Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts,” Chem. Rev., vol. 120, no. 8, pp. 3890–3938, 2020. | |
dc.relation | [58] L. Liu and A. Corma, “Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles,” Chem. Rev., vol. 118, no. 10, pp. 4981–5079, 2018. [59] P. Munnik, P. E. De Jongh, and K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chem. Rev., vol. 115, no. 14, pp. 6687–6718, 2015. | |
dc.relation | [60] A. Villa et al., “Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts,” Catal. Sci. Technol., vol. 5, no. 2, pp. 1126–1132, Feb. 2015. | |
dc.relation | [61] C. Xu, Y. Du, C. Li, J. Yang, and G. Yang, “Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au-Pt bimetallic catalysts,” Appl. Catal. B Environ., vol. 164, pp. 334–343, Mar. 2015. | |
dc.relation | [62] L. Yang, X. Li, P. Chen, and Z. Hou, “Selective oxidation of glycerol in a base-free aqueous solution: A short review,” Chinese J. Catal., vol. 40, no. 7, pp. 1020–1034, 2019. | |
dc.relation | [63] T. Ntho, J. Aluha, P. Gqogqa, M. Raphulu, and G. Pattrick, “Au/γ-Al2O3 catalysts for glycerol oxidation: The effect of support acidity and gold particle size,” React. Kinet. Mech. Catal., vol. 109, no. 1, pp. 133–148, 2013. | |
dc.relation | [64] X. Wang, C. Shang, G. Wu, X. Liu, and H. Liu, “Base-Free Selective Oxidation of Glycerol over LDH Hosted Transition Metal Complexes Using 3 % H2O2 as Oxidant,” 2016. | |
dc.relation | [65] A. M. Carrillo and J. G. Carriazo, “Cu and Co oxides supported on halloysite for the total oxidation of toluene,” Appl. Catal. B Environ., vol. 164, pp. 443–452, 2015. [66] A. Pérez, M. Montes, R. Molina, and S. Moreno, “Modified clays as catalysts for the catalytic oxidation of ethanol,” Appl. Clay Sci., vol. 95, pp. 18–24, 2014. | |
dc.relation | [67] J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bull. Mater. Sci., vol. 42, no. 137, 2019. | |
dc.relation | [68] S. Schünemann, F. Schüth, and H. Tüysüz, “Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts,” Catal. Sci. Technol., vol. 7, no. 23, pp. 5614–5624, 2017. | |
dc.relation | [69] X. Jin et al., “Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts,” ACS Catal., vol. 6, pp. 4576–4583, 2016. [70] J. Carriazo, S. Moreno, and R. Molina, “Caracterizacióneestructural y textural de una bentonita Colombiana,” Rev. colomb. quím., vol. 36, no. 1, pp. 213–225, 2007. | |
dc.relation | [71] M. Caine et al., “The Use of Clays as Sorbents and Catalysts,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer, 1999, pp. 49–69. [72] S. B. C. Pergher, A. Corma, and V. Fornes, “Materiales laminares pilareados: preparación y propiedades,” Quim. Nova, vol. 22, no. 5, pp. 693–709, Sep. 1999. | |
dc.relation | [73] P. Komadel, “Structure and Chemical Characteristics of Modified Clays,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer, 1999, pp. 3–18. | |
dc.relation | [74] D. Zhang, C. Zhou, C. Lin, D. Tong, and W. Yu, “Synthesis of clay minerals,” Appl. Clay Sci., vol. 50, no. 1, pp. 1–11, 2010. [75] A. K. Panda, B. G. Mishra, D. K. Mishra, and R. K. Singh, “Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 363, no. 1–3, pp. 98–104, 2010. | |
dc.relation | [76] A. K. Chakraborty, “Introduction,” in Phase Transformation of Kaolinite Clay, Kolkata (India): Springer India, 2014, pp. 3–10. [77] Z. Gao, X. Li, H. Wu, S. Zhao, W. Deligeer, and S. Asuha, “Microporous and Mesoporous Materials Magnetic modification of acid-activated kaolin : Synthesis , characterization , and adsorptive properties,” vol. 202, pp. 1–7, 2015. | |
dc.relation | [78] S. R. Manosalva, “Kaolin’s characterization and potential in the Boyacá Department,” Ing. Investig. y Desarro., vol. 4, no. 1, pp. 48–52, 2007. [79] J. A. Dumesic, G. W. Huber, and M. Boudart, Handbook of Heterogeneous Catalysis, 2nd ed. Wiley-VCH. | |
dc.relation | [80] G. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, “Surface area and pore texture of catalysts,” Catal. Today, vol. 41, no. 1–3, pp. 207–219, 1998. | |
dc.relation | [81] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015. | |
dc.relation | [82] M. E. Awad, A. López-galindo, M. Setti, M. M. El-rahmany, and C. Viseras, “Kaolinite in pharmaceutics and biomedicine,” Int. J. Pharm., vol. 533, no. 1, pp. 34–48, 2017. | |
dc.relation | [83] G. Ercolino, A. Grodzka, G. Grzybek, P. Stelmachowski, S. Specchia, and A. Kotarba, “The Effect of the Preparation Method of Pd-Doped Cobalt Spinel on the Catalytic Activity in Methane Oxidation Under Lean Fuel Conditions,” Top. Catal., vol. 60, no. 3–5, pp. 333–341, 2017. | |
dc.relation | [84] Y. Wei, K. W. Nam, K. B. Kim, and G. Chen, “Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4,” Solid State Ionics, vol. 177, no. 1–2, pp. 29–35, 2006. | |
dc.relation | [85] A. Alvarez, S. Ivanova, M. A. Centeno, and J. A. Odriozola, “Sub-ambient CO oxidation over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic performance,” Appl. Catal. A Gen., vol. 431–432, pp. 9–17, 2012. | |
dc.relation | [86] Z. An et al., “Insights into the Multiple Synergies of Supports in the Selective Oxidation of Glycerol to Dihydroxyacetone: Layered Double Hydroxide Supported Au,” ACS Catal., vol. 10, no. 21, pp. 12437–12453, 2020. | |
dc.relation | [87] M. Valter, E. C. Dos Santos, L. G. M. Pettersson, and A. Hellman, “Selectivity of the first two glycerol dehydrogenation steps determined using scaling relationships,” ACS Catal., vol. 11, no. 6, pp. 3487–3497, 2021. | |
dc.relation | [88] J. G. Carriazo, L. F. Bossa-Benavides, and E. Castillo, “Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno,” Quim. Nova, vol. 35, no. 6, pp. 1101–1106, 2012. | |
dc.relation | [89] R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of hydrogen peroxide in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, pp. 86–91, 2005. | |
dc.relation | [90] D. A. Svintsitskiy et al., “In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders,” J. Phys. Chem. C, vol. 117, no. 28, pp. 14588–14599, Jul. 2013. [91] D. Pyke, K. K. Mallick, R. Reynolds, and A. K. Bhattacharya, “Surface and bulk phases in substituted cobalt oxide spinels,” J. Mater. Chem., vol. 8, no. 4, pp. 1095–1098, 1998. | |
dc.relation | [92] S. Zhang, X. Zhu, C. Zheng, D. Hu, J. Zhang, and X. Gao, “Study on catalytic soot oxidation over spinel type ACo2O4 (A = Co, Ni, Cu, Zn) catalysts,” Aerosol Air Qual. Res., vol. 17, no. 9, pp. 2317–2327, 2017. | |
dc.relation | [93] M. Tao, D. Zhang, X. Deng, X. Li, J. Shi, and X. Wang, “Lewis-acid-promoted catalytic cascade conversion of glycerol to lactic acid by polyoxometalates,” Chem. Commun., vol. 52, no. Scheme 1, pp. 3332–3335, 2016. | |
dc.relation | [94] S. Gil, M. Marchena, C. María, L. Sánchez-silva, A. Romero, and J. Luís, “General Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials,” Appl. Catal. A, vol. 450, pp. 189–203, 2013. | |
dc.relation | [95] F. Dumeignil, “Crude glycerol as a raw material for the liquid phase oxidation reaction,” vol. 482, pp. 245–257, 2014. | |
dc.relation | [96] J. C. Beltrán-Prieto, J. Pecha, V. Kašpárková, and K. Kolomazník, “Development of an HPLC method for the determination of glycerol oxidation products,” J. Liq. Chromatogr. Relat. Technol., vol. 36, no. 19, pp. 2758–2773, 2013. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2021 | |
dc.title | Oxidación parcial de glicerol sobre catalizadores de Cu-Co soportados en metacaolinita dealuminizada | |
dc.type | Trabajo de grado - Maestría | |