dc.contributorMontealegre Gómez, Giovanni Esteban
dc.contributorGómez Díaz, Oswaldo Javier
dc.contributorPLASTICUN
dc.creatorRestrepo Serna, Daniel
dc.date.accessioned2020-02-17T15:59:19Z
dc.date.available2020-02-17T15:59:19Z
dc.date.created2020-02-17T15:59:19Z
dc.date.issued2020-01
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75622
dc.description.abstractExisten grandes problemas en el manejo de las lesiones tendinosas: la reruptura, el “aflojamiento” del material de sutura al tendón y la generación de adherencias. La primera se da generalmente por una cicatrización con la fortaleza insuficiente para soportar cargas debido a la organización de su colágeno y lo tercero, las adherencias entre el tendón y el tejido circundante, se dan como un proceso esperado en la cicatrización tendinosa en todo proceso donde se evita la movilización temprana. Todos estos fenómenos terminan entorpeciendo la completa rehabilitación funcional. El Genipín, un entrecruzador natural de las proteínas del colágeno, aún en estudio experimental en diferentes áreas de la ingeniería biomédica, la cirugía de columna y cardiovascular y la toxicología clínica, ha demostrado un prometedor efecto sobre la reparación de estructuras cartílago-tendinosas. No obstante, la evidencia de su uso en tendones es escasa. Presentamos un estudio clínico experimental sobre un modelo animal donde se intervienen los tendones sanos de 10 conejos, realizándose una lesión quirúrgica de ambos tendones aquilianos con la subsecuente reparación de manera bilateral, aplicando el medicamento en una de las extremidades y dejando como control la extremidad contralateral. Tras 4 semanas, los conejos son sacrificados y el complejo hueso-tendón-hueso es sometido al módulo de Young. Posteriormente se realizan pruebas de histopatología avanzadas. Así, pretendemos demostrar mejor perfil en el módulo de young del tendón in-vivo, estableciendo el Genipín como una opción farmacológica para acelerar el proceso de recuperación tras lesiones totales o parciales del tendón. (Texto tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Galatz LM, Gerstenfeld L, Heber-Katz E, Rodeo SA. Tendon regeneration and scar formation: The concept of scarless healing. J Orthop Res. 2015;33(6):823–31. 2. Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res - Part A. 2003;64(3):427– 38. 3. Nimni M, Cheung D, Strates B, Kodama M, Sheikh K. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. In: Collagen Vol III Biotechnology. 1988. p. 1–38. 4. Cipriano PR, Billingham ME, Oyer PE, Kutsche LM, Stinson EB. Calcification of porcine prosthetic heart valves: A radiographic and light microscopic study. Circulation. 1982;66(5 I):1100–4. 5. Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ. Biomaterialassociated calcification: pathology, mechanisms, and strategies for prevention. J Biomed Mater Res [Internet]. 1988 Apr;22(A1 Suppl):11–36. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/3286652 6. Sung HW, Huang RN, Huang LL, Tsai CC. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed [Internet]. 1999;10(1):63–78. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/10091923 7. Tsai CC, Huang RN, Sung HW, Liang HC. In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation. J Biomed Mater Res. 2000;52(1):58–65. 8. Tsai TH, Chen CF, Westly J, Lee TF. Identification and determination of geniposide, genipin, gardenoside, and geniposidic acid from herbs by hplc/ photodiode-array detection. J Liq Chromatogr. 1994;17(10):2199–205. 9. Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull [Internet]. 1994 Dec;17(12):1573–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7735197 10. Touyama R, Inoue K, Takeda Y, Yatsuzuka M, Ikumoto T, Moritome N, et al. Studies on the Blue Pigments Produced from Genipin and Methylamine. I. Structures of the Brownish-Red Pigments, Intermediates Leading to the Blue Pigments. Chem Pharm Bull (Tokyo) [Internet]. 1994;42(3):668–673. Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/cpb1958/42.1571?from=CrossRef 11. Huang LL, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res [Internet]. 1998 Dec 15;42(4):568–76. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/9827681 12. Paik YS, Lee CM, Cho MH, Hahn TR. Physical stability of the blue pigments formed from geniposide of gardenia fruits: Effects of ph, temperature, and light. J Agric Food Chem. 2001;49(1):430–2. 13. Sung HW, Chang Y, Liang IL, Chang WH, Chen YC. Fixation of biological tissues with a naturally occurring crosslinking agent: Fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res. 2000;52(1):77–87. 14. Veis A. Collagen fibrillar structure in mineralized and nonmineralized tissues. Curr Opin Solid State Mater Sci. 1997;2(3):370–8. 15. Müller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surgery, Sport Traumatol Arthrosc. 2015;23(7):2097–105. 16. Nimni M., Harkness R. Molecular structure and function of collagen. In: Collagen, Vol 1: Biochemistry. 1988. p. 1–77. 17. Avery NC, Bailey AJ. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen : relevance to aging and exercise. Scand J Med Sci Sport. 2005;15(4):231–40. 18. Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122:735–55. 19. Barnard K, Light ND, Sims TJ, Bailey AJ. Chemistry of the collagen crosslinks Origin and partial characterization of a putative mature cross-link of collagen. Biochem J. 1987;244:303–9. 20. Hoffmeister B, Handley S, Wickline S, Miller J. Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium. J Acoust Soc Am. 1996;100(6):3933–40. 21. Kostyuk O, Birch HL, Mudera V, Brown RA. Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique. J Physiol. 2004;554(3):791–801. 22. Fan Z, Smith PA, Eckstein EC, Harris GF, Al FANET. Mechanical properties of OI type III bone tissue measured by nanoindentation. J Biomed Mater Res A. 2006;79(1):71–7. 23. Graham JS, Vomund AN, Phillips CL, Grandbois M. Structural changes in human type I collagen fibrils investigated by force spectroscopy. Exp Cell Res. 2004;299(2):335–42. 24. Rijt JAJ Van Der, Werf KO Van Der, Bennink ML, Dijkstra PJ, Feijen J. Micromechanical Testing of Individual Collagen Fibrils a. Macromol Biosci. 2006;15(9):697–702. 25. Stryer L. Biochemistry. 3rd ed. New York; 1988. 16-42, 50-55 p. 26. Zeeman R, Dijkstra PJ, Wachem PB Van, Luyn MJA Van, Hendriks M, Cahalan PT, et al. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999;20(10):921–31. 27. Fujikawa S, Fukui Y, Koga K. Structure of Genipocyanin G ,, A Spontaneous Reaction Product Between Genipin and Glycine. 1987;1(40):4699– 700. 28. Fujikawa S, Nakamura S, Kooa K. Genipin , a New Type of Protein Crosslinking Reagent from Gardenia Fruits. 2016;1369(June):4–6. 29. TOUYAMA R, INOUE K, TAKEDA Y, YATSUZUKA M, IKUMOTO T, MORITOME N, et al. Studies on the Blue Pigments Produced from Genipin and Methylamine. II .On the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chem Pharm Bull. 1994;42(8):1571/1578. 30. Imamura E, Sawatani O, Koyanagi H, Noishiki Y, Miyata T, Ph D. Epoxy Compounds As a New Cross- Linking Agent for Porcine Aortic Leaflets : Subcutaneous Implant Studies in Rats. 1989;(March):50–7. 31. Fessel G, Cadby J, Wunderli S, Van Weeren R, Snedeker JG. Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics - Toward clinical application for tendon repair. Acta Biomater [Internet]. 2014;10(5):1897–906. Available from: http://dx.doi.org/10.1016/ j.actbio.2013.12.048 32. Sundararaghavan HG, Monteiro GA, Lapin NA, Chabal YJ, Miksan JR, Shreiber DI. Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence. J Biomed Mater Res - Part A. 2008;87(2):308–20. 33. Sung H, Hsu C, Wang S, Hsu H. Degradation potential of biological tissues fixed with various fixatives : An in vitro study. J Biomed Mater Res. 1996;35(2):147–55. 34. Yang L, Van Der Werf KO, Fitié CFC, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of native and cross-Linked type i collagen fibrils. Biophys J. 2008;94(6):2204–11. 35. Fessel G, Wernli J, Li Y, Gerber C, Snedeker JG. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear. J Orthop Res. 2012;30(6):973–81. 36. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin – ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5. 37. Chuang S, Lin L, Tsai Y, Wang J. Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury. J Biomed Mater Res A. 2009;92(1):297–302. 38. Sung H, Liang I, Chen C, Huang R, Liang H. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res. 2001;55(4):538–46. 39. Wang C, Lau TT, Loh WL, Su K, Wang DA. Cytocompatibility study of a natural biomaterial crosslinker-Genipin with therapeutic model cells. J Biomed Mater Res - Part B Appl Biomater. 2011;97 B(1):58–65. 40. Kim B, Kim H, Lee S, Lim S, Park E, Kim S, et al. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species / c-Jun NH 2 -terminal kinase-dependent activation of mitochondrial pathway. Biochem Pharmacol. 2005;70(9):1398–407. 41. Langberg H, Rosendal L, Kjær M. Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. J Physiol. 2001;534(Pt 1):297–302. 42. Langberg H, Skovgaard D, Petersen LJ, Jens B, Kjòr M. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 1999;521(Pt 1):299–306. 43. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, et al. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol [Internet]. 2009;107(3):880–6. Available from: http://jap.physiology.org/cgi/doi/10.1152/japplphysiol.00291.2009 44. Carroll CC, Dickinson JM, Haus JM, Lee GA, Hollon CJ, Aagaard P, et al. Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol. 2008;105(6):1907–15. 45. Eyre DR, Pietka T, Weis MA, Wu J. Covalent Cross-linking of the NC1 Domain of Collagen Type IX to Collagen Type II in Cartilage *. J Biol Chem. 2004;279(4):2568–74. 46. Cribb AM, Scott JE, Morphology C, Sciences B. Tendon response to tensile stress : an ultrastructural investigation of collagen : proteoglycan interactions in stressed tendon. J Anat. 1995;187(2):423–8. 47. Ng GYF, Oakes BW, Deacon OW, Mclean D, Eyre DR. Long-Term Study of the Biochemistry and Biomechanics of Anterior Cruciate Ligament-Patellar Tendon Autografts in Goats. J Orthop Res. 1996;14(6):851–6. 48. Frank C, Mcdonald D, Wilson J, Eyre D. Rabbit Medial Collateral Ligament Scar Weakness is Associated with Decreased Collagen Pyridinoline Crosslink Density. J Orthop Res. 1995;13(2):157–65. 49. Bellefeuille M, Peters DF, Nolin M, Slusarewicz P, Telgenhoff D. Examination of toxicity and collagen linearity after the administration of the protein cross-linker genipin in equine tendon and dermis: a pilot study. Aust Vet J. 2017;95(5):167–73. 50. Sundararaj S, Slusarewicz P, Brown M, Hedman T. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue. J Biomed Mater Res - Part B Appl Biomater. 2017;105(8):2199– 205. 51. Chuang S, Popovich JM, Lin L, Hedman TP. The Effects of Exogenous Crosslinking on Hydration and Fluid Flow in the Intervertebral Disc Subjected to Compressive Creep Loading and Unloading. Spine (Phila Pa 1976). 2010;35(24):1362–6. 52. Slusarewicz P, Zhu K, Kirking B, Toungate J, Hedman T. Optimization of Protein Crosslinking Formulations. Spine (Phila Pa 1976). 2010;36(1):7–13. 53. Camenzind RS, Wieser K, Fessel G, Meyer DC, Snedeker JG. Tendon Collagen Crosslinking Offers Potential to Improve Suture Pullout in Rotator Cuff Repair: An Ex Vivo Sheep Study. Clin Orthop Relat Res. 2016;474(8):1778–85. 54. Cummins CA, Appleyard RC, Strickland S, Haen P-S, Chen S, Murrell GAC. Rotator cuff repair: an ex vivo analysis of suture anchor repair techniques on initial load to failure. Arthroscopy. 2005;21(10):1236–41. 55. Maquirriain J. Achilles tendon rupture: Avoiding tendon lengthening during surgical repair and rehabilitation. Yale J Biol Med. 2011;84(3):289–300. 56. Fessel G, Gerber C, Snedeker JG. Potential of collagen cross-linking therapies to mediate tendon mechanical properties. J Shoulder Elb Surg [Internet]. 2012;21(2):209–17. 57. Koob TJ SA. Tendon--bridging the gap. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):905–9. 58. Nagasawa K, Noguchi M, Ikoma K, Kubo T. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon. Clin Biomech. 2008;23(6):832–8. 59. Frank C, Mcdonald D, Shrive N. Collagen Fibril Diameters in the Rabbit Medial Collateral Ligament Scar : A Longer Term Assessment. Connect Tissue Res. 1997;36(3):261–9. 60. Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative Versus Reparative Healing in Tendon : A Study of Biomechanical and Histological Properties in Fetal Sheep. Ann Biomed Eng. 2003;31(10):1143–52. 61. Olabisi R, Best TM, Vanderby R, Petr S, Noonan KJ. Effects of Botulinum Toxin A on Functional Outcome during Distraction Osteogenesis. J Orthop Res. 2007;25(5):656–64. 62. Olabisi RM, Best TM, Hurschler C, Vanderby R, Noonan KJ. The biomechanical effects of limb lengthening and botulinum toxin type A on rabbit tendon. J Biomech [Internet]. 2010;43(16):3177–82. Available from: http:// dx.doi.org/10.1016/j.jbiomech.2010.07.032 63. Fortuna R, Vaz MA, Sawatsky A, Hart DA, Herzog W. A clinically relevant BTX-A injection protocol leads to persistent weakness , contractile material loss , and an altered mRNA expression phenotype in rabbit quadriceps muscles. J Biomech [Internet]. 2015;48(10):1700–6. Available from: http://dx.doi.org/10.1016/ j.jbiomech.2015.05.018 64. Longino D, Frank C, Leonard TR, Vaz MA, Herzog W. Proposed model of botulinum toxin-induced muscle weakness in the rabbit. J Orthop Res. 2005;23(6):1411–8. 65. Rappl T, Parvizi D, Wiedner M, May S, Kranzelbinder B, Wurzer P, et al. Onset and duration of effect of incobotulinumtoxinA , onabotulinumtoxinA , and abobotulinumtoxinA in the treatment of glabellar frown lines : a randomized , double-blind study. Clin Cosmet Investig Dermatol. 2013;6:211–9. 66. Goodman HJ, Choueka J, Brand PW. Biomechanics of the Flexor Tendons. Hand Clin. 2005;21(2):129–49. 67. Buschmann J, Meier-bürgisser G, Bonavoglia E, Neuenschwander P, Milleret V, Giovanoli P, et al. Cellular response of healing tissue to DegraPol tube implantation in rabbit Achilles tendon rupture repair : an in vivo histomorphometric study. J Tissue Eng Regen Med. 2013;7(5):413/420. 68. Nicholls F, Achermann R, Buschmann J, Mu A, Baumgartner W, Calcagni M, et al. 2D motion analysis of rabbits after Achilles tendon rupture repair and histological analysis of extracted tendons : Can the number of animals be reduced by operating both hind legs simultaneously ? Injury. 2013;44(10):1302–8. 69. Chong AKS, Ang AD, Goh JCH, Hui JHP, Lim AYT, Lee EH, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Jt Surg Am. 2007;89(1):74–81. 70. Oryan A, Moshiri A, Parizi AM, Silver IA. A long-term in vivo investigation on the effects of xenogenous based , electrospun , collagen implants on the healing of experimentally-induced large tendon defects. J Musculoskelet Neuronal Interact. 2013;13(3):353–67. 71. Saygi B, Karaman Ö, Yildirim Y, K CTET, Esemenl T. The effect of dehydration and irrigation on tendon adhesion formation after tendon exposure. Acta Orthop Traumatol Turc. 2012;46(5):393–7. 72. Buschmann J, Puippe G, Bu GM, Bonavoglia E, Giovanoli P, Calcagni M. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue. Connect Tissue Res. 2014;55(2):123–31. 73. Tan V, Nourbakhsh A, Capo J, Cottrell JA, Meyenhofer M, Connor JPO. Effects of Nonsteroidal Anti-Inflammatory Drugs on Flexor Tendon Adhesion. J Hand Surg Am [Internet]. 2010;35(6):941–7. Available from: http://dx.doi.org/ 10.1016/j.jhsa.2010.02.033 74. Wu YF, Tang JB. Apoptosis in adhesions and the adhesion-tendon gliding interface: relationship to adhesion-tendon gliding mechanics. J Hand Surg Am. 2013;38(6):1071–8. 75. Wu YF, Tang JB. Tendon healing, edema, and resistance to flexor tendon gliding: clinical implications. Hand Clin [Internet]. 2013;29(2):167–78. Available from: http://dx.doi.org/10.1016/j.hcl.2013.02.002 76. Meier Bürgisser G, Calcagni M, Bachmann E, Fessel G, Snedeker JG, Giovanoli P, et al. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery. Biol Open [Internet]. 2016;5(9):1324–33. Available from: http://bio.biologists.org/ lookup/doi/10.1242/bio.020644 77. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6(2):181–90. 78. Gelberman R, Boyer M, Brodt M, Winters S, Silva M. The effect of gap formation at the repair site on the strength and excursion of intrasynovial flexor tendons. An experimental study on the early stages of tendon-healing in dogs. J Bone Jt Surg Am. 1999;81(7):975–82. 79. Kannas S, Otr L, Jeardeau TA, Otr L, Bishop AT. Rehabilitation Following Zone II Flexor Tendon Repairs. Tech Hand Up Extrem Surg. 2015;19(1):2–10. 80. Moriya K, Yoshizu T, Maki Y, Tsubokawa N, Narisawa H, Endo N. Clinical outcomes of early active mobilization following flexor tendon repair using the sixstrand technique: short- and long-term evaluations. J Hand Surg Eur Vol. 2015;40(3):1250–8. 81. Yildirim Y, Kara H, Çabukoglu C, Esemenli T. Suture holding capacity of the Achilles tendon during the healing period: An in vivo experimental study in rabbits. Foot Ankle Int. 2006;27(2):121–4. 82. Pneumaticos SG, Noble PC, McGarvey WC, Mody DR, Trevino SG. The effects of early mobilization in the healing of achilles tendon repair. Foot Ankle Int. 2000;21(7):551–7. 83. Mason ML, Allen HS. The rate of healing of tendons. An experimental study of tensile strength.pdf. 1941. p. 424–59. 84. Nystrom B, Holmlund D. Separation of sutured tendon ends when different suture techniques and different suture materials are used. Scand J Plast Reconstr Surg. 1983;17(1):19–23. 85. Nyström B, Holmlund D. Separation of tendon ends after suture of achilles tendon. Acta Orthop. 1983;54(4):620–1. 86. Nyström B, Holmlund D. Experimental evaluation of immobilization in operative and non-operative treatment of Achilles tendon rupture. A radiographic study in the rabbit. Acta Chir Scand. 1983;149(7):669–73. 87. Enwemeka CS. Inflammation , Cellularity , and Fibrillogenesis in Regenerating Tendon : Implications for Tendon Rehabilitation. Phys Ther. 1989;69(10):816–25. 88. Wong JK, Peck F. Improving results of flexor tendon repair and rehabilitation. Plast Reconstr Surg. 2014;134(6):913–25. 89. Khor WS, Langer MF, Wong R, Zhou R, Peck F, Wong JKF. Improving Outcomes in Tendon Repair: A Critical Look at the Evidence for Flexor Tendon Repair and Rehabilitation. Plast Reconstr Surg. 2016;138(6):1045–58. 90. Neumeister M, Amalfi A, Neumeister E. Evidence-based medicine: Flexor tendon repair. Plast Reconstr Surg. 2014;133(5):1222–33. 91. Hatanaka H, Manske P. Effect of suture size on locking and grasping flexor tendon repair techniques. Clin Orthop Relat Res. 2000;375:267–74. 92. Osei D, Stepan J, Calfee R, Thomopoulos S, Boyer M, Potter R, et al. The effect of suture caliber and number of core suture strands on zone II flexor tendon repair: a study in human cadavers. J Hand Surg Am. 2014;39(2):262–8. 93. Sharma, P., & Maffulli, N. (2005). Basic biology of tendon injury and healing. The Surgeon, 3(5), 309–316. 94. Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989;71(1):100-1. 95. MICROSCOPY | Scanning Electron Microscopy J. Webb, J.H. Holgate, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003. 96. Rosa Alicia Saucedo Acuña Mónica Galicia García. MANUAL PARA LA PREPARACIÓN DE MUESTRAS PARA SU ANÁLISIS POR MICROSCOPÍA ELECTRÓNICA Y DIFRACCIÓN DE RAYOS X. Instituto de Ciencias Biomédicas Universidad Autónoma de Ciudad Juárez. Junio 2017. 97. Jaime Renau-Piqueras & Magdalena Faura. Principios básicos del Microscopio Electrónico de Barrido. Sección de Microscopía Electrónica. Centro de Investigación. Hospital "La Fé". 98. Kastelic J, Baer E. Deformation in tendon collagen. Symp Soc Exp Biol 1980;34:397-435. 99. Selvanetti A, Cipolla M, Puddu, G. Overuse tendon injuries: Basic science and classi¿cation. Oper Tech Sports Med 1997;5:110-17 100. Ker RF. The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp Biochem Physiol A Mol Integr Physiol 2002;133(4):987- 1000. 101. Tillman LJ, Chasan NP. Properties of dense connective tissue and wound healing. In: Hertling D, Kessler RM, Editors. Management of common musculoskeletal disorders. Philadelphia: Lippincott; 1996. 102. Movin T, Gad A, Reinholt FP, Rolf C. Tendon pathology in long-standing achillodynia. Biopsy ¿ndings in 40 patients. Acta Orthop Scand 1997;68(2):170-75. 103. Maffulli N, Barrass V, Ewen SW. Light microscopic histology of achilles tendon ruptures. A comparison with unruptured tendons. Am J Sports Med 2000;28(6):857-63. 104. Koob TJ. Biomimetic approaches to tendon repair. Comp Biochem Physiol A Mol Integr Physiol 2002;133(4):1171- 92. 105. Strickland JW. Flexor tendons: acute injuries. In: Green D, Hotchkiss R, Pedersen W. Editors. Green’s operative hand surgery. New York: Churchill Livingstone; 1999:1851-1897. 106. J Webb and J H Holgate. MICROSCOPY/Scanning Electron Microscopy. Reading Scientific Services. Ltd, Whiteknights, Reading, UK 107. Franchi, M., Trirè, A., Quaranta, M., Orsini, E., & Ottani, V. (2007). Collagen Structure of Tendon Relates to Function. The Scientific World JOURNAL, 7, 404– 420. 108. Kannus, P. (2000) Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312-20. 109. Canty, E.G., and Kadler, K.E. (2005) Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341-1353 110. Ingber, D. (1991) Integrins as mechanochemical transducers. Curr. Op. Cell Biol. 3, 841-848. 111. Schatzker, J., and Branemark, P.I. (1969) Intravital observations on the microvascular anatomy and microcirculation of the tendon. Acta Orthop. Scand. 126, Suppl. 1-23. 112. Jozsa, L., Kannus. P., Balint, B.J., and Reffy, A. (1991) Three-dimensional ultrastructure of human tendons. Acta Anat. 142, 306-312. 113. Provenzano, P. P., & Vanderby, R. (2006). Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biology, 25(2), 71–84. 114. Ohashi, Yoshinori & Nakase, Junsuke & Shimozaki, Kengo & Torigoe, Kojun & Tsuchiya, Hiroyuki. (2018). Evaluation of dynamic change in regenerated tendons in a mouse model. Journal of Experimental Orthopaedics. 115. Torigoe K, Tanaka HF, Yonenaga K, Ohkochi H, Miyasaka M, Sato R et al (2011) Mechanisms of collagen fibril alignment in tendon injury: from tendon regeneration to artificial tendon. J Orthop Res 29:1944–1950 116. Vigler, M., Palti, R., Goldstein, R., Patel, V. P., Nasser, P., & Lee, S. K. (2008). Biomechanical Study of Cross-Locked Cruciate Versus Strickland Flexor Tendon Repair. The Journal of Hand Surgery, 33(10), 1826–1833. 117. Croog A, Goldstein R, Nasser P, Lee SK (2007) Comparative biomechanic performances of locked cruciate four-strand flexor tendon repairs in an ex vivo porcine model. J Hand Surg 32A:225–232 118. Peltz T, Haddad R, Scougall PJ, Nicklin S, Gianoutsos M, Walsh WR (2011) Influence of Locking Stitch Size in a Four-Strand CrossLocked Cruciate Flexor Tendon Repair. J Hand Surg 36A:450–455 119. Freeman J W and Silver F H (2005) The effects of prestrain and collagen fibril alignment on in vitro mineralization of self-assembled collagen fibers. Connect. Tissue Res. 46: 107–115. 120. Sasaki, K., Yamamoto, N., Kiyosawa, T., & Sekido, M. (2012). The role of collagen arrangement change during tendon healing demonstrated by scanning electron microscopy. Journal of Electron Microscopy, 61(5), 327–334.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEntrecruzamiento del colágeno tendinoso con un derivado de la gardenia jasminoides (genipín) para disminuir el tiempo de recuperación posterior a la reparación quirúrgica de lesiones completas tendinosas: aplicación del módulo de young en modelo animal
dc.typeTrabajo de grado - Especialidad Médica


Este ítem pertenece a la siguiente institución