| dc.relation | [1] IRENA, Renewable Capacity Statistics 2020. 2020.
[2] H. Aki, I. Sugimoto, T. Sugai, M. Toda, M. Kobayashi, and M. Ishida, “Optimal operation of a photovoltaic generation-powered hydrogen production system at a hydrogen refueling station,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 14892–14904, 2018, doi: 10.1016/j.ijhydene.2018.06.077.
[3] K. A. Kavadias, D. Apostolou, and J. K. Kaldellis, “Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network,” Appl. Energy, vol. 227, pp. 574–586, Oct. 2018, doi: 10.1016/j.apenergy.2017.08.050.
[4] F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources,” Sol. Energy, vol. 78, no. 5, pp. 661–669, 2005, doi: 10.1016/j.solener.2004.09.003.
[5] H. Lee, S. Ahn, W. Yoon, H. Seo, J. S. Hong, and Y. K. Go, “Design Principle and Loss Engineering for Photovoltaic − Electrolysis Cell System,” ACS OMEGA, 2017, doi: 10.1021/acsomega.7b00012.
[6] A. Zerrahn, W. Schill, and C. Kemfert, “On the economics of electrical storage for variable renewable energy sources,” Eur. Econ. Rev., vol. 108, pp. 259–279, 2018, doi: 10.1016/j.euroecorev.2018.07.004.
[7] L. Wiegler, “The Future of Hydrogen EIA 2019,” 2019. [Online]. Available: http://www.technologyreview.com/news/425492/the-future-of-hydrogen-cars/.
[8] B. Woo and J. Chang, “Hydrogen Production via Water Electrolysis,” IEEE Electrif. Mag., pp. 19–25, 2018, doi: 10.1109/MELE.2017.2784632.
[9] B. Johnston, M. C. Mayo, and A. Khare, “Hydrogen: The energy source for the 21st century,” Technovation, vol. 25, no. 6, pp. 569–585, 2005, doi: 10.1016/j.technovation.2003.11.005.
[10] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier, pp. 850–866, 2016, doi: 10.1016/j.rser.2015.12.112.
[11] M. Moreno-Benito, P. Agnolucci, and L. G. Papageorgiou, “Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development,” Comput. Chem. Eng., vol. 102, pp. 110–127, 2017, doi: 10.1016/j.compchemeng.2016.08.005.
[12] B. Wang, Y. Liang, J. Zheng, R. Qiu, M. Yuan, and H. Zhang, “An MILP model for the reformation of natural gas pipeline networks with hydrogen injection,” Int. J. Hydrogen Energy, vol. 43, no. 33, pp. 16141–16153, 2018, doi: 10.1016/j.ijhydene.2018.06.161.
[13] S. A. Sherif, F. Barbir, and T. N. Veziroglu, “Wind energy and the hydrogen economy-review of the technology,” Sol. Energy, vol. 78, no. 5, pp. 647–660, 2005, doi: 10.1016/j.solener.2005.01.002.
[14] K. A. Kavadias, D. Apostolou, and J. K. Kaldellis, “Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network,” Appl. Energy, no. January, pp. 0–1, 2017, doi: 10.1016/j.apenergy.2017.08.050.
[15] Y. Zhang, P. E. Campana, A. Lundblad, and J. Yan, “Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system : Storage sizing and rule-based operation q,” Appl. Energy, vol. 201, pp. 397–411, 2017, doi: 10.1016/j.apenergy.2017.03.123.
[16] T. E. S.A. and Hinicio, “Study on Early Business Cases for H2 in Energy Storage and More Broadly Power To H2 Applications,” EU Comm., no. June, p. 228, 2017, [Online]. Available: http://www.hinicio.com/inc/uploads/2017/07/P2H_Full_Study_FCHJU.pdf%0Ahttp://www.fch.europa.eu/sites/default/files/P2H_Full_Study_FCHJU.pdf%0Ahttp://www.hinicio.com/file/2018/06/P2H_Full_Study_FCHJU.pdf.
[17] U.S. Department of Energy Hydrogen and Fuel Cells Program, “2018 Annual Merit Review and Peer Evaluation Report,” Washinton, DC., 2018.
[18] W. Kreuter and H. Hofmann, “Electrolysis: the important energy transformer in a world of sustainable energy,” Int. J. Hydrogen Energy, vol. 23, no. 8, pp. 661–666, Aug. 1998, doi: 10.1016/S0360-3199(97)00109-2.
[19] W. Kuckshinrichs, T. Ketelaer, and J. C. Koj, “Economic analysis of improved alkaline water electrolysis,” Front. Energy Res., vol. 5, no. FEB, 2017, doi: 10.3389/fenrg.2017.00001.
[20] “Asociación Española del Hidrógeno - Aeh2.” https://www.aeh2.org/ (accessed Jan. 30, 2021).
[21] W. Dönitz and E. Erdle, “High-temperature electrolysis of water vapor-status of development and perspectives for application,” Int. J. Hydrogen Energy, vol. 10, no. 5, pp. 291–295, Jan. 1985, doi: 10.1016/0360-3199(85)90181-8.
[22] E. Flores, G. Tutor, F. Javier, and P. Lucena, “Trabajo Fin de Grado Grado en Ingeniería de las Tecnologías Industriales Estado del arte de electrolizadores de óxido sólido,” Universidad de Sevilla - España, 2020.
[23] S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, Dec. 2019, doi: 10.1016/j.mset.2019.03.002.
[24] J. O’Brien, Thermodynamic Considerations for Thermal Water Splitting Processes and High Temperature Electrolysis, vol. 8. 2008.
[25] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” Journal of Power Sources, vol. 203. Elsevier, pp. 4–16, Apr. 01, 2012, doi: 10.1016/j.jpowsour.2011.12.019.
[26] P. Moçoteguy and A. Brisse, “A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells,” International Journal of Hydrogen Energy, vol. 38, no. 36. Pergamon, pp. 15887–15902, Dec. 13, 2013, doi: 10.1016/j.ijhydene.2013.09.045.
[27] J. Larminie and A. Dicks, Fuel Cell Systems Explained. 2003.
[28] R. K. Akikur, R. Saidur, H. W. Ping, and K. R. Ullah, “Performance analysis of a co-generation system using solar energy and SOFC technology,” Energy Convers. Manag., vol. 79, pp. 415–430, Mar. 2014, doi: 10.1016/j.enconman.2013.12.036.
[29] M. Serban, M. A. Lewis, C. L. Marshall, and R. D. Doctor, “Hydrogen Production by Direct Contact Pyrolysis of Natural Gas,” Energy & Fuels, vol. 17, no. 3, pp. 705–713, May 2003, doi: 10.1021/ef020271q.
[30] D. Das, N. Khanna, and T. Nejat Veziroǧlu, “Recent developments in biological hydrogen production processes,” Chem. Ind. Chem. Eng. Q., vol. 14, no. 2, pp. 57–67, 2008, doi: 10.2298/CICEQ0802057D.
[31] I. Dincer and A. S. Joshi, Solar Based Hydrogen Production Systems. 2013.
[32] H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy, vol. 35, no. 14, pp. 7416–7426, 2010, doi: https://doi.org/10.1016/j.ijhydene.2010.04.137.
[33] M. A. Rosen, “Advances in hydrogen production by thermochemical water decomposition: A review,” Energy, vol. 35, no. 2, pp. 1068–1076, 2010, doi: https://doi.org/10.1016/j.energy.2009.06.018.
[34] IDEAM, “Atlas Interactivo - Climatológico - IDEAM,” Atlas Climatológico de Colombia 1981 - 2010, 2015. http://atlas.ideam.gov.co/visorAtlasClimatologico.html (accessed Jun. 16, 2019).
[35] I. Sansa, R. Villafafila, and N. M. Bellaaj, “Optimal sizing design of an isolated microgrid using loss of power supply probability,” in 2015 6th International Renewable Energy Congress, IREC 2015, 2015, pp. 1–7, doi: 10.1109/IREC.2015.7110941.
[36] S. Ruiz Alvarez, “Metodología para el diseño de microrredes aisladas usando métodos de optimización numérica,” p. 90, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/56342/1/1035831711.2017.pdf.
[37] C. H. Li, X. J. Zhu, G. Y. Cao, S. Sui, and M. R. Hu, “Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology,” Renew. Energy, vol. 34, no. 3, pp. 815–826, 2009, doi: 10.1016/j.renene.2008.04.018.
[38] G. Zini and P. Tartarini, Solar Hydrogen Energy Systems. Springer, 2012.
[39] D. DeSantis, B. James, and G. Saur, “H2A: Hydrogen Analysis Production Models | Hydrogen and Fuel Cells | NREL,” Central Hydrogen Production - Project Information, Sep. 19, 2019. https://www.nrel.gov/hydrogen/h2a-production-models.html (accessed Jan. 15, 2021).
[40] O. V. Marchenko and S. V. Solomin, “Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9361–9370, 2017, doi: 10.1016/j.ijhydene.2017.02.076.
[41] El Pais S.A, “El agua empezó a cotizarse en la bolsa de valores de Wall Street,” Dec. 08, 2020.
[42] Geolcoe, “COSTOS NIVELADOS DE GENERACIÓN DE ELECTRICIDAD EN COLOMBIA.” http://www.geolcoe.siel.gov.co/advanced/1/3/166/169 (accessed Jan. 18, 2021).
[43] “McPhy Electrolyzers.” https://mcphy.com/en/equipment-services/electrolyzers/large/?cn-reloaded=1 (accessed Jan. 25, 2021).
[44] Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan, “Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden,” Energy Convers. Manag., vol. 133, pp. 249–263, 2017, doi: 10.1016/j.enconman.2016.11.060.
[45] M. Bortolini, M. Gamberi, and A. Graziani, “Technical and economic design of photovoltaic and battery energy storage system,” Energy Convers. Manag., vol. 86, pp. 81–92, 2014, doi: https://doi.org/10.1016/j.enconman.2014.04.089.
[46] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “Pvlib Python: a Python Package for Modeling Solar Energy Systems,” J. Open Source Softw., vol. 3, no. 29, p. 884, 2018, doi: 10.21105/joss.00884.
[47] S. de M. A.-P. CORPAC, “Modelo GFS,” 2020. http://www.corpac.gob.pe/app/Meteorologia/modelos/gfs.php (accessed Jan. 03, 2021). | |