dc.contributorArdila Barrantes, Harold Duban
dc.contributorCoy Barrera, Ericsson David
dc.contributorEstudio de Actividades Metabolicas Vegetales
dc.creatorRomero Rincón, Ana Elizabeth
dc.date.accessioned2020-08-29T04:22:40Z
dc.date.available2020-08-29T04:22:40Z
dc.date.created2020-08-29T04:22:40Z
dc.date.issued2020-02-14
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78330
dc.description.abstractFlavonoids are compounds that have multiple functions in plant biochemistry, physiology and ecology, within which defense and protection against stress are described. For carnation flowers, flavonoids have been described as fundamental compounds in defense processes, mainly against Fusarium oxysporum sp. dianthi. This is a vascular pathogen that causes significant losses in the cultivation of this type of flower. In this work, the biosynthesis of flavonoids in carnation roots during the interaction with Fod was studied in detail, evaluating both the constitutive level and the effect of inoculation with the pathogen, also, the compounds present at the constitutive level and some biochemical and molecular parameters associated with its biosynthesis. Additionally, the effect of the application of a potential biotic inducer of resistance prior to inoculation that is obtained directly from the pathogen was evaluated. For this, two commercial varieties were used, which were subjected to an inoculation process and sampling at different hours post-inoculation, to subsequently obtain methanolic extracts and analyze the flavonoids present using HPLC/MS. For biochemical and molecular parameters, spectrophotometric methods and the RT-qPCR technique were used to evaluate the transcriptional levels of some of the enzymes involved. The results presented in this study confirmed the importance of flavonoid biosynthesis in disease resistance. At the same time, it was evidenced that the elicitation prior to the inoculation process stimulated this process in the susceptible variety, which allowed it to be prepared for the battle against the pathogen. The knowledge generated in this study complements the work developed in this model carnation-fusarium, and acredited the central role of flavonoids, especially flavanol-type glycosylates, in inducing resistance using elicitors of biotic origin.
dc.description.abstractLos flavonoides son compuestos que tienen múltiples funciones en la bioquímica, fisiología y ecología de las plantas, dentro de las cuales se describen la defensa y protección frente al estrés. En clavel, los flavonoides han sido descritos como compuestos fundamentales en procesos de defensa, principalmente contra Fusarium oxysporum sp. dianthi; este es un patógeno vascular que causa pérdidas significativas en el cultivo de esta flor. En el presente estudio, se profundizó en la biosíntesis de flavonoides en raíces de clavel durante la interacción con Fod, evaluando tanto a nivel constitutivo, como por efecto de la inoculación con el patógeno, los compuestos presentes a este nivel y algunos parámetros bioquímicos y moleculares asociados a su biosíntesis. Así mismo se evaluó el efecto que tiene la aplicación previa a la inoculación de un potencial inductor de resistencia de origen biótico obtenido directamente del patógeno. Para ello, se emplearon dos variedades comerciales contrastantes a la enfermedad clavel (resistente y susceptible a Fod), que fueron sometidas a un proceso de inoculación y muestreos a diferentes horas posinoculación, para posteriormente obtener extractos metanólicos y analizar los flavonoides presentes usando HPLC/MS. Para los parámetros bioquímicos y moleculares se usaron métodos espectrofotométricos y la técnica RT-qPCR para la evaluación de los niveles transcripcionales de algunas de las enzimas involucradas. Los resultados presentados en este estudio confirmaron la importancia de la biosíntesis de los flavonoides en la resistencia a la enfermedad. Así mismo, se evidenció que la elicitación previa al proceso de inoculación estimuló este proceso en la variedad susceptible, lo que le permitió estar preparada para el desafío contra el patógeno. El conocimiento generado en este trabajo complementa los trabajos desarrollados en este modelo, y evidenció el papel central que tienen los flavonoides, especialmente los glicosilados de tipo flavonol, en la inducción de resistencia usando elicitores de origen biótico
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationÁdám, A., Nagy, Z., Kátay, G., Mergenthaler, E., & Viczián, O. (2018). Signals of systemic immunity in plants: Progress and Open Questions. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19041146
dc.relationAgati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
dc.relationArbelaez, G. (1985). Beyma. 5. Marchitamiento vascular, causado por el hongo Fusarium oxysporum Schlecht f.sp. dianthi (Prill et Dei.) Snyder (pp. 12–18).
dc.relationArbelaez, G., & Calderon, olga. (1991). DETERMINACION DE LAS RAZAS FISIOLOGICAS DE Fusarium oxysporum. Agronomía Colombiana, 8(2), 243–247.
dc.relationArbeláez, G., Guzmán, S., León, J., González, M., Molina, J. C., Parra, J., … Alvarez, J. (1986). Control Integrado Del Marchitamiento Vascular Del Clavel. Agronomía Colombiana, 10, 68–89.
dc.relationArdila, H. D. (2013). Contribución Al Estudio De Algunos Componentes Bioquímicos Y Moleculares De La Resistencia Del Clavel (Dianthus caryophyllus L) Al Patógeno Fusarium oxysporum f. sp. dianthi. oxysporum f. sp. dianthi. Universidad Nacional de Colombia
dc.relationArdila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0
dc.relationAtanasova-Penichon, V., Barreau, C., & Richard-Forget, F. (2016). Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Frontiers in Microbiology, 7(APR), 1–16. https://doi.org/10.3389/fmicb.2016.00566
dc.relationAttaran, E., Zeier, T. E., Griebel, T., & Zeier, J. (2009). Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell, 21(3), 954–971. https://doi.org/10.1105/tpc.108.063164
dc.relationBaayen, R. P. (1988). Responses related to lignification and intravascular periderm formation in carnations resistant to Fusarium wilt . Canadian Journal of Botany, 66(4), 784–792. https://doi.org/10.1139/b88-115
dc.relationBaayen, R. P., & De Maat, A. L. (1987). Passive transport of microconidia of Fusarium oxysporum f. sp. dianthi in carnation after root inoculation. Netherlands Journal of Plant Pathology. https://doi.org/10.1007/BF01998138
dc.relationBaayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology. https://doi.org/10.1007/BF01998398
dc.relationBaayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.x
dc.relationBaayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271
dc.relationBaba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume . Journal of Taibah University for Science, 9(4), 449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
dc.relationBalmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The “prime-ome”: Towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002
dc.relationBeckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-Activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21(3), 944–953. https://doi.org/10.1105/tpc.108.062158
dc.relationBen-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi race 2. Plant Disease, 81(7), 777–780. https://doi.org/10.1094/PDIS.1997.81.7.777
dc.relationBent, A. F., & Mackey, D. (2007). Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions . Annual Review of Phytopathology, 45(1), 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427
dc.relationBuśko, M., Góral, T., Ostrowska, A., Matysiak, A., Walentyn-Góral, D., & Perkowski, J. (2014). The effect of fusarium inoculation and fungicide application on concentrations of flavonoids (Apigenin, Kaempferol, Luteolin, Naringenin, Quercetin, Rutin, Vitexin) in winter wheat cultivars. American Journal of Plant Sciences, 05(25), 3727–3736. https://doi.org/10.4236/ajps.2014.525389
dc.relationChacón-Fuentes, M., Mutis, A., Bardehle, L., Seguel, I., Urzúa, A., & Quiroz, A. (2019). Decrease of flavonol synthase enzymatic activity in ugni molinae turcz due to the domestication process. Ciencia e Investigacion Agraria, 46(1), 30–39. https://doi.org/10.7764/rcia.v46i1.1955
dc.relationChanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K. T., Gao, Q. M., … Kachroo, P. (2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 43(5), 421–429. https://doi.org/10.1038/ng.798
dc.relationChaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., … Shah, J. (2012). An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant Journal, 71(1), 161–172. https://doi.org/10.1111/j.1365-313X.2012.04981.x
dc.relationChen, F., Ma, R., & Chen, X.-L. (2019). Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites, 9(8), 169. https://doi.org/10.3390/metabo9080169
dc.relationChen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8(2), 93–103. https://doi.org/10.1038/nrg1990
dc.relationChoo, T. M. (2006). Breeding barley for resistance to Fusarium head blight and mycotoxin accumulation. In Plant Breeding Reviews (6th ed., pp. 125–169). John Wiley & Sons
dc.relationConrath, U., Thulke, O., Katz, V., Schwindling, S., & Kohler, A. (2001). Priming as a mechanism in induced systemic resistance of plants. European Journal of Plant Pathology, 107(1), 113–119. https://doi.org/10.1023/A:1008768516313
dc.relationConrath, Uwe. (2009). Chapter 9 Priming of Induced Plant Defense Responses. In Advances in Botanical Research (1st ed., Vol. 51, pp. 361–395). Elsevier Ltd. https://doi.org/10.1016/S0065-2296(09)51009-9
dc.relationConrath, Uwe, Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., … Mauch-Mani, B. (2006). Priming: Getting Ready for Battle Prime. Molecular Plant-Microbe Interactions MPMI, 19(10), 1062–1071. https://doi.org/10.1094/MPMI
dc.relationCurir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.x
dc.relationCurir, P., Lanzotti, V., Dolci, M., Dolci, P., Pasini, C., & Tollin, G. (2003). Purification and properties of a new S-adenosyl-L-methionine:flavonoid 4′-O-methyltransferase from carnation (Dianthus caryophyllus L.). European Journal of Biochemistry, 270(16), 3422–3431. https://doi.org/10.1046/j.1432-1033.2003.03729.x
dc.relationCurir, P, Marchesini, A., Danieli, B., & Mariani, F. (1996). 3-hydroxyacetophenone in carnations is a phytoanticipin active against Fusarium oxysporum f. sp. dianthi. Phytochemistry, 41(2), 447–450. https://doi.org/10.1016/0031-9422(95)00603-6
dc.relationCurir, Paolo, Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)00488-X
dc.relationDao, T. T. H., Linthorst, H. J. M., & Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10(3), 397–412. https://doi.org/10.1007/s11101-011-9211-7
dc.relationDavière, J. M., Langin, T., & Daboussi, M. J. (2001). Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genetics and Biology, 34(3), 177–192. https://doi.org/10.1006/fgbi.2001.1296
dc.relationDesta, K. T., Shin, S. C., Shim, J., Kim, G., Shin, S. C., & El-Aty A M. (2016). Flavonoid variations in pathogen-infected plants flavonoid variations in pathogen-infected plants. Frontiers in Natural Products Chemistry, 2(August), 3–49.
dc.relationDewick, P. (2002). Medicinal Natural Products: A Biosynthetic Approach. Pharmaceutical Sciences (2nd ed., Vol. 0471496405). England. https://doi.org/10.1016/j.jbiosc.2010.01.005
dc.relationDhawale, S., Souciet, G., & Kuhn, D. N. (1989). Increase of chalcone synthase mrna in pathogen-inoculated soybeans with race-specific resistance is different in leaves and roots. Plant Physiology, 91(3), 911–916. https://doi.org/10.1104/pp.91.3.911
dc.relationDi Pietro, A., Madrid, M., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x
dc.relationDixon, R. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847.
dc.relationDowney, M., Harvey, J., & Robinson, S. (2003). Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 9, 110–121.
dc.relationDubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010, October). MYB transcription factors in Arabidopsis. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2010.06.005
dc.relationFalcone, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(September), 1–16. https://doi.org/10.3389/fpls.2012.00222
dc.relationFeng, W., Hao, Z., & Li, M. (2017). Isolation and Structure Identification of Flavonoids. Flavonoids - From Biosynthesis to Human Health. https://doi.org/10.5772/67810
dc.relationFerrer, J. L., Austin, M. B., Stewart, C., & Noel, J. P. (2008, March). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2007.12.009
dc.relationFerrer, J. L., Jez, J. M., Bowman, M. E., Dixon, R. A., & Noel, J. P. (1999). Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature America Inc., 6(8), 775–784. https://doi.org/10.1038/11553
dc.relationFiehn, O. (2002). Metabolomics - The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. https://doi.org/10.1023/A:1013713905833
dc.relationofana, B., McNally, D. J., Labbé, C., Boulanger, R., Benhamou, N., Séguin, A., & Bélanger, R. R. (2002). Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiological and Molecular Plant Pathology, 61(2), 121–132. https://doi.org/10.1006/pmpp.2002.0420
dc.relationForkmann, G., & Martens, S. (2001). Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology. https://doi.org/10.1016/S0958-1669(00)00192-0
dc.relationFukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., & Nomoto, K. (2003). A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry, 63(1), 15–23. https://doi.org/10.1016/S0031-9422(02)00684-2
dc.relationGaleotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001
dc.relationGaleotti, F., Barile, E., Lanzotti, V., Dolci, M., & Curir, P. (2008). Quantification of major flavonoids in carnation Tissues (Dianthus caryophyllus) as a Tool for Cultivar Discrimination. Z Naturforsch, 63, 161–168.
dc.relationGarcés de Granada, E., Martha, O. D. A., Bautista, G. R., & Valencia, H. (2001). Fusarium oxysporum. El hongo que nos falta conocer. Acta Biológica Colombiana, 6(1), 7–26. https://doi.org/10.1094/PHYTO.2001.91.5.449
dc.relationGill, U. S., Uppalapati, S. R., Gallego-Giraldo, L., Ishiga, Y., Dixon, R. A., & Mysore, K. S. (2018). Metabolic flux towards the (iso)flavonoid pathway in lignin modified alfalfa lines induces resistance against Fusarium oxysporum f. sp. medicaginis. Plant Cell and Environment, 41(9), 1997–2007. https://doi.org/10.1111/pce.13093
dc.relationGozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61(51), 12473–12491. https://doi.org/10.1021/jf404156x
dc.relationGutha, L. R., Casassa, L. F., Harbertson, J. F., & Naidu, R. A. (2010). Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biology, 10, 187. https://doi.org/10.1186/1471-2229-10-187
dc.relationHarborne, J. B. (1990). Role of secondary metabolites in chemical defence mechanisms in plants. Ciba Foundation Symposium, 154(Haslam 1986), 126–139. https://doi.org/10.1002/9780470514009.ch10
dc.relationHarborne, J., & Williams, C. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504.
dc.relationHeller, W., & Forkmann, G. (2013). Biosynthesis of flavonoids. In The Flavonoids: Advances in Research since 1986. https://doi.org/10.1201/9780203736692
dc.relationHoang, V. L. T., Innes, D. J., Shaw, P. N., Monteith, G. R., Gidley, M. J., & Dietzgen, R. G. (2015). Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics, 16(1), 1–12. https://doi.org/10.1186/s12864-015-1784-x
dc.relationHorbach, R., Navarro-Quesada, A. R., Knogge, W., & Deising, H. B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168(1), 51–62. https://doi.org/10.1016/j.jplph.2010.06.014
dc.relationJez, J. M., Bowman, M. E., Dixon, R. A., & Noel, J. P. (2000). Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Structural Biology, 7(9), 786–791. https://doi.org/10.1038/79025
dc.relationJez, J. M., & Noel, J. P. (2002). Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. Journal of Biological Chemistry, 277(2), 1361–1369. https://doi.org/10.1074/jbc.M109224200
dc.relationJung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89–91. https://doi.org/10.1126/science.1170025
dc.relationKachroo, P., & Kachroo, A. (2018, May 9). Plants Pack a Quiver Full of Arrows. Cell Host and Microbe. Cell Press. https://doi.org/10.1016/j.chom.2018.04.014
dc.relationKhlestkina, E. (2013). The adaptive role of flavonoids: Emphasis on cereals. Cereal Research Communications, 41(2), 185–198. https://doi.org/10.1556/CRC.2013.0004
dc.relationKim, D. H., Park, G. S., Nile, A. S., Kwon, Y. D., Enkhtaivan, G., & Nile, S. H. (2019). Utilization of Dianthus superbus L and its bioactive compounds for antioxidant, anti-influenza and toxicological effects. Food and Chemical Toxicology, 125, 313–321. https://doi.org/10.1016/j.fct.2019.01.013
dc.relationKlessig, D. F., Choi, H. W., & Dempsey, D. A. (2018, September 1). Systemic acquired resistance and salicylic acid: Past, present, and future. Molecular Plant-Microbe Interactions. American Phytopathological Society. https://doi.org/10.1094/MPMI-03-18-0067-CR
dc.relationKoo, Y. J., Kim, M. A., Kim, E. H., Song, J. T., Jung, C., Moon, J. K., … Choi, Y. Do. (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 64(1–2), 1–15. https://doi.org/10.1007/s11103-006-9123-x
dc.relationKrolicka, A., Szpitter, A., Gilgenast, E., Romanik, G., Kaminski, M., & Lojkowska, E. (2008). Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme and Microbial Technology, 42(3), 216–221. https://doi.org/10.1016/j.enzmictec.2007.09.011
dc.relationKuc, J. (1982). Immunity t o Plant Disease, 32(11), 854–860.
dc.relationKumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001
dc.relationKumaraswamy, K. G., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S. (2011). Mass Spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). Journal of Chemical Ecology, 37(8), 846–856. https://doi.org/10.1007/s10886-011-9989-1
dc.relationLairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. (2008). Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry, 77(1), 521–555. https://doi.org/10.1146/annurev.biochem.76.061005.092322
dc.relationLanubile, A., Bernardi, J., Battilani, P., Logrieco, A., & Marocco, A. (2012). Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiological and Molecular Plant Pathology, 77(1), 52–59. https://doi.org/10.1016/j.pmpp.2011.12.002
dc.relationLazebnik, J., Frago, E., Dicke, M., & van Loon, J. J. A. (2014). Phytohormone mediation of interactions between herbivores and plant pathogens. Journal of Chemical Ecology, 40(7), 730–741. https://doi.org/10.1007/s10886-014-0480-7
dc.relationLegrand, M., Friting, B., & Hirth, L. (1978). O‐Diphenol O‐methyltransferases of healthy and healthy and Tobacco-Mosaic-Virus-Infected hipersensitive tobaco. Planta|, 144, 101–108.
dc.relationLiu, L., Gregan, S., Winefield, C., & Jordan, B. (2014). From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant, Cell and Environment, 38(5), 905–919. https://doi.org/10.1111/pce.12349
dc.relationLiu, Z., Luan, Y., Li, J., & Yin, Y. (2016). Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea. European Journal of Plant Pathology, 144(3), 607–617. https://doi.org/10.1007/s10658-015-0799-0
dc.relationLuzzatto, T., Golan, A., Yishay, M., Bilkis, I., Ben-Ari, J., & Yedidia, I. (2007). Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. Journal of Agricultural and Food Chemistry, 55(25), 10315–10322. https://doi.org/10.1021/jf072037
dc.relationMa, Dawei, & Constabel, C. P. (2019, March 1). MYB Repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science. Elsevier Ltd. https://doi.org/101016/j.tplants.2018.12.003
dc.relationMa, Dongyun, Sun, D., Wang, C., Li, Y., & Guo, T. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80, 60–66. https://doi.org/10.1016/j.plaphy.2014.03.024
dc.relationMaffei, M. E., Arimura, G. I., & Mithöfer, A. (2012, November). Natural elicitors, effectors and modulators of plant responses. Natural Product Reports. https://doi.org/10.1039/c2np20053h
dc.relationManosalva, P. M., Park, S. W., Forouhar, F., Tong, L., Fry, W. E., & Klessig, D. F. (2010). Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Molecular Plant-Microbe Interactions, 23(9), 1151–1163. https://doi.org/10.1094/MPMI-23-9-1151
dc.relationMartinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., … Conrath, U. (2016). Recognizing plant defense priming. Trends in Plant Science, 21(10), 818–822. https://doi.org/10.1016/j.tplants.2016.07.009
dc.relationMartinez, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Universidad Nacional de Colombia.
dc.relationMatern, U. (1994). Dianthus Species (Carnation): In Vitro culture and the biosynthesis of dianthalexin and other secondary metabolites (pp. 170–184). https://doi.org/10.1007/978-3-662-30369-6_12
dc.relationMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: an adaptive part of induced resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
dc.relationMeneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158. https://doi.org/10.1016/j.seppur.2013.02.015
dc.relationMichielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.
dc.relationMierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240–16265. https://doi.org/10.3390/molecules191016240
dc.relationMishina, T. E., & Zeier, J. (2007). Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal, 50(3), 500–513. https://doi.org/10.1111/j.1365-313X.2007.03067.
dc.relationMonteiro, M. S., Carvalho, M., Bastos, M. L., & Guedes de Pinho, P. (2013). Metabolomics analysis for biomarker discovery: advances and challenges. Current Medicinal Chemistry, 20(2), 257–271. https://doi.org/10.2174/092986713804806621
dc.relationMorkunas, I., Narona, D., Nowak, W., Samardakiewicz, S., & Remlein-Starosta, D. (2011). Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. Journal of Plant Physiology, 168(5), 424–433. https://doi.org/10.1016/j.jplph.2010.08.017
dc.relationMozgová, I., Wildhaber, T., Liu, Q., Abou-Mansour, E., L’Haridon, F., Métraux, J. P., … Hennig, L. (2015). Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants, 1. https://doi.org/10.1038/nplants.2015.127
dc.relationNakayama, M., Koshioka, M., Yoshida, H., Kan, Y., Fukui, Y., Koike, A., & Yamaguchi, M. A. (2000). Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry, 55(8), 937–939. https://doi.org/10.1016/S0031-9422(00)00263-6
dc.relationNamdeo, a. G. (2007). Plant Cell Elicitation for production of secondary metabolites : a review. Pharmacognosy Reviews, 1(1), 69–79. https://doi.org/10.1016/S0168-9452(01)00490-3
dc.relationNávarová, H., Bernsdorff, F., Doring, A.-C., & Zeier, J. (2015). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24(12), 5123–5141.
dc.relationNiemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054
dc.relationNiemann, Gerard J., Liem, J., van der Kerk-van Hoof, A., & Niessen, W. M. A. (1992). Phytoalexins, benzoxazinones, N-aroylanthranilates and N-aroylanilines, from Fusarium-infected carnation stems. Phytochemistry, 31(11), 3761–3767. https://doi.org/10.1016/S0031-9422(00)97523-X
dc.relationOliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Phytochemistry Letters Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152–158. https://doi.org/10.1016/j.phytol.2015.12.011
dc.relationOrozco, M., Garces, E., & Arbelaez-Torres, G. (1997). Respuesta de variedades de clavel a al inoculación con Fusarium oxysporum f.sp. dianthi y Phialo´hora cinerescens: producción de fitoalexinas. Agronomia Colombiana, XIV, 72–86.
dc.relationPandey, A., Misra, P., & Kumar, P. (2015). Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Reports, 34(9), 1515–1528. https://doi.org/10.1007/s00299-015-1803-z
dc.relationPatra, B., Schluttenhofer, C., Wu, Y., Pattanaik, S., & Yuan, L. (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1829(11), 1236–1247. https://doi.org/10.1016/j.bbagrm.2013.09.006
dc.relationPersoh, D. (2015). Plant-associated fungal communities in the light of meta ’ omics. Fungical Diversity, 75, 1–25. https://doi.org/10.1007/s13225-015-0334-9
dc.relationPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research (Vol. 29).
dc.relationPieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
dc.relationPonchet, M., Martin-Tanguy, J., Marais, A., & Poupet, A. (1984). Dianthramides A and B, two N-benzoylanthranilic acid derivatives from elicited tissues of Dianthus caryophyllus. Phytochemistry, 23(9), 1901–1903. https://doi.org/10.1016/S0031-9422(00)84937-7
dc.relationPozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcón-Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53(368), 525–534. https://doi.org/10.1093/jexbot/53.368.525
dc.relationRamirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M., & Hirt, H. (2018, September 1). Plant immunity: from signaling to epigenetic control of defense. Trends in Plant Science. Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.06.004
dc.relationRavensdale, M., Rocheleau, H., Wang, L., Nasmith, C., Ouellet, T., & Subramaniam, R. (2014). Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Molecular Plant Pathology, 15(9), 948–956. https://doi.org/10.1111/mpp.12145
dc.relationRoessner, U., & Bowne, J. (2009, April). What is metabolomics all about? BioTechniques. https://doi.org/10.2144/000113133
dc.relationSabeena Farvin, K. H., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2–3), 1670–1681. https://doi.org/10.1016/j.foodchem.2012.10.078
dc.relationSaccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. Springer New York LLC. https://doi.org/10.1007/s11306-013-0598-6
dc.relationSalvioli, A., & Bonfante, P. (2013). Plant Science Systems biology and “ omics ” tools : A cooperation for next-generation mycorrhizal studies. Plant Science, 203–204, 107–114. https://doi.org/10.1016/j.plantsci.2013.01.001
dc.relationSarroco, S., Falaschi, N., Vergara, F., Nicoletti, F., & Vannacci, G. (2007). Use Of Fusarium oxysporum F. Sp. dianthi transformed with marker genes to follow colonization of carnation roots, 89(1), 47–54.
dc.relationSchenk, S. T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., … Schikora, A. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26(6), 2708–2723.
dc.relationSchijlen, E. G. W. M., Ric De Vos, C. H., Van Tunen, A. J., & Bovy, A. G. (2004). Modification of flavonoid biosynthesis in crop plants. Phytochemistry. https://doi.org/10.1016/j.phytochem.2004.07.028
dc.relationSchymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105
dc.relationSingh, P., Yekondi, S., Chen, P. W., Tsai, C. H., Yu, C. W., Wu, K., & Zimmerli, L. (2014). Environmental history modulates Arabidopsis pattern-triggered immunity in a histone acetyltransferase1-dependent manner. Plant Cell, 26(6), 2676–2688. https://doi.org/10.1105/tpc.114.123356
dc.relationSoto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana (Vol. 30).
dc.relationSpoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141
dc.relationStich, K., Eidenberger, T., & Wurst, F. (1992). Flavonol synthase activity and the regulation of flavonol and anthocyanin biosynthesis during flower development in dianthus caryophyllus L. (carnation). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 47(7–8), 553–560. https://doi.org/10.1515/znc-1992-7-811
dc.relationStracke, R., Jahns, O., Keck, M., Tohge, T., Niehaus, K., Fernie, A. R., & Weisshaar, B. (2010). Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytologist, 188(4), 985–1000. https://doi.org/10.1111/j.1469-8137.2010.03421.x
dc.relationTapia, C., & Amaro, J. (2014). Fusarium spp. Revista Chilena de Infectología, 31(1), 85–86. https://doi.org/10.4067/S0716-10182005000100001
dc.relationThakur, M., & Sohal, B. S. (2013). Role of Elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry, 2013, 1–10. https://doi.org/10.1155/2013/762412
dc.relationTreutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7(6), 581–591. https://doi.org/10.1055/s-2005-873009
dc.relationTreutter, Dieter. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4(3), 147–157. https://doi.org/10.1007/s10311-006-0068-8
dc.relationvan der Does, H. C., Duyvesteijn, R. G. E., Goltstein, P. M., van Schie, C. C. N., Manders, E. M. M., Cornelissen, B. J. C., & Rep, M. (2008). Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology, 45(9), 1257–1264. https://doi.org/10.1016/j.fgb.2008.06.002
dc.relationVan Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5602–5607. https://doi.org/10.1073/pnas.0510213103
dc.relationVan Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology, 81(7), 728–734.
dc.relationVan Pelt-Heerschap, H., & Smit-Bakker, O. (1999). Analysis of defense-related proteins in stem tissue of carnation inoculated with a virulent and avirulent race of Fusarium oxysporum f.sp. dianthi. European Journal of Plant Pathology, 105(7), 681–691. https://doi.org/10.1023/A:1008767830202
dc.relationVanEtten, H., Temporini, E., & Wasmann, C. (2001). Phytoalexin (and phytoanticipin) tolerance as a virulence trait: Why is it not required by all pathogens? Physiological and Molecular Plant Pathology. Academic Press. https://doi.org/10.1006/pmpp.2001.0350
dc.relationVargas, L. (2019). APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryopyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.
dc.relationVenisse, J. S., Malnoy, M., Faize, M., Paulin, J. P., & Brisset, M. N. (2002). Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions, 15(12), 1204–1212. https://doi.org/10.1094/MPMI.2002.15.12.1204
dc.relationVenturini, G., Babazadeh, L., Casati, P., Pilu, R., Salomoni, D., & Toffolatti, S. L. (2016). Assessing pigmented pericarp of maize kernels as possible source of resistance to Fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. International Journal of Food Microbiology, 227, 56–62. https://doi.org/10.1016/j.ijfoodmicro.2016.03.022
dc.relationVilla-Martínez, A., Pérez-Leal, R., Morales-Morales, H., Basurto-Sotelo, M., Soto-Parra, J., & Martínez-Escudero, E. (2015). Situación actual en el control de Fusarium spp . y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronomica, 64(2), 194–205. https://doi.org/http://dx.doi.org/10.15446/acag.v64n2.43358
dc.relationVogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3(1), 2–20. https://doi.org/10.1093/mp/ssp106
dc.relationVom Endt, D., Kijne, J. W., & Memelink, J. (2002). Transcription factors controlling plant secondary metabolism: What regulates the regulators? Phytochemistry, 61(2), 107–114. https://doi.org/10.1016/S0031-9422(02)00185-1
dc.relationVos, I. A., Pieterse, C. M. J., & Van Wees, S. C. M. (2013). Costs and benefits of hormone-regulated plant defences. Plant Pathology, 62(S1), 43–55. https://doi.org/10.1111/ppa.12105
dc.relationWang, P., Sandrock, R. W., & Vanetten, H. D. (1999). Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide but does not affect its pathogenicity on the cyanogenic plant sorghum. Fungal Genetics and Biology, 28(2), 126–134. https://doi.org/10.1006/fgbi.1999.1167
dc.relationWang, W., Wang, H. L., Wan, S. B., Zhang, J. H., Zhang, P., Zhan, J. C., & Huang, W. D. (2012). Chalcone isomerase in grape vine: Gene expression and localization in the developing fruit. Biologia Plantarum, 56(3), 545–550. https://doi.org/10.1007/s10535-011-0216-2
dc.relationWeston, L. A., & Mathesius, U. (2013). Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy. Journal of Chemical Ecology, 39(2), 283–297. https://doi.org/10.1007/s10886-013-0248-5
dc.relationWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014a). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(November), 1–14. https://doi.org/10.3389/fpls.2014.00655
dc.relationWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014b, November 21). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science. Frontiers Research Foundation. https://doi.org/10.3389/fpls.2014.00655
dc.relationWinkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model, 126(June), 485–493.
dc.relationWinkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218–223. https://doi.org/10.1016/S1369-5266(02)00256-X
dc.relationWray, G. A., Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V., & Romano, L. A. (2003). The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution, 20(9), 1377–1419. https://doi.org/10.1093/molbev/msg140
dc.relationXu, F., Li, L., Zhang, W., Cheng, H., Sun, N., Cheng, S., & Wang, Y. (2012). Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Molecular Biology Reports, 39(3), 2285–2296. https://doi.org/10.1007/s11033-011-0978-9
dc.relationXu, W., Dubos, C., & Lepiniec, L. (2015, March 1). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science. Elsevier Ltd. https://doi.org/10.1016/j.tplants.2014.12.001
dc.relationZhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012, January 21). Modern analytical techniques in metabolomics analysis. Analyst. https://doi.org/10.1039/c1an15605e
dc.relationZhang, Z., Liao, L., Moore, J., Wu, T., & Wang, Z. (2009). Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113(1), 160–165. https://doi.org/10.1016/j.foodchem.2008.07.061
dc.relationZhao, J., & Dixon, R. A. (2010). The “ins” and “outs” of flavonoid transport. Trends in Plant Science, 15(2), 72–80. https://doi.org/10.1016/j.tplants.2009.11.006
dc.relationZoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., & Mueller, M. J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: Biogenesis of pimelic and azelaic acid. Plant Physiology, 160(1), 365–378. https://doi.org/10.1104/pp.112.202846
dc.relationZubieta, C., He, X. Z., Dixon, R. a, & Noel, J. P. (2001). Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nature Structural Biology, 8(3), 271–279. https://doi.org/10.1038/85029
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEfecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con fusarium oxysporum f sp. dianthi
dc.typeOtro


Este ítem pertenece a la siguiente institución