dc.contributorLópez Vallejo, Fabián Harvey
dc.contributorPrieto Rodríguez, Juliet Angélica
dc.contributorProductos Naturales Vegetales Bioactivos y Quimica EcoIogica
dc.creatorOsorio Murillo, Luis Alberto
dc.date.accessioned2021-05-31T21:22:08Z
dc.date.available2021-05-31T21:22:08Z
dc.date.created2021-05-31T21:22:08Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79579
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa diabesidad, término acuñado para referirse a la íntima relación entre las enfermedades diabetes tipo 2 y obesidad, se ha convertido en una problemática de carácter mundial sin distinguir entre poblaciones adultas e infantiles. A nivel global se reporta que, en los últimos años, el 44 % de los casos de diabetes tipo 2, el 23 % de cardiopatía isquémica y cerca del 41 % de los reportes de cáncer son atribuibles al sobrepeso o la obesidad. De allí que surja la necesidad de emprender investigaciones encaminadas en la búsqueda de tratamientos polifuncionales para obesidad y diabetes tipo II por la alta relación de estas patologías con comorbilidades de diversa índole. Dentro de las estrategias de búsqueda de nuevos tratamientos para obesidad y diabetes tipo 2, se encuentra la inhibición de enzimas digestivas secretadas por el páncreas como α-glucosidasa (AG), α-amilasa (AA) y lipasa pancreática (LP), tres blancos terapéuticos que están ampliamente descritos a nivel estructural y funcional, lo que permite usarlos para el desarrollo de estudios in silico e in vitro. En este sentido, los productos naturales constituyen una de las fuentes prometedoras para emprender este tipo de estudios, debido a que están constituidos por sustancias con amplia diversidad química y múltiples propiedades biológicas, hecho que representa una ventaja para encontrar sustancias con acción multidiana. Existe una amplia evidencia de la acción de productos naturales de diversas fuentes en aproximaciones in silico de lo que significaría una inhibición de los blancos moleculares descritos anteriormente. En el presente trabajo se realizó un cribado virtual por acoplamiento molecular en los sitios catalíticos de las enzimas AG, AA y LP en la búsqueda de compuestos con una alta interacción en los sitios catalíticos de las dianas biológicas, empleando una base de datos de productos naturales obtenida a partir de librerías de productos naturales comerciales depositadas en la base de datos Zinc15 (Zinc15.docking.org). Para los estudios de cribado virtual, por acoplamiento molecular, se utilizaron tres programas AutoDock 4.2, AutoDock Vina 1.1.2 y Glide. Para la interpretación y análisis de resultados se utilizaron los programas Pymol y Free Maestro®. Los compuestos con potencial de inhibición polifuncional sobre los blancos moleculares fueron seleccionados por medio de un método de consenso y consolidación, posteriormente, a partir de un ensayo experimental preliminar con LP se identificó el potencial de las moléculas; y como último punto, aquellas moléculas con actividad polifuncional se tomaron como insumo para postular un modelo de farmacóforo cualitativo que explique la relación estructura actividad. Aquellas moléculas que resultaron promisorias pertenecen a diferentes categorías de metabolitos, interesantemente con mejores comportamientos que las moléculas de referencia frente a las enzimas de estudio, de esta manera se postula un grupo de moléculas con alta probabilidad de efectuar acción polifuncional.
dc.description.abstractDiabesity, a term coined to refer to the intimate relationship between type 2 diabetes diseases and obesity, has become a worldwide problem without distinguishing between adult and child populations. At a global level, it is reported that, in recent years, 44 % of type 2 diabetes cases, 23 % of ischemic heart disease, and about 41 % of cancer reports are attributable to overweight or obesity. Hence, the need arises to undertake research aimed at the search for polyfunctional treatments for obesity and type 2 diabetes due to the high relationship of these pathologies with comorbidities of various kinds. Among the search strategies for new treatments for obesity and type 2 diabetes, is the inhibition of digestive enzymes secreted by the pancreas such as α-glucosidase (AG), α-amylase (AA) and pancreatic lipase (LP), three targets therapeutics that are widely described at the structural and functional level, which allows them to be used for the development of in silico and in vitro studies. In this sense, natural products constitute one of the promising sources to undertake this type of study, because they are made up of substances with wide chemical diversity and multiple biological properties, a fact that represents an advantage in finding substances with multitarget action. There is ample evidence of the action of natural products from various sources in in silico approximations of what an inhibition of the molecular targets described above would mean. In the present work, a virtual screening was carried out by molecular docking in the catalytic sites of the enzymes AG, AA and LP in the search for compounds with high interactions in the catalytic sites of the biological targets, using a database of natural products obtained from libraries of commercial natural products deposited in the Zinc15 database (Zinc15.docking.org). For the virtual screening studies, by molecular docking, three programs AutoDock 4.2, AutoDock Vina 1.1.2 and Glide were used. For the interpretation and analysis of results, the Pymol and Free Maestro® programs were used. Compounds with polyfunctional inhibition potential on molecular targets were selected by means of a consensus and consolidation method. Later, from a preliminary experimental test with LP, the potential of the molecules was identified; and as a last point, those molecules with polyfunctional activity were taken as input to postulate a qualitative pharmacophore model that explains the structure-activity relationship. Those molecules that were promising to belong to different categories of metabolites, interestingly with better behaviors than the reference molecules compared to the study enzymes, in this way a group of molecules with a high probability of carrying out polyfunctional action is postulated.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdams, R., Geissman, T. A., & Edwards, J. D. (1960). Gossypol, A Pigment of Cottonseed. Chemical Reviews, 60(6), 555–574. https://doi.org/10.1021/cr60208a002
dc.relationAdib, M., Peytam, F., Rahmanian-Jazi, M., Mahernia, S., Bijanzadeh, H. R., Jahani, M., … Larijani, B. (2018). New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. European Journal of Medicinal Chemistry, 155, 353–363. https://doi.org/10.1016/j.ejmech.2018.05.046
dc.relationAdizov, S. M., Tashkhodzhaev, B., Upadhyay, P. P., Yuldashev, P. K., & Mirzaeva, M. M. (2018). Alkyl- and Acyl-Derivatives of Copsinine and Pseudocopsinine and Their Crystal Structures. Chemistry of Natural Compounds, 54(1), 147–152. https://doi.org/10.1007/s10600-018-2278-2
dc.relationAgis-Torres, A., Sollhuber, M., Fernandez, M., & Sanchez-Montero, J. M. (2014). Multi-Target-Directed Ligands and other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Current Neuropharmacology, 12(1), 2–36. https://doi.org/10.2174/1570159x113116660047
dc.relationAlam, M. B., An, H., Ra, J. S., Lim, J. young, Lee, S. H., Yoo, C. Y., & Lee, S. H. (2018). Gossypol from cottonseeds ameliorates glucose uptake by mimicking insulin signaling and improves glucose homeostasis in mice with streptozotocin-induced diabetes. Oxidative Medicine and Cellular Longevity, 2018(Dm). https://doi.org/10.1155/2018/5796102
dc.relationAldayel, T. S., Grace, M. H., Lila, M. A., Yahya, M. A., Omar, U. M., & Alshammary, G. (2020). LC-MS characterization of bioactive metabolites from two Yemeni Aloe spp. with antioxidant and antidiabetic properties. Arabian Journal of Chemistry, 13(4), 5040–5049. https://doi.org/10.1016/j.arabjc.2020.02.003
dc.relationAloulou, A., Rodriguez, J. A., Fernandez, S., van Oosterhout, D., Puccinelli, D., & Carrière, F. (2006). Exploring the specific features of interfacial enzymology based on lipase studies. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1761(9), 995–1013. https://doi.org/10.1016/j.bbalip.2006.06.009
dc.relationAmerican Diabetes Association. (2020). Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(January), S14–S31. https://doi.org/10.2337/dc20-S002
dc.relationAnighoro, A., & Bajorath, J. (2018). A Hybrid Virtual Screening Protocol Based on Binding Mode Similarity. Rational Drug Design, 1824, 165–175.
dc.relationAschner, P. (2010). Epidemiología de la diabetes en Colombia. Avances En Diabetologia, 26(2), 95–100. https://doi.org/10.1016/S1134-3230(10)62005-4
dc.relationBade, R., Chan, H. F., & Reynisson, J. (2010). Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. European Journal of Medicinal Chemistry, 45(12), 5646–5652. https://doi.org/10.1016/j.ejmech.2010.09.018
dc.relationBansal, G., Thanikachalam, P. V., Maurya, R. K., Chawla, P., & Ramamurthy, S. (2020). An overview on medicinal perspective of thiazolidine-2,4-dione: A remarkable scaffold in the treatment of type 2 diabetes. Journal of Advanced Research, 23, 163–205. https://doi.org/10.1016/j.jare.2020.01.008
dc.relationBansal, Y., & Silakari, O. (2014). Multifunctional compounds: Smart molecules for multifactorial diseases. European Journal of Medicinal Chemistry, 76, 31–42. https://doi.org/10.1016/j.ejmech.2014.01.060
dc.relationBasile, A., Rigano, D., Loppi, S., Di Santi, A., Nebbioso, A., Sorbo, S., … Bontempo, P. (2015). Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International Journal of Molecular Sciences, 16(4), 7861–7875. https://doi.org/10.3390/ijms16047861
dc.relationBerti, F., Forzato, C., Nitti, P., Pitacco, G., & Valentin, E. (2005). A study of the enantiopreference of lipase PS (Pseudomonas cepacia) towards diastereomeric dihydro-5-alkyl-4-hydroxymethyl-2(3H)-furanones. Tetrahedron Asymmetry, 16(6),1091–1102. https://doi.org/10.1016/j.tetasy.2005.01.036
dc.relationBhadoria, A., Sahoo, K., Sahoo, B., Choudhury, A., Sufi, N., & Kumar, R. (2015). Childhood obesity: Causes and consequences. Journal of Family Medicine and Primary Care, 4(2), 187. https://doi.org/10.4103/2249-4863.154628
dc.relationBirari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today, 12(19–20), 879–889. https://doi.org/10.1016/j.drudis.2007.07.024
dc.relationBonora, E. (2007). Antidiabetic medications in overweight/obese patients with type 2 diabetes: Drawbacks of current drugs and potential advantages of incretin-based treatment on body weight. International Journal of Clinical Practice, 61(SUPPL. 154), 19–28. https://doi.org/10.1111/j.1742-1241.2007.01441.x
dc.relationBoussageon, R., Supper, I., Bejan-Angoulvant, T., Kellou, N., Cucherat, M., Boissel, J. P., … Cornu, C. (2012). Reappraisal of metformin efficacy in the treatment of type 2 diabetes: A meta-analysis of randomised controlled trials. PLoS Medicine, 9(4). https://doi.org/10.1371/journal.pmed.1001204
dc.relationBrás, N. F., Santos-Martins, D., Fernandes, P. A., & Ramos, M. J. (2018). Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations. Journal of Physical Chemistry B, 122(14), 3889–3899. https://doi.org/10.1021/acs.jpcb.8b01321
dc.relationBrayer, G. D., Luo, Y., & Withers, S. G. (1995). The structure of human pancreatic α‐amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Science, 4(9), 1730–1742. https://doi.org/10.1002/pro.5560040908
dc.relationBuchholz, T., & Melzig, M. F. (2015). Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Medica, 81(10), 771–783. https://doi.org/10.1055/s-0035-1546173
dc.relationBujjirao, G., & Kumar, P. K. R. (2013). Anti-Obese Therapeutics From Medicinal Plants-a Review. International Jornal of Bioassays, 02(10), 1399–1406.
dc.relationCaldasa, F., Filho, F., Facundo, H., Alves, R., Dos Santos, F., da Silva, G., … Silva, T. (2019). COMPOSIÇÃO QUÍMICA, ATIVIDADE ANTIRADICALAR E ANTIMICROBIANA DO PÓLEN APÍCOLA DE FABACEAE. 42(1), 49–56.
dc.relationCao, R., & Wang, Y. (2015). In Silico Study of Polypharmacology with Ligand-based Interaction Fingerprint. Receptors & Clinical Investigation, 2–5. https://doi.org/10.14800/rci.976
dc.relationCasas-Godoy, L., Duquesne, S., & Bordes, F. (2012). Lipases and Phospholipases. Methods Mol Biol, 861, 3–30. https://doi.org/10.1007/978-1-61779-600-5
dc.relationCharlton, M. (2009). Obesity, Hyperlipidemia, and Metabolic Syndrome. Liver Transplantation, 15(5), 83–89. https://doi.org/10.1002/lt
dc.relationChen, K. Y., Chang, S. Sen, & Chen, C. Y. C. (2012). In Silico Identification of Potent Pancreatic Triacylglycerol Lipase Inhibitors from Traditional Chinese Medicine. PLoS ONE, 7(9), 1–11. https://doi.org/10.1371/journal.pone.0043932
dc.relationChoi, S. R., Pradhan, A., Hammond, N. L., Chittiboyina, A. G., Tekwani, B. L., & Avery, M. A. (2007). Design, synthesis, and biological evaluation of Plasmodium falciparum lactate dehydrogenase inhibitors. Journal of Medicinal Chemistry, 50(16), 3841–3850. https://doi.org/10.1021/jm070336k
dc.relationChung, I. M., Siddiqui, N. A., Kim, S. H., Nagella, P., Khan, A. A., Ali, M., & Ahmad, A. (2017). New constituents triterpene ester and sugar derivatives from Panax ginseng Meyer and their evaluation of antioxidant activities. Saudi Pharmaceutical Journal, 25(5), 801–812. https://doi.org/10.1016/j.jsps.2016.12.002
dc.relationColin, D. Y., Deprez-Beauclair, P., Allouche, M., Brasseur, R., & Kerfelec, B. (2008). Exploring the active site cavity of human pancreatic lipase. Biochemical and Biophysical Research Communications, 370(3), 394–398. https://doi.org/10.1016/j.bbrc.2008.03.043
dc.relationConsitt, L. A., Bell, J. A., & Houmard, J. A. (2009). Intramuscular lipid metabolism, insulin action, and obesity. IUBMB Life, 61(1), 47–55. https://doi.org/10.1002/iub.142
dc.relationCsermely, P., Ágoston, V., & Pongor, S. (2005). The efficiency of multi-target drugs: The network approach might help drug design. Trends in Pharmacological Sciences, 26(4), 178–182. https://doi.org/10.1016/j.tips.2005.02.007
dc.relationD’Amico, S., Gerday, C., & Feller, G. (2000). Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene, 253(1), 95–105. https://doi.org/10.1016/S0378-1119(00)00229-8
dc.relationDaneschvar, H. L., Aronson, M. D., & Smetana, G. W. (2016). FDA-Approved Anti-Obesity Drugs in the United States. American Journal of Medicine, 129(8), 879.e1-879.e6. https://doi.org/10.1016/j.amjmed.2016.02.009
dc.relationDe Graaf, C., Kooistra, A. J., Vischer, H. F., Katritch, V., Kuijer, M., Shiroishi, M., … Leurs, R. (2011). Crystal structure-based virtual screening for fragment-like ligands of the human histamine H 1 receptor. Journal of Medicinal Chemistry, 54(23), 8195–8206. https://doi.org/10.1021/jm2011589
dc.relationDe Graaf, C., Rein, C., Piwnica, D., Giordanetto, F., & Rognan, D. (2011). Structure-Based Discovery of Allosteric Modulators of Two Related ClassB G-Protein-Coupled Receptors. ChemMedChem, 6(12), 2159–2169. https://doi.org/10.1002/cmdc.201100317
dc.relationDixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
dc.relationDixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chemical Biology and Drug Design, 67(5), 370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x
dc.relationDridi, K., Amara, S., Bezzine, S., Rodriguez, J. A., Carrière, F., & Gaussier, H. (2013). Partial deletion of β9 loop in pancreatic lipase-related protein 2 reduces enzyme activity with a larger effect on long acyl chain substrates. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1831(7), 1293–1301. https://doi.org/10.1016/j.bbalip.2013.04.010
dc.relationDykun, A. M., Anishchenko, V. N., Redko, A. N., Rybachenko, V. I., & Chotiy, K. Y. (2019). Spectroscopic and quantum chemical study of gossypol imine derivatives. Journal of Molecular Structure, 1179, 289–296. https://doi.org/10.1016/j.molstruc.2018.11.028
dc.relationEgloff, M.-P., Marguet, F., Buono, G., Verger, R., Cambillau, C., & Van Tilbeurgh, H. (1995). A Resolution Structure of the Pancreatic Lipase-Colipase Complex. Biochemistry, 34, 2751–2762.
dc.relationErnst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., & Larsen, S. (2006). Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358(4), 1106–1124. https://doi.org/10.1016/j.jmb.2006.02.056
dc.relationEs-Safi, N. E., Khlifi, S., Kerhoas, L., Kollmann, A., Abbouyi, A. El, & Ducrot, P. H. (2005). Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco. Journal of Natural Products, 68(8), 1293–1296. https://doi.org/10.1021/np0501233
dc.relationFAO, O. de las naciones unidas para la alimentación y la agricultura. (2018). Obesidad y sobrepeso. Retrieved from http://www.fao.org/about/meetings/icn2/preparations/document-detail/es/c/253843/
dc.relationFernández, C. F. (2017). Sedentarismo y mala alimentación dispararon el sobrepeso y la obesidad. El Tiempo. Retrieved from https://www.eltiempo.com/vida/salud/cifras-de-la-obesidad-y-la-desnutricion-en-colombia-153944
dc.relationFerreyra, S., Bottini, R., & Fontana, A. (2018). Caracterización de la composición fenólica de subproductos leñosos de la vitivinicultura y su potencialidad como fuente de compuestos bioactivos.
dc.relationFriesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
dc.relationFriesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
dc.relationGarcía Bello, L., Torales Salinas, J., Giménez, M. B., Flores, L. E., Gómez de Ruiz, N., & Centurión, O. A. (2016). The risk of those who care for risk: FIDRISK in healthcare personnel. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2312-3893/2016.03(02)71-076
dc.relationGavin, J. R. I., Alberti, M., Davidson, M. B., DeFronzo, R. A., Drash, A., Gabbe, S. G., … Stern, M. P. (2002). Report of the Expert Committee on the DESCRIPTION OF DIABETES CATEGORIES OF GLUCOSE. Diabetes Care, 25, 5–20.
dc.relationGhani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European Journal of Medicinal Chemistry, Vol. 103, pp. 133–162. https://doi.org/10.1016/j.ejmech.2015.08.043
dc.relationGong, L., Yu, L., Gong, X., Wang, C., Hu, N., Dai, X., … Li, Y. (2020). Exploration of anti-inflammatory mechanism of forsythiaside A and forsythiaside B in CuSO4-induced inflammation in zebrafish by metabolomic and proteomic analyses. Journal of Neuroinflammation, 17(1), 1–21. https://doi.org/10.1186/s12974-020-01855-9
dc.relationGoodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated Docking. Journal of Molecular Recognition, 9(November 1995), 1–5.
dc.relationGray, G. M. (1992). Starch digestion and absorption in nonruminants. Journal of Nutrition, 122(1), 172–177. https://doi.org/10.1093/jn/122.1.172
dc.relationGüner, O. (2000). Pharmacophore perception, development, and use in drug design. La Jolla, California: International University Line.
dc.relationHan, Y. T., Chen, X. H., Gao, H., Ye, J. L., & Wang, C. B. (2016). Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta Pharmacologica Sinica, 37(2), 264–275. https://doi.org/10.1038/aps.2015.115
dc.relationHarger, A., Stemmer, K., Tschöp, M. H., & Müller, T. D. (2019). Incretin-based co- and tri-agonists: Innovative polypharmacology for the treatment of obesity and diabetes. Internist, 60(9), 895–902. https://doi.org/10.1007/s00108-019-0649-9
dc.relationHolt, R. R., Lazarus, S. A., Cameron Sullards, M., Zhu, Q. Y., Schramm, D. D., Hammerstone, J. F., … Keen, C. L. (2002). Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. American Journal of Clinical Nutrition, 76(4), 798–804. https://doi.org/10.1093/ajcn/76.4.798
dc.relationHouston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53(2), 384–390. https://doi.org/10.1021/ci300399w
dc.relationICBF. (2015). Encuesta Nacional de la Situación Nutricional – ENSIN 2015 Objetivo.
dc.relationJhong, C. H., Riyaphan, J., Lin, S. H., Chia, Y. C., & Weng, C. F. (2015). Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BioFactors, 41(4), 242–251. https://doi.org/10.1002/biof.1219
dc.relationJin, J. Q., Jiang, C. K., Yao, M. Z., & Chen, L. (2020). Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-66808-x
dc.relationKalra, S. (2013). Diabesity. Recent Advances in Endocrinology., 63(4), 532–534. https://doi.org/10.5840/thought19359415
dc.relationKansal, N., Silakari, O., & Ravikumar, M. (2010). Three dimensional pharmacophore modelling for c-Kit receptor tyrosine kinase inhibitors. European Journal of Medicinal Chemistry, 45(1), 393–404. https://doi.org/10.1016/j.ejmech.2009.09.013
dc.relationKapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171(2), 165–176. https://doi.org/10.1016/j.cbi.2006.12.006
dc.relationKasabri, V., Al-Hallaq, E. K., Bustanji, Y. K., Abdul-Razzak, K. K., Abaza, I. F., & Afifi, F. U. (2017). Antiobesity and antihyperglycaemic effects of adiantum capillus-veneris extracts: In vitro and in vivo evaluations. Pharmaceutical Biology, 55(1), 164–172. https://doi.org/10.1080/13880209.2016.1233567
dc.relationKhedidja, B., & Abderrahman, L. (2011). Selection of orlistat as a potential inhibitor for lipase from Candida species. Bioinformation, 7(3), 125–129. https://doi.org/10.6026/97320630007125
dc.relationKim, J., Yip, M. L. R., Shen, X., Li, H., Hsin, L. Y. C., Labarge, S., … Vaidehi, N. (2012). Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0031004
dc.relationKirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection - What can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3–4), 213–228. https://doi.org/10.1007/s10822-007-9163-6
dc.relationKissane, N. A., & Pratt, J. S. A. (2011). Medical and surgical treatment of obesity. Best Practice and Research: Clinical Anaesthesiology, 25(1), 11–25. https://doi.org/10.1016/j.bpa.2011.01.001
dc.relationKoes, D. R., & Camacho, C. J. (2011). Pharmer: Efficient and Exact Pharmacophore Search David. Journal of Chemical Information and Modeling, 51, 1307–1314. Retrieved from papers2://publication/uuid/C64A5CA7-CF1E-4F44-8265-82137243A6EC
dc.relationKoes, D. R., & Camacho, C. J. (2012). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(W1), 409–414. https://doi.org/10.1093/nar/gks378
dc.relationKondo, N., & Shoji, J. (1975). Studies on the constituents of Himalayan ginseng, Panax ginseng. Chemical Pharmaceutical Bulletin, (43), 2091. Retrieved from http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/
dc.relationKooistra, A. J., Roumen, L., Leurs, R., De Esch, I. J. P., & De Graaf, C. (2013). From heptahelical bundle to hits from the haystack: Structure-based virtual screening for GPCR ligands. In Methods in Enzymology (1st ed., Vol. 522). https://doi.org/10.1016/B978-0-12-407865-9.00015-7
dc.relationKoolman, J., & Röhm, K.-H. (2004). Biomoléculas. In Bioquímica Texto y Atlas (pp. 58–62). Editorial médica Panamericana.
dc.relationKortagere, S., & Ekins, S. (2010). Troubleshooting computational methods in drug discovery. Journal of Pharmacological and Toxicological Methods, 61(2), 67–75. https://doi.org/10.1016/j.vascn.2010.02.005
dc.relationKumar, S., & Pandey, A. k. (2013). Chemistry and Biological Activities of Flavonoids: An Overview Shashank. The Scientific World Journal, 1–16. https://doi.org/10.1201/noe0824727857.ch137
dc.relationLakshmana, S., Chandrasekaran, R., Arjun, H. A., & Anantharaman, P. (2019). In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers, 209(December 2018), 350–355. https://doi.org/10.1016/j.carbpol.2019.01.039
dc.relationLanchero, I. P. (2016). Estudio in silico e in vivo de compuestos inhibidores de la enzima lipasa pancreática: una contribución al reposicionamiento de fármcos antiobesidad.
dc.relationLarsbrink, J., Izumi, A., Hemsworth, G. R., Davies, G. J., & Brumer, H. (2012). Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. Journal of Biological Chemistry, 287(52), 43288–43299. https://doi.org/10.1074/jbc.M112.416511
dc.relationLavecchia, A.; Di Giovanni, C. (2013). Virtual Screening Strategies in Drug Discovery: A Critical Review. Current Medicinal Chemistry, 20(23), 2839–2860.
dc.relationLavie, C. J., McAuley, P. A., Church, T. S., Milani, R. V., & Blair, S. N. (2014). Obesity and cardiovascular diseases: Implications regarding fitness, fatness, and severity in the obesity paradox. Journal of the American College of Cardiology, 63(14), 1345–1354. https://doi.org/10.1016/j.jacc.2014.01.022
dc.relationLem, F. F., Opook, F., Herng, D. L. J., Tyng, C. F., Lawson, F. P., & Na, C. S. (2020). Molecular mechanism of action of repurposed drugs and traditional Chinese medicine used for the treatment of patients infected with COVID-19: A systematic scoping review. MedRxiv, 2020.04.10.20060376. https://doi.org/10.1101/2020.04.10.20060376
dc.relationLlisterri Caro, J. L., & Barrios Alonso, V. (2008). Prevention of the cardiovascular disease in diabetic patients: What is new? Semergen, 34(4), 209–213. https://doi.org/10.1016/S1138-3593(08)71882-3
dc.relationLo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., & Chou, C. J. (2008). Flavonoids for controlling starch digestion: Structural requirements for inhibiting human ??-amylase. Journal of Medicinal Chemistry, 51(12), 3555–3561. https://doi.org/10.1021/jm800115x
dc.relationLombardino, J. G., & Lowe, J. A. (2004). The role of the medicinal chemist in drug discovery - Then and now. Nature Reviews Drug Discovery, 3(10), 853–862. https://doi.org/10.1038/nrd1523
dc.relationLópez-Vallejo, F., Giulianotti, M. A., Houghten, R. A., & Medina-Franco, J. L. (2012). Expanding the medicinally relevant chemical space with compound libraries. Drug Discovery Today, 17(13–14), 718–726. https://doi.org/10.1016/j.drudis.2012.04.001
dc.relationLópez Vallejo, F., Medina Franco, J. L., & Castillo, R. (2006). Diseño de fármacos asistido por computadora. Educación Química, 17(4), 452–457. https://doi.org/10.22201/fq.18708404e.2006.4.66027
dc.relationLu, J. J., Pan, W., Hu, Y. J., & Wang, Y. T. (2012). Multi-target drugs: The trend of drug research and development. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0040262
dc.relationLuyen, N., Tram, L., Hanh, T., Binh, P., Dang, N., Van Minh, C., & Dat, N. (2013). Inhibitors of a-glucosidase, a-amylase and lipase from Chrysanthemum morifolium. Phytochemistry Letters, 6(3), 322–325. https://doi.org/10.1016/j.phytol.2013.03.015
dc.relationMadhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
dc.relationMartinez-Gonzalez, A. I., Díaz-Sánchez, Á. G., De La Rosa, L. A., Vargas-Requena, C. L., Bustos-Jaimes, I., & Alvarez-Parrilla, E. (2017). Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules, 22(4). https://doi.org/10.3390/molecules22040669
dc.relationMathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), 2011–2030. https://doi.org/10.1371/journal.pmed.0030442
dc.relationMedina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S., & Houghten, R. A. (2013). Shifting from the single to the multitarget paradigm in drug discovery. Drug Discovery Today, 18(9–10), 495–501. https://doi.org/10.1016/j.drudis.2013.01.008
dc.relationMedina-Franco, J., Martinez-Mayorga, K., Giulianotti, M., Houghten, R., & Pinilla, C. (2008). Visualization of the Chemical Space in Drug Discovery. Current Computer Aided-Drug Design, 4(4), 322–333. https://doi.org/10.2174/157340908786786010
dc.relationMiled, N., Canaan, S., Dupuis, L., Roussel, A., Rivière, M., Carrière, F., … Verger, R. (2000). Digestive lipases: From three-dimensional structure of physiology. Biochimie, 82(11), 973–986. https://doi.org/10.1016/S0300-9084(00)01179-2
dc.relationMohammad, M., Al-Masri, I. M., Issa, A., Khdair, A., & Bustanji, Y. (2013). Inhibition of pancreatic lipase by berberine and dihydroberberine: An investigation by docking simulation and experimental validation. Medicinal Chemistry Research, 22(5), 2273–2278. https://doi.org/10.1007/s00044-012-0221-9
dc.relationMohapatra, S., Prasad, A., Haque, F., Ray, S., De, B., & Ray, S. S. (2015). In silico investigation of black tea components on α-amylase, α-glucosidase and lipase. Journal of Applied Pharmaceutical Science, 5(12), 42–47. https://doi.org/10.7324/JAPS.2015.501207
dc.relationMopuri, R., & Islam, M. S. (2017). Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomedicine and Pharmacotherapy, 89, 1442–1452. https://doi.org/10.1016/j.biopha.2017.02.108
dc.relationMoreno, M. (2012). Definición y clasificación de la obesidad. Revista Médica Clínica Las Condes, 23(2), 124–128. https://doi.org/10.1016/s0716-8640(12)70288-2
dc.relationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock 4 and AutoDockTools 4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc
dc.relationMu, H., & Høy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43(2), 105–133. https://doi.org/10.1016/S0163-7827(03)00050-X
dc.relationNelson, D. L., & Cox, M. M. (2009). Lehninger Principios de Bioquímica (5 a Edició). Barcelona.
dc.relationNightingale, C. E., Margarson, M. P., Shearer, E., Redman, J. W., Lucas, D. N., Cousins, J. M., … Griffiths, R. (2015). Peri-operative management of the obese surgical patient 2015: Association of Anaesthetists of Great Britain and Ireland Society for Obesity and Bariatric Anaesthesia. Anaesthesia, 70(7), 859–876. https://doi.org/10.1111/anae.13101
dc.relationOda, A., Tsuchida, K., Takakura, T., Yamaotsu, N., & Hirono, S. (2006). Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. Journal of Chemical Information and Modeling, 46(1), 380–391. https://doi.org/10.1021/ci050283k
dc.relationOffice, M. (2018). Excel-Microsoft 365.
dc.relationOgden, C. L., Fryar, C. D., Carroll, M. D., & Flegal, K. M. (2004). Mean body weight, height, and body mass index, United States 1960-2002. Advance Data, (347), 1–17.
dc.relationOPS. (2017). Organización Panamericana de la Salud. Retrieved from La obesidad, uno de los principales impulsores de la diabetes. website: https://www.paho.org/hq/index.php?option=com_content&view=article&id=13918:obesity-a-key-driver-of-diabetes&Itemid=1926&lang=es
dc.relationOrganización Mundial de la Salud. (2017). La diabetes aumenta. Diabetes, 1. Retrieved from http://www.who.int/diabetes/diabetes_infographics_facts_es.pdf?ua=1
dc.relationP, S., Zinjarde, S., Bhargava, S., & Kumar, A. R. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11(5), 1–10. https://doi.org/10.1186/1472-6882-11-5
dc.relationPalacios, A., Durán, M., & Obregón, O. (2012). FACTORES DE RIESGO PARA EL DESARROLLO DE DIABETES TIPO 2 Y SÍNDROME METABÓLICO. Revista Venezolana de Endocrinología y Metabolismo, 10(1), 34–40.
dc.relationPallares, A., Estupiñán, A., Perea, J., & López Giraldo, L. (2016). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista Ion, 29(2), 7–21.
dc.relationPatiño, J. F. (2006). Metabolismo, Nutrición y Shock (cuarta). Bogotá D.C: Editorial Médica Internacional LTDA.
dc.relationPettersson, S. (2009). Diseño, selección y síntesis de nuevos inhibidores de entrada del VIH. PhD Dissertation, 1–3.
dc.relationQian, M., Haser, R., Payant, F., Buisson, G., & Duée, E. (1994). The Active Center of a Mammalian α-Amylase. Structure of the Complex of a Pancreatic α-Amylase with a Carbohydrate Inhibitor Refined to 2.2-Å Resolution. Biochemistry, 33(20), 6284–6294. https://doi.org/10.1021/bi00186a031
dc.relationReis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: A review. Advances in Colloid and Interface Science, 147–148(C), 237–250. https://doi.org/10.1016/j.cis.2008.06.001
dc.relationRodrigues, T., & Schneider, G. (2015). In Silico Screening: Hit Finding from Database Mining. In The Practice of Medicinal Chemistry: Fourth Edition. https://doi.org/10.1016/B978-0-12-417205-0.00006-7
dc.relationSacramento, A. D. A. (2012). ATIVIDADE BACTERICIDA E BACTERIOSTÁTICA DE Schinus terebinthifolius CONTRA Burkholderia cenocepacia ATIVIDADE BACTERICIDA E BACTERISTÁTICA DE Schinus terebinthifolius CONTRA Burkholderia cenocepacia.
dc.relationSaldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educacion Quimica, 28(1), 51–58. https://doi.org/10.1016/j.eq.2016.06.002
dc.relationSanamé Reyes, F. A., Pérez Álvarez, M. L., Figueredo, E. A., Ramirez Estupiñan, M., & Jiménez Rizo, Y. (2015). Insulin. Correo Científico Médico de Holguín, 20(1), 289–292. https://doi.org/10.1007/978-3-319-12715-6_40
dc.relationSanchez-Muniz, F. J., & Sanz Pérez, B. (2014). Importancia de la dieta en la prevención y tratamiento de la obesidad. 266–305.
dc.relationScopus. (2019).
dc.relationSen, S., Chakraborty, R., & De, B. (2016). Diabesity: Current situation. Diabetes Mellitus in 21st Century, 1–186. https://doi.org/10.1007/978-981-10-1542-7
dc.relationShanxi Huawei Pharmaceutical CO., L. (n.d.). patent_forsitiasida.pdf. Retrieved from https://patents.google.com/patent/CN101816667B/en%0A%0A
dc.relationSheng, H., & Sun, H. (2011). Synthesis, biology and clinical significance of pentacyclic triterpenes: A multi-target approach to prevention and treatment of metabolic and vascular diseases. Natural Product Reports, 28(3), 543–593. https://doi.org/10.1039/c0np00059k
dc.relationSim, L., Jayakanthan, K., Mohan, S., Nasi, R., Johnston, B. D., Mario Pinto, B., & Rose, D. R. (2010). New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: Structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry, 49(3), 443–451. https://doi.org/10.1021/bi9016457
dc.relationSim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., & Rose, D. R. (2008). Human Intestinal Maltase-Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. Journal of Molecular Biology, 375(3), 782–792. https://doi.org/10.1016/j.jmb.2007.10.069
dc.relationSims, E. A. H., Danforth, E., & Horton, E. S. (1973). Endocrine and metabolic effects of experimental obesity in man. In Recent Progress in Hormone Research (Vol. 29). https://doi.org/10.1016/b978-0-12-571129-6.50016-6
dc.relationSliwoski, G. R., Meiler, J., & Lowe, E. W. (2014). Computational Methods in Drug Discovery Prediction of protein structure and ensembles from limited experimental data View project Antibody modeling, Antibody design and Antigen-Antibody interactions View project. Computational Methods in Drug Discovery, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
dc.relationSobal, J., & Maurer, D. (2017). Weighty Issues, Fatness and Thinness as social problems.
dc.relationSterling, T., & Irwin, J. J. (2015). ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
dc.relationSugiyama, Akazome, Y., Shoji, T., Yamaguchi, A., Yasue, M., Kanda, T., & Ohtake, Y. (2007). Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. Journal of Agricultural and Food Chemistry, 55(11), 4604–4609. https://doi.org/10.1021/jf070569k
dc.relationSugiyama, K., Ikarashi, N., Takeda, R., Ito, K., & Ochiai, W. (2011). The inhibition of lipase and glucosidase activities by acacia polyphenol. Evidence-Based Complementary and Alternative Medicine, 2011. https://doi.org/10.1093/ecam/neq043
dc.relationSukhwani, B., & Herbordt, M. C. (2010). FPGA acceleration of rigid-molecule docking codes. IET Computers and Digital Techniques, 4(3), 184–195. https://doi.org/10.1049/iet-cdt.2009.0013
dc.relationSun, H., Yang, Z., & Ye, Y. (2006). Structure and biological activity of protopanaxatriol-type saponins from the roots of Panax notoginseng. International Immunopharmacology, 6(1), 14–25. https://doi.org/10.1016/j.intimp.2005.07.003
dc.relationSun, Kim, J., Li, W., Jo, A., Yan, X., Yang, S., & Kim, Y. (2015). Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe. Bioorganic and Medicinal Chemistry, 23(20), 6659–6665. https://doi.org/10.1016/j.bmc.2015.09.003
dc.relationSzwaya, J., Bruseo, C., Nakuci, E., McSweeney, D., Xiang, X., Senator, D., … Chen, C. R. (2007). A novel platform for accelerated pharmacodynamic profiling for lead optimization of anticancer drug candidates. Journal of Biomolecular Screening, 12(2), 159–166. https://doi.org/10.1177/1087057106297787
dc.relationTester, R. F., Karkalas, J., & Qi, X. (2004). Starch structure and digestibility Enzyme-Substrate relationship. World’s Poultry Science Journal, 60(2), 186–195. https://doi.org/10.1079/wps200412
dc.relationTin, G., Mohamed, T., Gondora, N., Beazely, M. A., & Rao, P. P. N. (2015). Tricyclic phenothiazine and phenoselenazine derivatives as potential multi-targeting agents to treat Alzheimer’s disease. MedChemComm, 6(11), 1930–1941. https://doi.org/10.1039/c5md00274e
dc.relationTrott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading OLEG. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc
dc.relationTucci, S. A., Boyland, E. J., & Halford, J. C. (2010). The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3–125. Retrieved from www.dovepress.com
dc.relationWan, X., Zhang, W., Li, L., Xie, Y., Li, W., & Huang, N. (2013). A new target for an old drug: Identifying mitoxantrone as a nanomolar inhibitor of PIM1 kinase via kinome-wide selectivity modeling. Journal of Medicinal Chemistry, 56(6), 2619–2629. https://doi.org/10.1021/jm400045y
dc.relationWang, Y. F., Li, X. C., Yang, H. Y., Wang, J. J., & Yang, C. R. (1996). Inhibitory effects of some steroidal saponins on human spermatozoa in vitro. Planta Medica, 62(2), 130–132. https://doi.org/10.1055/s-2006-957834
dc.relationWijesekara, I., Zhang, C., Van Ta, Q., Vo, T. S., Li, Y. X., & Kim, S. K. (2014). Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiological Research, 169(4), 255–261. https://doi.org/10.1016/j.micres.2013.09.001
dc.relationWilliams, L. K., Li, C., Withers, S. G., & Brayer, G. D. (2012). Order and disorder: Differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. Journal of Medicinal Chemistry, 55(22), 10177–10186. https://doi.org/10.1021/jm301273u
dc.relationWu, X., He, W., Yao, L., Zhang, H., Liu, Z., Wang, W., … Cao, J. (2013). Characterization of Binding Interactions of (−)-Epigallocatechin-3-gallate from Green Tea and Lipase. Journal of Agricultural and Food Chemistry, 61(37), 8829–8835. https://doi.org/10.1021/jf401779z
dc.relationWu, X., He, W., Zhang, H., Li, Y., Liu, Z., & He, Z. (2014). Acteoside: A lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chemistry, 142, 306–310. https://doi.org/10.1016/j.foodchem.2013.07.071
dc.relationWyatt, H. R. (2013). Update on treatment strategies for obesity. Journal of Clinical Endocrinology and Metabolism, 98(4), 1299–1306. https://doi.org/10.1210/jc.2012-3115
dc.relationXie, L., Guo, Y., Cai, B., & Yang, J. (2013). Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity. Medicinal Chemistry Research, 22(7), 3372–3378. https://doi.org/10.1007/s00044-012-0352-z
dc.relationXu, Y. Q., Yu, P., & Zhou, W. (2019). Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system. Journal of Food Engineering, 250(October 2018), 46–54. https://doi.org/10.1016/j.jfoodeng.2019.01.016
dc.relationYin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3–4), 136–174. https://doi.org/10.1016/j.fshw.2014.11.003
dc.relationZárate, A., Islas, S., & Saucedo, R. (2014). Eficacia y efectos adversos de los antidiabéticos orales Correspondencia: Editorial y perspectiva. Gac Med Mex, 150, 5–7. Retrieved from www.diabetes-symposium.org.
dc.relationZeng, T., Wu, X. Y., Yang, S. X., Lai, W. C., Shi, S. D., Zou, Q., … Li, L. M. (2017). Monoterpenoid Indole Alkaloids from Kopsia officinalis and the Immunosuppressive Activity of Rhazinilam. Journal of Natural Products, 80(4), 864–871. https://doi.org/10.1021/acs.jnatprod.6b00697
dc.relationZhang, L., Jiang, H., Cao, X., Zhao, H., Wang, F., Cui, Y., & Jiang, B. (2009). Chiral gossypol derivatives: Evaluation of their anticancer activity and molecular modeling. European Journal of Medicinal Chemistry, 44(10), 3961–3972. https://doi.org/10.1016/j.ejmech.2009.04.025
dc.relationZhang, X., Caner, S., Kwan, E., Li, C., Brayer, G. D., & Withers, S. G. (2016). Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase. Biochemistry, 55(43), 6000–6009. https://doi.org/10.1021/acs.biochem.6b00992
dc.relationZhang, Yang, Y., Song, X., Shao, S., Feng, Z., Jiang, J., … Zhang, P. (2015). Forsythoneosides A-D, Neuroprotective Phenethanoid and Flavone Glycoside Heterodimers from the Fruits of Forsythia suspensa. Journal of Natural Products, 78(10), 2390–2397. https://doi.org/10.1021/acs.jnatprod.5b00372
dc.relationZimmet, P. (2012). Diabesity: Potentially the Greatest Epidemic in World History.
dc.relationZimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782–787. https://doi.org/10.1038/414782a
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentificación de inhibidores polifuncionales contra blancos moleculares usados en el tratamiento de obesidad y diabetes
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución