dc.contributor | Hernández Losada, Diego Fernando | |
dc.creator | Bravo Mendoza, Oscar | |
dc.date.accessioned | 2021-05-31T16:08:14Z | |
dc.date.available | 2021-05-31T16:08:14Z | |
dc.date.created | 2021-05-31T16:08:14Z | |
dc.date.issued | 2021-04-13 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79574 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | This research builds on the most recent organizational resilience theories to elaborate heuristic tests to prove the antifragility concept, the last defined step for companies to cope with VUCA (Volatile, Uncertain, Complex, and Ambiguous). Given its novelty, the body of knowledge regarding antifragility is weak. There are only a few definitions and attributes to describe antifragility at the organizational level and a total absence of real firm cases, theory, and hypotheses research. The antifragility concept offers new management and risk assessment tools to organizations eager to survive and take advantage of the new opportunities that unfold behind the threat of uncertainty.
Antifragility goes beyond business continuity and resilience by focusing on the firms' ability to deliver products and services at acceptable levels after a disruptive event and taking advantage of the upside risk involved in uncertainty to improve performance and foster innovation and growth. This study's main contribution is defining proper metrics to identify and rank the organizational resilience level after an extreme event and define a framework to describe the selected antifragile companies' common attributes and competencies.
The results from this study will serve as the basis for organizations that struggle to operate in VUCA and are exposed to surprising, extreme events, also known as Black Swans. Additionally, the proposed antifragility framework and measurement system will also strengthen the risk assessment and management disciplines. | |
dc.description.abstract | Esta investigación se basa en la literatura más reciente en materia de resiliencia
organizacional, para probar de manera heurística el concepto de antifragilidad, el
último paso definido para que las empresas puedan desempeñarse en
ambientes VICA (Volatilidad, Incertidumbres, Complejidad y Ambigüedad). La
antifragilidad es un concepto nuevo, para el cual el estado del arte es deficiente.
Existen solamente algunas definiciones y atributos en la literatura que permiten
describirla a nivel organizacional, y una total ausencia de casos de estudio de
empresas, que permitan la generación de hipótesis y teorías de investigación. El
concepto de antifragilidad ofrece nuevas herramientas para las organizaciones
que requieren sobrevivir y poder aprovechar las oportunidades que subyacen los
temores por la incertidumbre.
La antifragilidad va más allá de la continuidad del negocio y la resiliencia al
enfocarse en la capacidad de las empresas para entregar productos y servicios
con niveles aceptables de calidad luego de un evento disruptivo, aprovechando
las posibilidades que brinda la incertidumbre para mejorar el desempeño e
incrementar la innovación y el crecimiento. Las principales contribuciones de
este trabajo son la definición de indicadores que permiten identificar y clasificar
las empresas de acuerdo a su capacidad de resiliencia luego de un evento
extremo, así como la definición de un marco de referencia que incorpora los
principales atributos que caracterizan a las empresas antifrágiles.
Los hallazgos de este estudio permitirán soportar a las empresas que deben
enfrentan los retos de un ambiente VICA y están expuestas a riesgos emergentes y eventos extremos, también conocidos como Cisnes Negros. Así
mismo, el marco de referencia y los esquemas de medición propuestos
permitirán fortalecer las disciplinas de gestión de riesgos y administración de
empresas. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Industria y Organizaciones | |
dc.publisher | Departamento de Ingeniería de Sistemas e Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Adamus, W., & Florkowski, W. J. (2016). The evolution of shale gas development and energy security in Poland: Presenting a hierarchical choice of priorities. Energy Research and Social Science, 20, 168–178. https://doi.org/10.1016/j.erss.2016.08.010 | |
dc.relation | Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model. Journal of International Financial Management and Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053 | |
dc.relation | Aven, T. (2014). Risk, Surprises, and Black Swans. Routledge. | |
dc.relation | Aven, T., & Kristensen, V. (2005). Perspectives on risk: Review and discussion of the basis for establishing a unified and holistic approach. Reliability Engineering and System Safety, 90(1), 1–14. https://doi.org/10.1016/j.ress.2004.10.008 | |
dc.relation | Aven, Terje. (2012). The risk concept-historical and recent development trends. Reliability Engineering and System Safety, 99(0951), 33–44. https://doi.org/10.1016/j.ress.2011.11.006 | |
dc.relation | Aven, Terje. (2015a). Implications of black swans to the foundations and practice of risk assessment and management. Reliability Engineering and System Safety, 134, 83–91. https://doi.org/10.1016/j.ress.2014.10.004 | |
dc.relation | Aven, Terje. (2015b). The concept of antifragility and its implications for the practice of risk analysis. Risk Analysis, 35(3), 476–483. https://doi.org/10.1111/risa.12279 | |
dc.relation | Aven, Terje. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1–13. https://doi.org/10.1016/j.ejor.2015.12.023 | |
dc.relation | Aven, Terje. (2017a). How some types of risk assessments can support resilience analysis and management. Reliability Engineering and System Safety, 167(March), 536–543. https://doi.org/10.1016/j.ress.2017.07.005 | |
dc.relation | Aven, Terje. (2017b). How some types of risk assessments can support resilience analysis and management. Reliability Engineering and System Safety, 167(March), 536–543. https://doi.org/10.1016/j.ress.2017.07.005 | |
dc.relation | Aven, Terje. (2017c). What Defines Us as Professionals in the Field of Risk Analysis? Risk Analysis, 37(5), 854–860. https://doi.org/10.1111/risa.12680 | |
dc.relation | Aven, Terje. (2018). An Emerging New Risk Analysis Science: Foundations and Implications. Risk Analysis, 38(5), 876–888. https://doi.org/10.1111/risa.12899 | |
dc.relation | Aven, Terje, & Krohn, B. S. (2014). A new perspective on how to understand, assess and manage risk and the unforeseen. Reliability Engineering and System Safety, 121, 1–10. https://doi.org/10.1016/j.ress.2013.07.005 | |
dc.relation | Aven, Terje, & Renn, O. (2015). An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change. Risk Analysis, 35(4), 701–712. https://doi.org/10.1111/risa.12298 | |
dc.relation | Bakshi, V. (2017). Shale Gas (Second). Global Business and Business Limited. | |
dc.relation | Benaben, F., Montreuil, B., Gou, J., Li, J., Koura, I., Mu, W., Benaben, F., Montreuil, B., Gou, J., Li, J., Lauras, M., & Tentative, A. (2019). A Tentative Framework for Risk and Opportunity Detection in A Collaborative Environment Based on Data Interpretation To cite this version : HAL Id : hal-01988039. | |
dc.relation | Bjerga, T., & Aven, T. (2015). Adaptive risk management using new risk perspectives - An example from the oil and gas industry. Reliability Engineering and System Safety, 134, 75–82. https://doi.org/10.1016/j.ress.2014.10.013 | |
dc.relation | Bond, C. J. (2014). Positive peace and sustainability in the mining context: Beyond the triple bottom line. Journal of Cleaner Production, 84(1), 164–173. https://doi.org/10.1016/j.jclepro.2014.01.033 | |
dc.relation | Bravo, O., & Hernandez, D. (2020a). Critical Factors for Unconventional Hydrocarbon Resources Development. CT&F - Ciencia, Tecnología & Futuro, 10(2). InPress | |
dc.relation | Bravo, O., & Hernandez, D. (2020b). Risk Management Strategies Required for Unconventional Oil and Gas Exploration and Development in Latin America. SPE-199430-MS, 16. https://doi.org/10.2118/199430-MS | |
dc.relation | Bravo, O., Mogollón, L., & Parra, J. (2008). Valuation of a Real Options Portfolio. http://www.realoptions.org/papers2008 | |
dc.relation | Bravo, O., & Sanchez, M. (2012). Gestión Integral de Riesgos - Tomo 2 (Bravo & Sá). | |
dc.relation | Brezuleanu, S. et al. (2015). Relationships between Fashion Enterprises Resilience under Market Disruption and Employees’ Creative Involvement and Wellbeing Degree. Revista de Cercetare Şi Intervenţie Socială, 48, 50–59. | |
dc.relation | Bryman, A. (2007). Barriers to Integrating Quantitative and Qualitative Research. Journal of Mixed Methods Research, 1(1), 8–22. https://doi.org/10.1177/2345678906290531 | |
dc.relation | Calandro, J. (2007). Considering the utility of Altman’s Z-score as a strategic assessment and performance management tool. Strategy and Leadership, 35(5), 37–43. https://doi.org/10.1108/10878570710819206 | |
dc.relation | Cano, M., Matthew, A., Quinn, B., Cano, M., Matthew, A., Quinn, B., Hydraulic, G., Matthew, A. U., Quinn, B., & | |
dc.relation | Cano, M. (2015). Scotland To cite this version : HAL Id : hal-01149782 Implementing a Greener Hydraulic Fracturing in Scotland. | |
dc.relation | Casey et al. (2017). The triple bottom line for efficiency. IEEE Power & Energy Magazine, january/february, 34–42. | |
dc.relation | Castro-Alvarez, F., et al. (2018). Sustainability lessons from shale development in the United States for Mexico and other emerging unconventional oil and gas developers. Renewable and Sustainable Energy Reviews, 82(June 2017), 1320–1332. https://doi.org/10.1016/j.rser.2017.08.082 | |
dc.relation | Cokins, G. (2009). Performance Management (1 st). Wiley. | |
dc.relation | Cooper, J., Stamford, L., & Azapagic, A. (2016). Shale Gas: A Review of the Economic, Environmental, and Social Sustainability. In Energy Technology. https://doi.org/10.1002/ente.201500464 | |
dc.relation | Cr, M., & Hafner, M. (2018). Shale gas production costs : Historical developments and outlook lodie Mistr e. 20, 20–25. https://doi.org/10.1016/j.esr.2018.01.001 | |
dc.relation | Creswell, J. W., & Creswell, D. (2018). Research Design (Fifth). SAGE Publications. | |
dc.relation | De Smet, A., et al. (2020). The need for speed in the post-COVID-19 era — and how to achieve it (Issue September). https://www.mckinsey.com/~/media/McKinsey/Business Functions/Organization/Our Insights/The need for speed in the post COVID-19 era and how to achieve it/The-need-for-speed-in-the-post-COVID-19-and-how-to-achieve-it.pdf | |
dc.relation | Derbyshire, J., & Wright, G. (2014). Preparing for the future: Development of an “antifragile” methodology that complements scenario planning by omitting causation. Technological Forecasting and Social Change, 82(1), 215–225. https://doi.org/10.1016/j.techfore.2013.07.001 | |
dc.relation | Editor. (2010). Editor’ S Comments : Construct Clarity in Theories of. Academy of Management Review, 35(3), 346–357. | |
dc.relation | EIA. (2015). World Shale Resource Assessments. 2011–2014. | |
dc.relation | Flage, R., & Aven, T. (2015). Emerging risk - Conceptual definition and a relation to black swan type of events. Reliability Engineering and System Safety, 144, 61–67. https://doi.org/10.1016/j.ress.2015.07.008 | |
dc.relation | Gao, J., & You, F. (2017a). Design and optimization of shale gas energy systems : Overview, research challenges, and future directions. Computers and Chemical Engineering, 106, 699–718. https://doi.org/10.1016/j.compchemeng.2017.01.032 | |
dc.relation | Gao, J., & You, F. (2017b). Economic and Environmental Life Cycle Optimization of Noncooperative Supply Chains and Product Systems: Modeling Framework, Mixed-Integer Bilevel Fractional Programming Algorithm, and Shale Gas Application. https://doi.org/10.1021/acssuschemeng.7b00002 | |
dc.relation | Gerring, J. (2017). Case Study Research (Second). Cambridge University Press. | |
dc.relation | Ghasemi, A., & Alizadeh, M. (2017). Evaluating Organizational Antifragility Via Fuzzy Logic. The case of an Iranian Company. Operations Research and Decisions, 27(2), 21–43. https://doi.org/10.5277/ord170202 | |
dc.relation | Guzman, R. et al. (2018). Building momentum – oil and gas in Latin America (p. 16). Arthur D Little. www.adl.com/BuildingMomentum | |
dc.relation | Hajikazemi, S., Ekambaram, A., Andersen, B., & Zidane, Y. J.-T. (2016). The Black Swan – Knowing the Unknown in Projects. Procedia - Social and Behavioral Sciences, 226(1877), 184–192. https://doi.org/10.1016/j.sbspro.2016.06.178 | |
dc.relation | Hayum, L. (2018). Latin America month in brief archive. December 2017. | |
dc.relation | Huimin Tan, Jianhua Xu, G. W.-P. (2019). The politics of Asian fracking: Public risk perceptions towards shale gas development in China. Energy Research & Social Science, 2015–2017. https://doi.org/10.1016/j.erss.2019.03.007 | |
dc.relation | IRGC. (2014). Risk Governance Guidelines Development - Policy Brief. 1–16. | |
dc.relation | IRGC. (2017). Introduction To the IRGC Risk Governance Framework. irgc.epfl.ch and irgc.org | |
dc.relation | IRGC. (2018). Irgc Guidelines for the Governance. Guidelines for the Governance of Systemic Risks. Lausanne: International Risk Governance Center (IRGC). www.irgc.org | |
dc.relation | Jackson, S. (2007). A multidisciplinary framework for resilence to disasters and disruptions. Journal of Integrated Design and Process Science, 11(2), 91–108. https://www.scopus.com/inward/record.uri?eid=2-s2.0-62749148341&partnerID=40&md5=b620f5c869c295fd3403ecf8ce49550d | |
dc.relation | Johnson, J., & Gheorghe, A. V. (2013). Antifragility analysis and measurement framework for systems of systems. International Journal of Disaster Risk Science, 4(4), 159–168. https://doi.org/10.1007/s13753-013-0017-7 | |
dc.relation | Jones, K. H. (2014). Engineering antifragile systems: A change in design philosophy. Procedia Computer Science, 32(Antifragile), 870–875. https://doi.org/10.1016/j.procs.2014.05.504 | |
dc.relation | Kennon, D., Schutte, C. S. L., & Lutters, E. (2015). An alternative view to assessing antifragility in an organization: A case study in a manufacturing SME. CIRP Annals - Manufacturing Technology, 64(1), 177–180. https://doi.org/10.1016/j.cirp.2015.04.024 | |
dc.relation | Kim, J. H., & Lee, Y. G. (2017). Analyzing the learning path of US shale players by using the learning curve method. Sustainability (Switzerland), 9(12). https://doi.org/10.3390/su9122232 | |
dc.relation | Koller, D. & H. (2011). Value - The Four Cornerstones of Corporate Finance. John Wiley & Sons, Inc. | |
dc.relation | Le, M. (2018). An assessment of the potential for the development of the shale gas industry in countries outside of North America. Heliyon, November 2017, e00516. https://doi.org/10.1016/j.heliyon.2018.e00516 | |
dc.relation | Lichtman, M., Vondal, M. T., Clancy, T. C., & Reed, J. H. (2018). Antifragile Communications. IEEE Systems Journal, 12(1), 659–670. https://doi.org/10.1109/JSYST.2016.2517164 | |
dc.relation | Linnenluecke, M. K., & Griffiths, A. (2010). Corporate sustainability and organizational culture. 45, 357–366. https://doi.org/10.1016/j.jwb.2009.08.006 | |
dc.relation | Lunn, S. R. D., Decatur, M. R., Allen, M. L., & Mire, R. A. (2014). One company’s upstream water resources management guide. Society of Petroleum Engineers - SPE International Conference on Health, Safety and Environment 2014: The Journey Continues, 3(March), 1585–1595. | |
dc.relation | Martinetti, A., Chatzimichailidou, M. M., Maida, L., & van Dongen, L. (2019). Safety I–II, resilience and antifragility engineering: a debate explained through an accident occurring on a mobile elevating work platform. International Journal of Occupational Safety and Ergonomics, 25(1), 66–75. https://doi.org/10.1080/10803548.2018.1444724 | |
dc.relation | Matthew Cotton, Ralf Barkemeyer, Barbara Gabriella Renzi, G. N. (2019). Fracking and metaphor: Analysing newspaper discourse in the USA, Australia and the United Kingdom. Ecological Economics Journal, Ext, Tel Jorge, U, 2015–2017. https://doi.org/10.1016/j.ecolecon.2019.106426 | |
dc.relation | Mehtha, R. (2020). PREDICTION OF FINANCIAL DISTRESS USING FINANCIAL PARAMETERS AND ALTMAN Z SCORE WITH JSPM ’ S RAJARSHI SHAH U COLLEGE OF ENGINEERING. 11, 1–4. | |
dc.relation | Muerta, V., & Trip, F. (2016). Vaca Muerta Field Trip December 2016. December. | |
dc.relation | Mun, J. (2015). Case Studies in Certified Quantitative Risk Management (Second). John Wiley & Sons, Inc. | |
dc.relation | Mun, Johnathan. (2006). Real Options Analysis (Second). John Wiley & Sons, Inc. | |
dc.relation | Passos, D. S., Coelho, H., & Sarti, F. M. (2018). From Resilience to the Design of Antifragility. PESARO 2018: The Eight International Conference on Performance, Safety, and Robustness in Complex Systems and Applications, c, 7–11. | |
dc.relation | Platje, J. J. (2015). Efficiency, Fragility, and Unsustainable Development. Research Papers of Wrocław University of Economics, 452, 46–57. https://doi.org/10.15611/pn.2016.452.04 | |
dc.relation | Plattner, T., Plapp, T., & Hebel, B. (2006). Intergrating public risk perception into formal natural hazard risk assessment. Natural Hazards and Earth System Sciences, 6, 471–483. http://www.nat-hazards-earth-syst-sci.net/6/471/2006 | |
dc.relation | Rahm, B. G., Bates, J. T., Bertoia, L. R., Galford, A. E., Yoxtheimer, D. A., & Riha, S. J. (2013). Wastewater management and Marcellus Shale gas development: Trends, drivers, and planning implications. Journal of Environmental Management, 120, 105–113. https://doi.org/10.1016/j.jenvman.2013.02.029 | |
dc.relation | Reed, H., & Meyer, E. (2020). No Rules Rules - Netflix and the Culture of Reinvention. Penguin Press. | |
dc.relation | Rodger, J. A., & George, J. A. (2017). Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications t. Journal of Cleaner Production, 142, 1931–1949. https://doi.org/10.1016/j.jclepro.2016.11.089 | |
dc.relation | Ruiz-Martin, C., Lopez-Paredes, A., & Wainer, G. (2018). What we know and do not know about organizational resilience. International Journal of Production Management and Engineering, 6(1), 11. https://doi.org/10.4995/ijpme.2018.7898 | |
dc.relation | S., H. (2006). Tight Gas Sands. Journal of Petroleum Technology, 58(6), 84–90. https://doi.org/10.2118/103356-JPT | |
dc.relation | Scrum@Scale en Drummond, (2017). https://scrumcolombia.org/caso-estudio-scrumatscale-drummond/ | |
dc.relation | Seuring, S. (2011). Supply Chain Management for Sustainable. Business Strategy and the Environment, 20(November 2010), 471–484. https://doi.org/10.1002/bse | |
dc.relation | Sheard, S., & Mostashari, A. (2009). A Framework for System Resiliance. 703, 1–15. http://www.stevens.edu/csr/fileadmin/csr/Publications/Sheard_SystemsResilienceDiscussions.pdf%5Cnpapers3://publication/uuid/4054750A-2BCF-4001-8FB4-4ACF7BCB4C4B | |
dc.relation | Shortridge, J., Aven, T., & Guikema, S. (2017). Risk assessment under deep uncertainty: A methodological comparison. Reliability Engineering and System Safety, 159(February 2016), 12–23. https://doi.org/10.1016/j.ress.2016.10.017 | |
dc.relation | Son, J. H., Hanif, A., Dhanasekar, A., & Carlson, K. H. (2018). Colorado Water Watch: real-time groundwater monitoring for possible contamination from oil and gas activities. Environmental Monitoring and Assessment, 190(3), 1660–1687. https://doi.org/10.1007/s10661-018-6509-6 | |
dc.relation | Taleb, N. (2012). Antifragile. Random House. | |
dc.relation | Taleb, N N. (2010). The Black Swan. Random House. | |
dc.relation | Taleb, Nassim Nicholas. (2012). Antifragile. In Antifragile (pp. 3–27). | |
dc.relation | Thaler, R., & Sunstein, C. (2009). Nudge. Penguin Press. | |
dc.relation | Thekdi, S., & Aven, T. (2016). An enhanced data-analytic framework for integrating risk management and performance management. Reliability Engineering and System Safety, 156, 277–287. https://doi.org/10.1016/j.ress.2016.07.010 | |
dc.relation | Thekdi, S., & Aven, T. (2019). An integrated perspective for balancing performance and risk. Reliability Engineering and System Safety, 190(October 2018), 106525. https://doi.org/10.1016/j.ress.2019.106525 | |
dc.relation | Tong, X., Zhang, G., Wang, Z., Wen, Z., Tian, Z., Wang, H., Ma, F., & Wu, Y. (2018). Distribution and potential of global oil and gas resources. Petroleum Exploration and Development, 45(4), 779–789. https://doi.org/10.1016/S1876-3804(18)30081-8 | |
dc.relation | Torres, L., Prakash, O., & Khan, E. (2016). Science of the Total Environment A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, The, 539, 478–493. https://doi.org/10.1016/j.scitotenv.2015.09.030 | |
dc.relation | Torres, L., Prakash, O., & Khan, E. (2017). Chemosphere Holistic risk assessment of surface water contamination due to Pb-210 in oil produced water from the Bakken Shale. Chemosphere, 169, 627–635. https://doi.org/10.1016/j.chemosphere.2016.11.125 | |
dc.relation | Torres, L., Prakash, O., & Khan, E. (2018). Science of the Total Environment Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale. Science of the Total Environment, 626, 867–874. https://doi.org/10.1016/j.scitotenv.2018.01.171 | |
dc.relation | Toseroni, F., Romagnoli, F., & Marincioni, F. (2016). Adapting and Reacting to Measure an Extreme Event: A Methodology to Measure Disaster Community Resilience. Energy Procedia, 95, 491–498. https://doi.org/10.1016/j.egypro.2016.09.074 | |
dc.relation | Trump, B., Florin, M. V., & Linkov, I. (2018). IRGC resource guide on resilience (vol. 2): Domains of resilience for complex interconnected systems (Vol. 2). https://doi.org/10.5075/epfl-irgc-262527 | |
dc.relation | Tseitlin, A. (2013). The antifragile organization. Communications of the ACM, 56(8), 40. https://doi.org/10.1145/2492007.2492022 | |
dc.relation | Vargas, C. (2012). Evaluating total Yet-to-Find hydrocarbon volume in Colombia. Earth Sciences Research Journal, 16(Special Issue April), 1–246. | |
dc.relation | Velandia, C. (2017). Yacimientos No Convencionales en Colombia - Evolución y Regulación. Grupo Editorial Ibañez. | |
dc.relation | WANG, H., MA, F., TONG, X., LIU, Z., ZHANG, X., WU, Z., LI, D., WANG, B., XIE, Y., & YANG, L. (2016). Assessment of global unconventional oil and gas resources. Petroleum Exploration and Development, 43(6), 925–940. https://doi.org/10.1016/S1876-3804(16)30111-2 | |
dc.relation | Wang, K., Vredenburg, H., Wang, T., & Feng, L. (2019). Financial return and energy return on investment analysis of oil sands, shale oil and shale gas operations. Journal of Cleaner Production, 223, 826–836. https://doi.org/10.1016/j.jclepro.2019.03.039 | |
dc.relation | Williams, P. R. D. (2015). Applying risk analysis to two divisive topics: Hydraulic fracking and marijuana use. Risk Analysis, 35(5), 762–765. https://doi.org/10.1111/risa.12420 | |
dc.relation | Winston, A. (2017). The Big Pivot. In The Big Pivot Chapter 14. Harvard Business Review Press. | |
dc.relation | Woods, D. D. (2015). Four concepts for resilience and the implications for the future of resilience engineering. Reliability Engineering and System Safety, 141(April 2015), 5–9. https://doi.org/10.1016/j.ress.2015.03.018 | |
dc.relation | Yang, Y., Wang, L., Fang, Y., & Mou, C. (2017). Integrated value of shale gas development : A comparative analysis in the United States and China. Renewable and Sustainable Energy Reviews, 76(November 2016), 1465–1478. https://doi.org/10.1016/j.rser.2016.11.174 | |
dc.relation | Yin, R. K. (2018). Case Study Research and Applications (Sixth). SAGE Publications. | |
dc.relation | Zerda, M. A. D. La, Erdmann, E., Tecnológico, I., Aires, D. B., Sarandón, R., & De, U. N. (2017). SPE-185546-MS Importance of the Study of Environmental Aspects in the Exploitation of Unconventional Reservoirs for Risk Assessment of the Activity in Argentina. | |
dc.relation | Zio, E. (2018). The future of risk assessment. Reliability Engineering and System Safety, 177(April), 176–190. https://doi.org/10.1016/j.ress.2018.04.020 | |
dc.relation | Zuluaga Guerra, A. D., & Monterroza Villalba, R. I. (2019). Licencia social como mecanismo de desarrollo de yacimientos de hidrocarburos no convencionales en el departamento del Cesar-Colombia. Revista Fuentes El Reventón Energético, 17(2), 101–110. https://doi.org/10.18273/revfue.v17n2-2019009 | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | A Framework to study Antifragility for Enterprise Risk Management: Case Study of Unconventional Oil and Gas Operations in Latin America | |
dc.type | Trabajo de grado - Doctorado | |