dc.contributorFula Rojas, Manuel Alejandro
dc.creatorCorrea Zea, Sergio Andrés
dc.date.accessioned2021-10-14T18:53:34Z
dc.date.accessioned2022-09-21T15:25:00Z
dc.date.available2021-10-14T18:53:34Z
dc.date.available2022-09-21T15:25:00Z
dc.date.created2021-10-14T18:53:34Z
dc.date.issued2021-10-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80554
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3379912
dc.description.abstractPara poder hacer una reducción de CO\textsubscript{2} y la generación de energía eléctrica se toma como elección el motor Stirling acoplado a una concentración solar de potencia térmica que posibilite suplir la dependencia del combustible fósil, cuyo desempeño es por medio de combustión externadonde su virtud más importante es la sencillez de su creación, su escasa contribución a la contaminación del aire y es confiable de nombrar que el motor Stirling puede llevar a cabo funcionar con cualquier tipo de combustible, incluyendo la radiación solar. El motor Stirling tiene uno de los más elevados rendimientos de una maquina térmica, no obstante muestran retos que requieren ser afrontados si se desea obtener un diseño con elevado manejo de la misma forma, la optimización en el diseño no debe exceder ciertos precios máximos del grupo. El segundo problema que perjudica seriamente el manejo y el precio del motor Stirling es la errada selección del regenerador debido a que de este, es dependiente la operación del motor Stirling. Palabras clave: Stirling, Regenerador, Configuración, Energía, Colombia, Emisiones (Texto tomado de la fuente)
dc.description.abstractAbstract In order to be able to make a reduction of CO2 and the generation of electrical energy, the Stirling engine coupled to a solar concentration of thermal power is taken as a choice that makes it possible to replace the dependence on fossil fuel, whose performance is by means of external combustion, where its most important virtue is the simplicity of its creation, its low contribution to air pollution and it is reliable to name that the Stirling engine can be carried out to operate with any type of fuel, including solar radiation. The Stirling engine has one of the highest efficiencies of a thermal engine, however there are challenges that need to be faced if a design with high efficiency is to be obtained and, likewise, design optimization must not exceed certain price ceilings of the group. The second problem that seriously harms the handling and price of the Stirling engine is the wrong selection of the regenerator, since the operation of the Stirling engine depends on it. Keywords: Stirling, Regenerator, Configuration, Energy, Colombia, Emissions
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería Mecánica
dc.publisherDepartamento de Ingeniería Mecánica
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationB. Rutczyk, I. Szczygieª, and A. Kabaj, "Evaluation of an α type stirling engine regenerator using a new differential model,"Energy, vol. 209, p. 118369, 2020.
dc.relationD. Dai, F. Yuan, R. Long, Z. Liu, and W. Liu, "Imperfect regeneration analysis of stirling engine caused by temperature differences in regenerator,"Energy Conversion and Management, vol. 158, pp. 60-69, 2018.
dc.relationA. S. Nielsen, B. T. York, and B. D. MacDonald, "Stirling engine regenerators: How to attain over 95 % regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, vol. 253, p. 113557, 2019.
dc.relationC. Gensch, Y. Baron, and K. Moch, "World energy balances: Overview," Paris: Organization for Economic Cooperation and Development, 2018.
dc.relationD. Thombare and S. Verma, "Technological development in the stirling cycle engines," Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 1-38, 2008.
dc.relationY. M. Seshie, K. E. N'Tsoukpoe, P. Neveu, Y. Coulibaly, and Y. K. Azoumah, "Small scale concentrating solar plants for rural electrification," Renewable and Sustainable Energy Reviews, vol. 90, pp. 195-209, 2018.
dc.relationG. E. T. IRENA, "A roadmap to 2050," Abu Dhabi: International Renewable Energy Agency, 2018.
dc.relationR. M. Elshazly, "Feasibility of concentrated solar power under egyptian conditions," Renewable Energy & Energy Efficiency for the MENA Region Master Program Cairo University & University of Kassel, Egypt, 2011.
dc.relationI. Dincer and M. Rosen, Thermal energy storage: systems and applications. John Wiley & Sons, 2002.
dc.relationZ. Liu, Global energy interconnection. Academic Press, 2015.
dc.relationE. Rogdakis and I. Koronaki, Renewable Energy Engineering: Solar, Wind, Biomass, Hydrogen and Geothermal Energy Systems, ser. Recent Advances in Renewable Energy. Bentham Science Publishers, 2018. [Online]. Available: https://books.google.com.co/books?id=NGd-DwAAQBAJ
dc.relationO. Achkari and A. El Fadar, "Latest developments on tes and csp technologies-energy and environmental issues, applications and research trends," Applied Thermal Engineering, vol. 167, p. 114806, 2020.
dc.relationP. Breeze, Power generation technologies. Newnes, 2019.
dc.relationD. Rodríguez-Urrego and L. Rodríguez-Urrego, "Photovoltaic energy in colombia: current status, inventory, policies and future prospects," Renewable and Sustainable Energy Reviews, vol. 92, pp. 160-170, 2018.
dc.relationA. R. López, A. Krumm, L. Schattenhofer, T. Burandt, F. C. Montoya, N. Oberländer, and P.-Y. Oei, "Solar pv generation in colombia-a qualitative and quantitative approach to analyze the potential of solar energy market," Renewable Energy, vol. 148, pp. 1266- 1279, 2020.
dc.relationK. M. Bataineh, "Numerical thermodynamic model of alpha-type stirling engine," Case studies in thermal engineering, vol. 12, pp. 104-116, 2018.
dc.relationS. Alfarawi, "Thermodynamic analysis of rhombic-driven and crank-driven beta-type stirling engines," International Journal of Energy Research, vol. 44, no. 7, pp. 5596- 5608, 2020.
dc.relationM. Marion, H. Louahlia, and H. Gualous, "Performances of a chp stirling system fuelled with glycerol," Renewable Energy, vol. 86, pp. 182-191, 2016.
dc.relationR. J. Meijer, The Philips hot-gas engine with rhombic drive mechanism, 1960.
dc.relationD. M. Clucas, "Wobble yoke assembly," May 20 1997, uS Patent 5,630,351.
dc.relationC. M. Hargreaves, "The phillips stirling engine,"1991.
dc.relationA. Sripakagorn and C. Srikam, "Design and performance of a moderate temperature difference stirling engine," Renewable Energy, vol. 36, no. 6, pp. 1728-1733, 2011.
dc.relationA. Ross, Making stirling engines. Ross experimental, 1993.
dc.relationG. Walker, "Stirling engines," 1980.
dc.relationK. Hirata, "Schmidt theory for stirling engines," National Maritime Research Institute (NMRI), 1997.
dc.relationR. Gheith, H. Hachem, F. Aloui, and S. B. Nasrallah, "4.6 stirling engines," 2018.
dc.relationA. S. Abduljalil, Z. Yu, and A. J. Jaworski, "Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines," Materials & Design, vol. 32, no. 1, pp. 217-228, 2011.
dc.relationR. Gheith, F. Aloui, and S. B. Nasrallah, "Determination of adequate regenerator for a gamma-type stirling engine," Applied energy, vol. 139, pp. 272-280, 2015.
dc.relationR. Gheith, F. Aloui, and S. Ben Nasrallah, "Optimization of stirling engine performance based on an experimental design approach," International journal of energy research, vol. 37, no. 12, pp. 1519-1528, 2013.
dc.relationJ. J. Santos, J. C. Palacio, A. M. Reyes, M. Carvalho, A. J. Freire, and M. A. Barone, "Concentrating solar power," in Advances in Renewable Energies and Power Technologies. Elsevier, 2018, pp. 373-402.
dc.relationA. Hafez, A. Soliman, K. El-Metwally, and I. Ismail, "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, vol. 67, pp. 1019-1036, 2017.
dc.relationJ. Khan and M. H. Arsalan, "Solar power technologies for sustainable electricity generation-a review," Renewable and Sustainable Energy Reviews, vol. 55, pp. 414-425, 2016.
dc.relationG. Walker, "The stirling engine," Scientific American, vol. 229, no. 2, pp. 80-87, 1973.
dc.relationY. Liu, X. Sun, V. Sethi, D. Nalianda, Y.-G. Li, and L. Wang, "Review of modern low emissions combustion technologies for aero gas turbine engines," Progress in Aerospace Sciences, vol. 94, pp. 12-45, 2017.
dc.relationE. C. SCHIOPU, "Evaluation of air pollution from rovinari (gorj) with substances in sospension (pm 10) as a result of auto traffic." Fiability & Durability/Fiabilitate si Durabilitate, no. 2, 2016.
dc.relationD. H. Meadows, D. L. Meadows, J. Randers, W. W. Behrens et al., "Los límites del crecimiento: informe al club de roma sobre el predicamento de la humanidad," fondo de cultura económica, Tech. Rep., 1972.
dc.relationL. Rodríguez, "Protocolo de kyoto: Debate sobre ambiente y desarrollo en las discusiones sobre cambio climático," Gestión y Ambiente, vol. 10, no. 2, pp. 119-128, 2007.
dc.relationG. Schmidt, "Classical analysis of operation of stirling engine," A report published in German engineering union (Original German), vol. 15, pp. 1-12, 1871.
dc.relationC. Ulloa, J. Porteiro, P. Eguía, and J. M. Pousada-Carballo, "Application model for a stirling engine micro-generation system in caravans in different european locations," Energies, vol. 6, no. 2, pp. 717-732, 2013.
dc.relationI. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, and M. Kettner, "Development of micro-scale biomass-fuelled chp system using stirling engine," Energy Procedia, vol. 75, pp. 1108-1113, 2015.
dc.relationB. Flannery, O. Finckh, H. Berresheim, and R. F. Monaghan, "Hybrid stirling engineadsorption chiller for truck auxiliary power unit applications," International Journal of Refrigeration, vol. 76, pp. 356-366, 2017.
dc.relationA. C. Ferreira, M. L. Nunes, J. C. Teixeira, L. A. Martins, S. F. Teixeira, and S. A. Nebra, "Design of a solar dish stirling cogeneration system: Application of a multiobjective optimization approach," Applied Thermal Engineering, vol. 123, pp. 646-657, 2017.
dc.relationU. R. Singh and A. Kumar, "Review on solar stirling engine: development and performance," Thermal Science and Engineering Progress, vol. 8, pp. 244-256, 2018.
dc.relationG. Barreto and P. Canhoto, "Modelling of a stirling engine with parabolic dish for thermal to electric conversion of solar energy," Energy Conversion and Management, vol. 132, pp. 119-135, 2017.
dc.relationF. Formosa and G. Despesse, "Analytical model for stirling cycle machine design," Energy Conversion and Management, vol. 51, no. 10, pp. 1855"1863, 2010.
dc.relationJ. Egas and D. M. Clucas, "Stirling engine configuration selection," Energies, vol. 11, no. 3, p. 584, 2018.
dc.relationD. Erol, H. Yaman, and B. Do§an, "A review development of rhombic drive mechanism used in the stirling engines," Renewable and Sustainable Energy Reviews, vol. 78, pp. 1044-1067, 2017.
dc.relationC.-H. Cheng and Y.-F. Chen, "Numerical simulation of thermal and flow fields inside a 1-kw beta-type stirling engine," Applied Thermal Engineering, vol. 121, pp. 554-561, 2017.
dc.relationJ. Kropiwnicki, "Analysis of start energy of stirling engine type alpha," Archives of Thermodynamics, vol. 40, 2019.
dc.relationR. Vasu and F. B. Ismail, "Design and implementation of solar powered stirling engines," in AIP Conference Proceedings, vol. 2035, no. 1. AIP Publishing LLC, 2018, p. 040002.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelado, simulación y rediseño de un motor para aplicación dish-stirling para cubrir la necesidad energética de 1 kw.
dc.typeTesis


Este ítem pertenece a la siguiente institución