dc.contributorPérez Marín, Andrés Felipe
dc.creatorUribe Torrado, Luis Miguel
dc.date.accessioned2021-02-08T17:26:01Z
dc.date.available2021-02-08T17:26:01Z
dc.date.created2021-02-08T17:26:01Z
dc.date.issued2020-08-14
dc.identifierUribe Torrado, L. M. (2020). Estudio de caso de una estructura cinética de flexión activa bio-inspirada en la planta Impatiens capensis [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79132
dc.description.abstractThe following investigation presents the design and development proposal for a kinetic active bending structure, which integrates the high flexural deformations in kinematic systems, making the structure have a high transformation capacity. Transformable structures have the characteristic of being light, easy and fast to assemble, and they take up little volume when transporting them, so that they can be reused in different contexts, making this adaptation vital for having a low economic and environmental impact. While active bending structures are optimal for this type of construction, in which the structural components, thanks to their ability to bend, acquire a curved geometry that has the ability to return to its initial straight geometry, with the potential of expand its initial morphology creating transformable structures. The design of the structure is carried out under a biomimetic approach, inspired by the seed dispersal system of the Impatiens capensis plant. And its development is possible thanks to the use of fiber-reinforced polymers (FRP) such as fiberglassreinforced polymer (GFRP), which combine high tensile strength with low flexural rigidity, offering an elastic deformation of the entire structure facilitating the creation of complex geometries and flexible kinetic structures for its use.
dc.description.abstractLa siguiente investigación presenta la propuesta de diseño y desarrollo de una estructura cinética de flexión activa, la cual integra las altas deformaciones de la flexión en los sistemas cinemáticos, haciendo que la estructura tenga una alta capacidad de transformación. Las estructuras transformables tienen la característica de ser ligeras, de fácil y veloz montaje, y ocupan poco volumen al momento de transportarlas, para que puedan ser reutilizadas en diferentes contextos haciendo que esta adaptación sea vital para tener un bajo impacto económico y medioambiental. Mientras que las estructuras de flexión activa son óptimas para este tipo de construcciones, en las cuales, los componentes estructurales, gracias a su capacidad de doblarse, adquieren una geometría curva que tiene la capacidad de volver a su geometría recta inicial, con el potencial de expandir su morfología inicial creando estructuras transformables. El diseño la estructura se realiza bajo un enfoque biomimético, inspirada en el sistema de dispersión de semillas de la planta Impatiens capensis. Y su desarrollo es posible gracias al uso de los polímeros reforzados con fibras (FRP) como el polímero reforzado con fibra de vidrio (GFRP), los cuales combinan una alta resistencia a la tracción con una baja rigidez a la flexión, lo que ofrece una deformación elástica de toda la estructura facilitando la creación de geometrías complejas y de estructuras cinéticas flexibles para su uso.
dc.languagespa
dc.publisherBogotá - Artes - Maestría en Construcción
dc.publisherscuela de Arquitectura y Urbanismo
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationArmon, S., Efrati, E., Kupferman, R., & Sharon, E. (2011). Geometry and Mechanics in the Opening of Chiral Seed Pods. Science, 333(6050), 1726–1730. https://doi.org/10.1126/science.1203874
dc.relationAshby, M. F., & Cebon, D. (2005). Materials selection in mechanical design. MRS Bull, 30(12), 995.
dc.relationBauer, A., Längst, P., La Magna, R., Lienhard, J., Piker, D., Quinn, G., Gengnagel, C., & Bletzinger, K.-U. (2018). Exploring Software Approaches for the Design and Simulation of Bending Active Systems.
dc.relationBentley Systems. (2019). RAM® Elements CONNECT Edition.
dc.relationBessai, T. (2013). Bending-Active Bundled Structures: Preliminary Research and Taxonomy Towards an Ultra-Light Weight Architecture of Differentiated Components. In ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 293-300.
dc.relationBrancart, S., De Laet, L., Vergauwen, A., & De Temmerman, N. (2014). Transformable active bending: A kinematical concept. WIT Transactions on the Built Environment, 136. https://doi.org/10.2495/MAR140141
dc.relationBrancart, S, De Laet, L., & De Temmerman, N. (2016). Transformable bending-active structures : Manipulating elastic deformation in kinetic and rapidly assembled structures. ICSA 2016: International Conference of Structures and Architecture: Beyond Their Limits.
dc.relationBrancart, Stijn, De Laet, L., De Temmerman, N., Brancart, S., De Laet, L., & De Temmerman, N. (2014). Transformable Active Bending: Elastic deformation as component transformation in transformable structures. Proceedings of the IASS-SLTE 2014 Symposium “Shells, Membranes and Spacial Structures: Footprints.”
dc.relationBrancart, Stijn, Paduart, A., Vergauwen, A., Vandervaeren, C., De Laet, L., & Temmerman, N. (2017). Transformable structures: Materialising design for change. International Journal of Design & Nature and Ecodynamics, 12, 357–366. https://doi.org/10.2495/DNE-V12-N3-357-366
dc.relationBÜV‐Empfehlung. (2014). Tragende Kunststoffbauteile im Bauwesen (TKB).
dc.relationCallister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7). John Wiley & Sons New York.
dc.relationD Deegan, R. (2012). Finessing the fracture energy barrier in ballistic seed dispersal. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 109). https://doi.org/10.1073/pnas.1119737109
dc.relationDawson, C., Vincent, J., & Rocca, A.-M. (1997). How pine cones open. In Nature (Vol. 390). https://doi.org/10.1038/37745
dc.relationDouthe, C., Baverel, O., & Caron, J.-F. (2006). Form-finding of a grid shell in composite materials. Journal of the International Association for Shell and Spatial Structures, 47.
dc.relationElbaum, R., Zaltzman, L., Burgert, I., & Fratzl, P. (2007). The Role of Wheat Awns in the Seed Dispersal Unit. In Science (New York, N.Y.) (Vol. 316). https://doi.org/10.1126/science.1140097
dc.relationFiberline Composites. (2003). Fiberline Design Manual.
dc.relationGarti, F. (2015). Active-Bending Hybrid Structures: Parameter optimisation of restraining membrane. INSA Strasbourg.
dc.relationGengnagel, C., Alpermann, H., & Lafuent, E. (2013). Active Bending in Hybrid structures. Form – Rule | Rule – Form.
dc.relationGoldbach, A.-K., Bauer, A. M., Wüchner, R., & Bletzinger, K.-U. (2020). CAD-Integrated Parametric Lightweight Design With Isogeometric B-Rep Analysis. Frontiers in Built Environment, 6, 44. https://www.frontiersin.org/article/10.3389/fbuil.2020.00044
dc.relationHarlow, W. M. C., Jr Cóté, W. A., & C. Day, A. (1964). The Opening Mechanism of Pine Cone Scales. In Journal of Forestry (Vol. 62). https://doi.org/10.1093/jof/62.8.538
dc.relationHarris, D. (2016). How can biomimicry be used to enhance the design of an architectural column? https://doi.org/10.13140/RG.2.1.3101.4008
dc.relationHernandez, E. L. (2016). Design and Optimisation of Elastic Gridshells. Universität der Künste Berlin.
dc.relationHernández Sampieri, R., Fernández Collado, C., Baptista Lucio, P., & Casas Pérez, M. de la L. (1998). Metodología de la investigación (Vol. 1). Mcgraw-hill México.
dc.relationHibbit, H. D. (1979). Some follower forces and load stiffness. International Journal for Numerical Methods in Engineering, 14(6), 937–941. https://doi.org/10.1002/nme.1620140613
dc.relationKnippers, J. (2013). From Model Thinking to Process Design. Architectural Design, 83. https://doi.org/10.1002/ad.1558
dc.relationKotelnikova-Weiler, N., Douthe, C., Hernandez, E. L., Baverel, O., Gengnagel, C., & Caron, J.-F. (2013). Materials for actively-Bent structures. International Journal of Space Structures. https://doi.org/10.1260/0266-3511.28.3-4.229
dc.relationKumar, R. (2011). Research methodology: A step-by-step guide for beginners [Digital Edition].
dc.relationLängst, P., Bauer, A., La Magna, R., & Lienhard, J. (2018). Isogeometric Methods at the Interface of Architecture and Engineering.
dc.relationLienhard, J., La Magna, R., & Knippers, J. (2014). Form-finding bending-active structures with temporary ultra-elastic contraction elements. WIT Transactions on the Built Environment. https://doi.org/10.2495/MAR140091
dc.relationLienhard, J., Schleicher, S., & Knippers, J. (2015). Bio-inspired, flexible structures and materials. In Biotechnologies and Biomimetics for Civil Engineering. https://doi.org/10.1007/978-3-319-09287-4_12
dc.relationLienhard, Julian. (2014). Bending-active structures: form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein.
dc.relationLienhard, Julian, Alpermann, H., Gengnagel, C., & Knippers, J. (2013). Active Bending, A Review on Structures where Bending is used as a Self-Formation Process. International Journal of Space Structures. https://doi.org/10.1260/0266-3511.28.3-4.187
dc.relationLienhard, Julian, Poppinga, S., Schleicher, S., Masselter, T., Speck, T., & Knippers, J. (2009). Abstraction of plant movements for deployable structures in architecture.
dc.relationLienhard, Julian, Schleicher, S., Poppinga, S., Masselter, T., Milwich, M., Speck, T., & Knippers, J. (2011). Flectofin: A hingeless flapping mechanism inspired by nature. Bioinspiration & Biomimetics, 6, 045001. https://doi.org/10.1088/1748-3182/6/4/045001
dc.relationMedina, R. F. (2006). Estructuras adaptables. Univ. Nacional de Colombia.
dc.relationMegahed, N. A. (2017). Understanding kinetic architecture: typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2), 130–146. https://doi.org/10.1080/17452007.2016.1203676
dc.relationMinisterio de Ambiente, V. y D. territorial. (2010). Reglamento Colombiano de Construcción Sismo Resistente (NSR-10).
dc.relationNicholas, P., Lafuente Hernández, E., & Gengnagel, C. (2013). The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell. SimAUD ’13 Proceedings of the Symposium on Simulation for Architecture & Urban Design.
dc.relationPuystiens, S. (2015). Implementation of bending-active elements in kinematic form-active structures: Design of a representative case study. Textiles Composites and Inflatable Structures VII: Proceedings of the VII International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain. 19-21 October, 2015, 368–379.
dc.relationPuystiens, S., Craenenbroeck, M., Hemelrijck, D., Van Paepegem, W., Mollaert, M., & De Laet, L. (2019). Implementation of bending-active elements in kinematic form-active structures – Part I: Design of a representative case study. Composite Structures, 216. https://doi.org/10.1016/j.compstruct.2019.03.001
dc.relationRafsanjani, A., Brulé, V., Western, T. L., & Pasini, D. (2015). Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla. Scientific Reports, 5(1), 8064. https://doi.org/10.1038/srep08064
dc.relationRamsgaard, M., Tamke, M., Nicholas, P., Holden, A., Ayres, P., La Magna, R., & Gengnagel, C. (2017). Simulation in Complex Modelling. Symposium on Simulation for Architecture and Urban Design (SIMAUD).
dc.relationReyssat, E., & Mahadevan, L. (2009). Hygromorphs: From pine cones to biomimetic bilayers. Journal of the Royal Society, Interface / the Royal Society, 6, 951–957. https://doi.org/10.1098/rsif.2009.0184
dc.relationRivas-Adrover, E. (2015). Deployable Structures.
dc.relationRodriguez, C. (2011). Morphological Principles of Current Kinetic Architectural Structures.
dc.relationSakes, A., van der Wiel, M., Henselmans, P., Van Leeuwen, J. L., Dodou, D., & Breedveld, P. (2016). Shooting Mechanisms in Nature: A Systematic Review. In PLOS ONE (Vol. 11). https://doi.org/10.1371/journal.pone.0158277
dc.relationSchleicher, S. (2015). Bio-inspired compliant mechanisms for architectural design: transferring bending and folding principles of plant leaves to flexible kinetic structures.
dc.relationSchleicher, S., Lienhard, J., Poppinga, S., Speck, T., & Knippers, J. (2010). Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. In WIT Transactions on Ecology and the Environment (Vol. 138, pp. 479–489). https://doi.org/10.2495/DN100431
dc.relationSchleicher, S., Lienhard, J., Poppinga, S., Speck, T., & Knippers, J. (2015). A methodology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105–117. https://doi.org/10.1016/j.cad.2014.01.005
dc.relationSpeck, T., Bold, G., Masselter, T., Poppinga, S., Schmier, S., Thielen, M., & Speck, O. (2018). Biomechanics and Functional Morphology of Plants—Inspiration for Biomimetic Materials and Structures. In Plant Biomechanics: From Structure to Function at Multiple Scales (pp. 399–433). https://doi.org/10.1007/978-3-319-79099-2_18
dc.relationSpeck, T., & Speck, O. (2008). Process sequences in biomimetic research. In WIT Transactions on Ecology and the Environment (Vol. 114). https://doi.org/10.2495/DN080011
dc.relationSudo, S., Sato, M., Shiono, M., Shirai, A., & Hayase, T. (2015). Dynamic Behavior of Dandelion Flower Head and Spherical Seed Head. Int. J. Mech. Eng. Autom., 2, 32–39.
dc.relationTakahashi, K., Körner, A., Koslowski, V., & Knippers, J. (2016). Scale effect in bending-active plates and a novel concept for elastic kinetic roof systems.
dc.relationTsiptsis, I. N. (2018). Kiwi!3d MESHFREE, ISOGEOMETRIC FE ANALYSIS INTEGRATED IN CAD.
dc.relationVorstermans, R. L. G. (2018). Design and construct of a bending-active textile hybrid [Eindhoven University of Technology]. https://research.tue.nl/en/studentTheses/design-and-construct-of-a-bending-active-textile-hybrid
dc.relationWan, G., Jin, C., Trase, I., Zhao, S., & Chen, Z. (2018). Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling. Sensors, 18, 2973. https://doi.org/10.3390/s18092973
dc.relationWerner, C. de M. (2013). Transformable and transportable architecture: analysis of buildings components and strategies for project design. Universitat Politecnica de Catalunya.
dc.relationYao, L., & Ishii, H. (2019). Hygromorphic living materials for shape changing (pp. 41–57). https://doi.org/10.1016/B978-0-08-102260-3.00003-2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio de caso de una estructura cinética de flexión activa bio-inspirada en la planta Impatiens capensis
dc.typeOtro


Este ítem pertenece a la siguiente institución