dc.contributorAragón Novoa, Diana Marcela
dc.contributorPrincipios Bioactivos en Plantas Medicinales
dc.contributorCosta, Geison Modesti
dc.creatorSepúlveda Ramos, Paula Michelle
dc.date.accessioned2021-08-26T00:12:14Z
dc.date.available2021-08-26T00:12:14Z
dc.date.created2021-08-26T00:12:14Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80021
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractPassiflora ligularis, comúnmente conocida como granadilla, es una especie que ha demostrado resultados prometedores de actividad hipoglicemiante/antidiabética. Con el presente trabajo, se aplicó la utilidad del Sistema de Clasificación Biofarmacéutica en el estudio de nuevos principios activos, para caracterizar y evaluar un extracto de hojas de P. ligularis, como matriz de partida útil en el de diseño y desarrollo de una formulación; y así, contribuir al desarrollo de un producto fitoterapéutico a partir de las hojas de esta especie. Inicialmente, se estandarizaron las condiciones de extracción de flavonoides (considerados como los marcadores activos) a partir de las hojas, mediante extracción asistida por ultrasonido, para lo cual, previamente se desarrolló y validó una metodología analítica por UHPLC-DAD. Se evaluó la actividad farmacológica del extracto optimizado según un modelo in vitro de actividad antiglicante y, en el modelo in vivo de tolerancia a la glucosa en ratones Swiss ICR. Adicionalmente, se determinó la estabilidad bajo condiciones de estrés, y las características biofarmacéuticas, solubilidad y permeabilidad intestinal, del extracto optimizado, en función de los marcadores activos. De acuerdo con el análisis de superficie de respuesta, las condiciones óptimas de extracción de flavonoides por ultrasonido fueron, etanol 63%, 70ºC, durante 33 minutos; el extracto optimizado demostró mayor actividad inhibitoria de la formación de los productos finales de glicación avanzada, y, mejor actividad anti-hiperglicemiante, que un extracto de las hojas obtenido por infusión, método de extracción de la medicina tradicional. Por otro lado, se catalogó el extracto optimizado como prácticamente estable, fotoestable, lábil y muy lábil, bajo condiciones oxidativas, fotolíticas, de hidrólisis neutra e hidrólisis ácida-básica, respectivamente. Por último, se comprendieron algunos de los factores que influencian el proceso de absorción intestinal de los flavonoides presentes en el extracto, como su alta solubilidad, y baja permeabilidad en el modelo in situ SPIP (Single Pass Intestinal Perfusion), que permitieron catalogarlo dentro de la clase III del sistema de clasificación biofarmacéutico (SCB). Con el fin de evaluar posibles efectos de la matriz vegetal sobre las propiedades biofarmacéuticas de los marcadores activos, se estudiaron dichas características en el flavonoide mayoritario (isoquercetina), al ser un componente dentro del extracto o un compuesto puro. En el primer caso, se clasificó también dentro de la clase III, y en el segundo, como clase II (baja solubilidad-alta permeabilidad); considerándose la baja solubilidad como uno de los mayores retos a superar en etapas de investigación y desarrollo Debido a todo lo anterior, se propone aprovechar el extracto optimizado y caracterizado de hojas de P. ligularis, aplicando estrategias de tecnología farmacéutica que favorezcan la permeabilidad de principios activos clase III, para el diseño y desarrollo de un potencial producto fitoterapéutico, que ayude en el tratamiento de la hiperglicemia y/o diabetes.(Texto tomado de la fuente)
dc.description.abstractPassiflora ligularis, commonly known as granadilla, is a species that has shown promising results of hypoglycemic/antidiabetic activity. With the present work, the usefulness of the Biopharmaceutical Classification System in the study of new active principles, was applied to characterize and evaluate an extract of P. ligularis leaves, as an active multicomponent matrix, useful in the design and development of a formulation; and thus, contribute to the development of a herbal medicinal product from the leaves of this species. Initially, the extraction conditions by ultrasound-assisted extraction of the leaves flavonoids (considered as active markers) were standardized, for which an analytical methodology was previously developed and validated by UHPLC-DAD. The pharmacological activity of the optimized extract was evaluated according to the an in vitro model of antiglycation activity and, in the in vivo model of glucose tolerance in Swiss ICR mice. Additionally, the stability under stress conditions, and the biopharmaceutical characteristics, solubility and intestinal permeability, of the optimized extract were determined, as a function of the active markers. According to the response surface analysis, the optimal flavonoid extraction conditions by ultrasound were 63% ethanol, 70 °C, for 33 minutes. The optimized extract showed greater inhibitory activity on the formation of advanced glycation end products, and better anti-hyperglycemic activity, than a leaf extract obtained by infusion, an extraction method of traditional medicine. On the other hand, the optimized extract was classified as practically stable, photostable, labile and very labile, under oxidative, photolytic, neutral hydrolysis and acid-base hydrolysis conditions, respectively. Finally, some of the factors that influence the intestinal absorption process of the flavonoids present in the extract were understood, such as their high solubility and low permeability in the SPIP (Single Pass Intestinal Perfusion) in situ model, which allowed it to be classified within Class III of the Biopharmaceutical Classification System (SCB). In order to evaluate possible effects of the plant matrix on the biopharmaceutical properties of the active markers, these characteristics were studied in the major flavonoid (isoquercetin), as a component within the extract or as a pure compound. In the first case, it was also classified within class III, and in the second one, as class II (low solubility-high permeability). Low solubility is considered as one of the greatest challenges to overcome during research and development stages. Due to all of the above, it is proposed to use the optimized and characterized extract of P. ligularis leaves, applying pharmaceutical technology strategies that favor the permeability of class III active principles, for the design and development of a potential herbal medicinal product, which helps in the treatment of hyperglycemia and/or diabetes.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisherDepartamento de Farmacia
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Cefalu WT, Stephens JM, Ribnicky DM. Diabetes and herbal (botanical) medicine. In: Herbal medicine: Biomolecular and clinical aspects. Second. CRC Press/Taylor & Francis; 2011. p. 405–18.
dc.relation2. Shan JJ, Rodgers K, Lai C-T, Sutherland SK. Challenges in natural health product research: The importance of standardization. Proc West Pharmacol Soc. 2007;50:24–30.
dc.relation3. Organización Mundial de la Salud. Estrategia de la OMS sobre medicina tradicional 2014-2023. Organización Mundial de la Salud. 2013. p. 1–72.
dc.relation4. Kumari R. A review on the standardization of herbal medicines. Int J Pharma Sci Res. 2016;7(02):97–106.
dc.relation5. Cañigueral S, Tschopp R, Ambrosetti L, Vignutelli A, Scaglione F, Petrini O. The development of herbal medicinal products. Pharmaceut Med. 2008;22(2):107–18.
dc.relation6. The European Agency for the Evaluation of Medicinal Products. Points to consider on the biopharmaceutical characterisation of herbal medicinal products. 2003 p. 3–6.
dc.relation7. Lee TW, Boersen NA, Hui H, Chow S, Wan K, Chow AH. Delivery of poorly soluble compounds by amorphous solid dispersions. Curr Pharm Des. 2014;20(3):303–24.
dc.relation8. Ministerio de salud y protección social. Resolución 1156 de 2018. República de Colombia; 2018 p. 4.
dc.relation9. Monzón JG. Estudio metabólico de hojas de Passiflora ligularis Juss y su relación con la actividad inhibitoria sobre α-amilasa y α-glucosidasa. Universidad Nacional de Colombia; 2019.
dc.relation10. Rey D, Miranda Sulis P, Alves Fernandes T, Gonçalves R, Silva Frederico MJ, Costa GM, et al. Astragalin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium. 2019;80(March):56–62.
dc.relation11. Rey D, Fernandes T, Sulis P, Gonçalves R, Sepúlveda P, Frederico MJ, et al. Cellular target of isoquercetin for glucose uptake in rat soleus muscle. Chem Biol Interact. 2020;330:109198.
dc.relation12. Baena Y, Ponce D´león L. Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Rev Colomb Cienc Quím Farm. 2008;37(1):18–32.
dc.relation13. Waldmann S, Almukainzi M, Chacra N, Amidon G. Provisional biopharmaceutical classification of some common herbs used in western medicine. Mol Pharm. 2012;9(4):815–22.
dc.relation14. Fong SYK, Liu M, Wei H, Löbenberg R, Kanfer I, Lee VHL, et al. Establishing the pharmaceutical quality of Chinese herbal medicine: A provisional BCS classification. Mol Pharm. 2013;10(5):1623–43.
dc.relation15. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Vol. 12, Pharmaceutical Research. 1995. p. 413–20.
dc.relation16. U.S. Department of Health and Human Services, Food and drug administration, Center for Drug Evaluation and Research (CDER). M9 Biopharmaceutics classification system-based biowaivers. Guidance for industry. 2021 p. 1–16.
dc.relation17. EMA. European Medicines Agency. Guideline on the investigation of bioequivalence. 2010 p. 1–27.
dc.relation18. WHO. World and Health Organization. WHO Expert commitee on specifications for pharmaceutical preparations [Internet]. 2005. Disponible en: http://apps.who.int/iris/bitstream/10665/43443/1/WHO_TRS_937_eng.pdf
dc.relation19. ICH. ICH Harmonised guideline. Biopharmaceutics classification system-based biowaivers. M9 [Internet]. [citado 2018 Diciembre 13]. Disponible en: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M9/M9EWG_DraftGuideline_Step2_2018_0606.pdf
dc.relation20. Ministerio de salud y protección social. Resolución 1124 de 2016. República de Colombia; 2016 p. 1–62.
dc.relation21. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: Transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.
dc.relation22. Charalabidis A, Sfouni M, Bergström C, Macheras P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): Beyond guidelines. Int J Pharm. 2019;566:264–81.
dc.relation23. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10(1):208–12.
dc.relation24. Davanço MG, Campos DR, Carvalho P de O. In vitro – In vivo correlation in the development of oral drug formulation: A screenshot of the last two decades. Int J Pharm. 2020;580:119210.
dc.relation25. Zane P, Gieschen H, Kersten E, Mathias N, Ollier C, Johansson P, et al. In vivo models and decision trees for formulation development in early drug development: A review of current practices and recommendations for biopharmaceutical development. Eur J Pharm Biopharm. 2019;142:222–31.
dc.relation26. Butler JM, Dressman JB. The developability classification system: Application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99(12):4940–54.
dc.relation27. Rosenberger J, Butler J, Dressman J. A refined Developability Classification System (rDCS). J Pharm Sci. American Pharmacists Association; 2018;107(8):2020–32.
dc.relation28. Rosenberger J, Butler J, Muenster U, Dressman J. Application of a refined developability classification system. J Pharm Sci. 2019;108(3):1090–100.
dc.relation29. Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57(1):152–63.
dc.relation30. Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. Eur J Pharm Sci. 2015;76:203–12.
dc.relation31. Macheras P, Karalis V. A non-binary biopharmaceutical classification of drugs: The ABΓ system. Int J Pharm. 2014;464(1–2):85–90.
dc.relation32. Camenisch GP. Drug disposition classification systems in discovery and development: A comparative review of the BDDCS, ECCS and ECCCS concepts. Pharm Res. 2016;33(11):2583–93.
dc.relation33. Abdel-Rahman SM, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp GT. Summary of the National Institute of child health and human development-best pharmaceuticals for children act pediatric formulation initiatives workshop-pediatric Biopharmaceutics Classification System working group. Clin Ther. 2012;34(11):S11–24.
dc.relation34. Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: Key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102–26.
dc.relation35. Elder DP, Holm R, Kuentz M. Medicines for pediatric patients-biopharmaceutical, developmental, and regulatory considerations. J Pharm Sci. 2017;106(4):950–60.
dc.relation36. Shah V, Yacobi A, Miron D, et.al. A science based approach to topical drug classification system (TCS). Int J Pharm. 2015;491(1–2):21–5.
dc.relation37. Locvv D, Kaszkin M. Approaching the problem of bioequivalence of herbal medicinal products. Phyther Res. 2002;16(8):705–11.
dc.relation38. European Pharmacopoeia. Extracts. En: European Pharmacopoeia. 7ª ed. 2011. p. 674.
dc.relation39. Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC – MS method. J Ethnopharmacol. 2015;163:31–8.
dc.relation40. Pérez-Sánchez A, Borrás-Linares I, Barrajón-Catalán E, Arráez-Román D, González-Álvarez I, Ibáñez E, et al. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS One. 2017;12(2):1–18.
dc.relation41. Domínguez Moré GP, Feltrin C, Brambila PF, Cardona MI, Echeverry SM, Simões CMO, et al. Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. J Pharm Pharmacol. 2020;72(5):738–47.
dc.relation42. Ocampo Pérez J, Coppens d’Eeckenbrugge G, Restrepo M, Jarvis A, Salazar M, Caetano C. Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colomb. 2007;8(1):1–45.
dc.relation43. Hernández, R. Bernal A. Lista de Especies de Passifloraceae de Colombia. Biota Colomb. 2000;1(3):320–35.
dc.relation44. Ocampo J. Diversidad y distribución de las Passifloraceae en el departamento del Huila en Colombia. Acta Biológica Colomb. 2013;18(3):511–6.
dc.relation45. Ministerio de Agricultura. Pasifloras son buen ejemplo de aumento de exportaciones y sustitución de importaciones [Internet]. [citado 2017 Abril 13]. Disponible en: https://www.minagricultura.gov.co/noticias/Paginas/Pasifloras-son-buen-ejemplo-de-aumento-de-exportaciones-y-sustitución-de-importaciones.aspx
dc.relation46. Dhawan K, Dhawan S, Sharma A. Passiflora: A review update. J Ethnopharmacol. 2004;94(1):1–23.
dc.relation47. Ramos FA, Castellanos L, López C, Palacios L, Duque C, Pacheco R, et al. An orientin derivative isolated from Passiflora tripartita var. mollissima. Lat Am J Pharm. 2010;29(1):141–3.
dc.relation48. Kannan S, Devi BP, Jayakar B. In-vitro antibacterial activity of various extracts on the leaves of Passiflora mollissima. J Chem Pharm Res. 2010;2(5):225–8.
dc.relation49. Edwin E, Sheeja E, Dhanabal S, Suresh B. Antihyperglycemic activity of Passiflora mollissima bailey. Indian J Pharm Sci. 2007;69(4):570–1.
dc.relation50. Benincá JP, Montanher AB, Zucolotto SM, Schenkel EP, Fröde TS. Evaluation of the anti-inflammatory efficacy of Passiflora edulis. Food Chem. 2007;104(3):1097–105.
dc.relation51. Ayres A, Araújo L, Soares T, Costa G, Reginatto F, Ramos FA, et al. Comparative central effects of the aqueous leaf extract of two populations of Passiflora edulis. Rev Bras Farmacogn. 2015;25(5):499–505.
dc.relation52. Deng J, Zhou Y, Bai M, Li H, Li L. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J Ethnopharmacol. 2010;128(1):148–53.
dc.relation53. Cazarin C, da Silva J, Colomeu T, Batista Â, Meletti L, Paschoal JAR, et al. Intake of Passiflora edulis leaf extract improves antioxidant and anti-inflammatory status in rats with 2,4,6-trinitrobenzenesulphonic acid induced colitis. J Funct Foods. 2015;17:575–86.
dc.relation54. Rivas Mena KE, Muñoz DL, Pino Benítez CN, Balcázar Morales N. Actividad antioxidante, contenido fenólico total y citotoxicidad de extractos polares obtenidos de plantas antidiabéticas colombianas. Rev Cuba Plantas Med. 2015;20(3):277–89.
dc.relation55. Celso P, Hoshino A, Campos J, Fúlvio R. Possible anxiolytic effect of two extracts of Passiflora quadrangularis L. in experimental models. Phyther Res. 2007;21:481–4.
dc.relation56. Ramaiya SD, Bujang JS, Zakaria MH. Assessment of total phenolic , antioxidant , and antibacterial activities of Passiflora species. Sci World J. 2014;167309.
dc.relation57. Yuldasheva LN, Carvalho EB, Catanho MTJA, Krasilnikov O V. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves. Brazilian J Med Biol Res. 2005;38(7):1061–70.
dc.relation58. Gazola AC, Costa GM, Zucolotto SM, Castellanos L, Ramos FA, de Lima TCM, et al. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomed Pharmacother. 2018;100(43):388–93.
dc.relation59. Barbosa PR, Valvassori SS, Bordignon CL, Kappel VD, Martins MR, Gavioli EC, et al. The aqueous extracts of Passiflora alata and Passiflora edulis reduce anxiety-related behaviors without affecting memory process in rats. J Med Food. 2008;11(2):282–8.
dc.relation60. Wasicky A, Hernandes LS, Vetore-Neto A, Moreno PRH, Bacchi EM, Kato ETM, et al. Evaluation of gastroprotective activity of Passiflora alata. Brazilian J Pharmacogn. 2015;25(4):407–12.
dc.relation61. Rudnicki M, de Oliveira MR, Veiga Pereira T da, Reginatto FH, Dal-Pizzol F, Fonseca Moreira JC. Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem. 2007;100(2):719–24.
dc.relation62. Colomeu TC, Figueiredo D, Cazarin CBB, Schumacher N, Jr MRM, Meletti LMM, et al. Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice). Int Immunopharmacol. 2013;1–10.
dc.relation63. Figueiredo D, Colomeu TC, Schumacher NSG, Stivanin-Silva LG, Cazarin CBB, Meletti LMM, et al. Aqueous leaf extract of Passiflora alata Curtis promotes antioxidant and anti-inflammatory effects and consequently preservation of NOD mice beta cells (non-obese diabetic). Int Immunopharmacol. 2016;35:127–36.
dc.relation64. Kandandapani S, Balaraman AK, Ahamed HN. Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chin J Nat Med. 2015;13(9):680–6.
dc.relation65. Salgado JM, Bombarde TAD, Mansi DN, Piedade SMDS, Meletti LMM. Effects of different concentrations of passion fruit peel (Passiflora edulis) on the glicemic control in diabetic rat. Ciência e Tecnol Aliment. 2010;30(3):784–9.
dc.relation66. Zas P, John S. Diabetes and medicinal benefits of Passiflora edulis. Int J Food Sci Nutr Diet. 2016;5(2):265–9.
dc.relation67. Janebro DI, De Queiroz MDSR, Ramos AT, Sabaa-Srur AUO, Da Cunha MAL, Diniz MDFFM. Efeito da farinha da casca do maracujá-amarelo (Passiflora edulis f. flavicarpa Deg.) nos níveis glicêmicos e lipídicos de pacientes diabéticos tipo 2. Brazilian J Pharmacogn. 2008;18(Supl.):724–32.
dc.relation68. Birudu RB, Naik MJ, Janardhan M. Anti-Dyslipidemia effect of ethanol extract of Passiflora foetida on dextrose induced diabetic rats. UK J Pharm Biosci. 2016;4(1):13–9.
dc.relation69. Sijuade A. Effect of methanolic extract of Passiflora foetida on glucose kinetics in alloxan-induced diabetic mice. Br J Med Med Res. 2016;14(1):1–7.
dc.relation70. Montefusco-pereira CV, Carvalho MJ De, Paula A, Boleti DA, Teixeira LS, Matos HR, et al. Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. 2013; 170(6):1367-1378.
dc.relation71. Rivera B, Miranda D, Avila LA, Nieto AM. Podas y labores complementarias en el cultivo de granadilla. En: Manejo integral del cultivo de la granadilla (Passiflora ligularis Juss). Primera Ed. Editorial Litoas; 2002. p. 43.
dc.relation72. Ocampo J, Merlín Y. Passiflora de Colombia (Passifloraceae) [Internet]. Citado febrero 2018. Disponible en: https://www.researchgate.net/publication/260510981_Pasiflora_de_Colombia_Passifloraceae
dc.relation73. Ocampo J, Arias JC, Urrea R. Colecta e identificación de genotipos de élite de granadilla (Passiflora ligularis Juss.) en Colombia. Rev Colomb Ciencias Hortícolas. 2015;9(1):9.
dc.relation74. DANE-Departamento Administrativo Nacional de Estadística. Encuesta Nacional Agropecuaria ENA 2015 [Internet]. 2016 [citado 2018 Abril 1]. p. 1–25. Disponible en: http://www.agronet.gov.co/Lists/Boletin/attachments/285/boletin_ena_2015.pdf
dc.relation75. Carvajal LM, Turbay S, Álvarez LM, Rodríguez A, Álvarez JM, Bonilla K, et al. Relación entre los usos populares de la granadilla (Passiflora ligularis Juss) y su composición fitoquímica. Biotecnol en el Sect Agropecu y Agroind. 2014;12(2):185–96.
dc.relation76. Chassagne D, Crouzet J, Bayonove CL, Baumes RL. Glycosidically bound eugenol and methyl salicylate in the fruit of edible Passiflora species. J Agric Food Chem. 1997;45(7):2685–9.
dc.relation77. Porto-Figueira P, Freitas A, Cruz CJ, Figueira J, Câmara JS. Profiling of passion fruit volatiles: An effective tool to discriminate between species and varieties. Food Res Int. 2015;77:408–18.
dc.relation78. Macías CM. Saponinas y flavonoides de Passiflora ligularis y evaluación de su actividad antiinflamatoria. Universidad Nacional de Colombia; 2015.
dc.relation79. Zucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, et al. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal. 2012;23(3):232–9.
dc.relation80. Navarro SAC, Aldana APS, Longas FF. Potencial antioxidante y antimicrobiano de extractos acuosos e hidroalcohólicos de granadilla (Passiflora ligularis). Acta Agron. 2014;63(3):1–11.
dc.relation81. Marina L, Pabón C De, Turbay IS, Rojano IB, Lizeth II, Álvarez M, et al. Algunas especies de Passiflora y su capacidad antioxidante. Rev Cuba Plantas Med. 2011;16(4):354–63.
dc.relation82. Anusooriya P, Malarvizhi D, Gopalakrishnan VK, Devaki K. Antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. Int Sch Res Not. 2014;130342:1–10.
dc.relation83. Saravanan S, Parimelazhagan T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci Hum Wellness. 2014;3(2):56–64.
dc.relation84. Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci Biotechnol Biochem. 2016;80(8):1580–6.
dc.relation85. Muhammad A, Guerrero-analco JA, Martineau LC, Musallam L, Madiraju P, Nachar A, et al. Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree first nation. J Nat Prod. 2012;75:1284–8.
dc.relation86. Farkhondeh T, Samarghandian S, Roshanravan B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J Cell Physiol. 2019;234(10):17144–58.
dc.relation87. EMA. European Medicines Agency. Guideline on quality of herbal medicinal products/traditional herbal medicinal products [Internet]. Vol. 44. 2011 [citado 2018 Abril 14]. Disponible en: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/09/WC500113209
dc.relation88. Costa G, Gazola A, et.al. Vitexin derivatives as chemical markers in the differentiation of the closely related species Passiflora alata curtis and Passiflora quadrangularis linn. J Liq Chromatogr Relat Technol. 2013;36:1697–707.
dc.relation89. Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules. 2007;12(3):593–606.
dc.relation90. ICH. Validation of analytical procedures: Text and methodology - Q2(R1). London; 2005.
dc.relation91. Sepúlveda P, Costa GM, Aragón DM, Ramos F, Castellanos L. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J Appl Pharm Sci. 2018;8(9):081–6.
dc.relation92. Vanhoenacker G, Sandra P. High temperature and temperature programmed HPLC: Possibilities and limitations. Anal Bioanal Chem. 2008;390(1):245–8.
dc.relation93. Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, et al. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. Phytochemistry. 2020;172(112272).
dc.relation94. Costa GM, Gazola AC, Zucolotto SM, Castellanos L, Ramos FA, Reginatto FH, et al. Chemical profiles of traditional preparations of four South American Passiflora species by chromatographic and capillary electrophoretic techniques. Rev Bras Farmacogn. 2016;26(4):451–8.
dc.relation95. Farag MA, Otify A, Porzel A, Michel CG, Elsayed A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal Bioanal Chem. 2016;408(12):3125–43.
dc.relation96. Gomes SVF, Portugal LA, dos Anjos JP, de Jesus ON, de Oliveira EJ, David JP, et al. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem J. 2017;132:28–35.
dc.relation97. Wosch L, dos Santos KC, Imig DC, Santos CAM. Comparative study of Passiflora taxa leaves: II. A chromatographic profile. Rev Bras Farmacogn. 2017;27(1):40–9.
dc.relation98. Rotta EM, Rodrigues CA, Sales IC, Maldaner L, Visentainer JV. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. Lwt. 2019;100:397–403.
dc.relation99. Wang M, Carver JJ, Phelan V V., Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34(8):828–37.
dc.relation100. Kajdžanoska M, Gjamovski V, Stefova M. HPLC-DAD-ESI-MS Identification of phenolic compounds in cultivated strawberries from Macedonia. Maced J Chem Chem Eng. 2010;29(2):181–94.
dc.relation101. Feeny P, Sachdev K, Rosenberry L, Carter M. Luteolin 7-O-(6″-O-malonyl)-β-d-glucoside and trans-chlorogenic acid: Oviposition stimulants for the black swallowtail butterfly. Phytochemistry. 1988;27(11):3439–48.
dc.relation102. Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39(1):1–15.
dc.relation103. Li ZH, Guo H, Xu W Bin, Ge J, Li X, Alimu M, et al. Rapid identification of flavonoid constituents directly from PTP1B inhibitive extract of raspberry (Rubus idaeus L.) leaves by HPLC-ESI-QTOF-MS-MS. J Chromatogr Sci. 2016;54(5):805–10.
dc.relation104. Yao H, Chen Y, Shi P, Hu J, Li S, Huang L, et al. Screening and quantitative analysis of antioxidants in the fruits of Livistona chinensis R. Br using HPLC-DAD-ESI/MS coupled with pre-column DPPH assay. Food Chem. 2012;135(4):2802–7.
dc.relation105. Downey MO, Rochfort S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J Chromatogr A. 2008 Aug 1;1201(1):43–7.
dc.relation106. Vallejo F, Tomás-Barberán FA, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A. 2004;1054:181–93.
dc.relation107. Carazzone C, Mascherpa D, Gazzani G, Papetti A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013;138:1062–71.
dc.relation108. Braemer R, Tsoutsias Y, Hurabielle M, Paris M. Biotransformations of quercetin and apigenin by a cell suspension culture of Cannabis sativa. Planta Med. 1987;53(2):225–6.
dc.relation109. Sakalem ME, Negri G, Tabach R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Brazilian J Pharmacogn. 2012;22(6):1219–32.
dc.relation110. García-Ruiz A, Girones-Vilaplana A, León P, Moreno DA, Stinco CM, Meléndez-Martínez AJ, et al. Banana passion fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, phytochemical composition and antioxidant capacity. Molecules. 2017;22(1):1–12.
dc.relation111. Yolmeh M, Jafari SM. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017;10(3):413–33.
dc.relation112. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001;56:1–21.
dc.relation113. Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, et al. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res. 2013;47(1):93–137.
dc.relation114. Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA. Glycated albumin: An overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13(1):1–9.
dc.relation115. Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014;19(11):18828–49.
dc.relation116. Derbré S, Gatto J, Pelleray A, Coulon L, Séraphin D, Richomme P. Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers: Application to the screening of a small natural compounds library. Anal Bioanal Chem. 2010;398(4):1747–58.
dc.relation117. Sato N, Li W, Tsubaki M, Higai K, Takemoto M, Sasaki T, et al. Flavonoid glycosides from Japanese Camellia oil cakes and their inhibitory activity against advanced glycation end-products formation. J Funct Foods. 2017;35:159–65.
dc.relation118. Pinelo M, Sineiro J, Núñez MJ. Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J Food Eng. 2006;77(1):57–63.
dc.relation119. World Health Organization. Quality control methods for herbal materials. 2011 p. 3.
dc.relation120. Silva EM, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol. 2007;55(3):381–7.
dc.relation121. J. Mason T, Chemat F, Vinatoru M. The extraction of natural products using ultrasound or microwaves. Curr Org Chem. 2011;15(2):237–47.
dc.relation122. Lavilla I, Bendicho C. Fundamentals of ultrasound-assisted extraction. En: Water extraction of bioactive compounds: From plants to drug development. Elsevier Inc.; 2017. p. 291–316.
dc.relation123. Both S, Chemat F, Strube J. Extraction of polyphenols from black tea -conventional and ultrasound assisted extraction. Ultrason Sonochem. 2014;21(3):1030–4.
dc.relation124. Jovanović AA, Đorđević VB, Zdunić GM, Pljevljakušić DS, Šavikin KP, Gođevac DM, et al. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep Purif Technol. 2017;179:369–80.
dc.relation125. Safdar MN, Kausar T, Nadeem M. Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel. J Food Process Preserv. 2017;41(4).
dc.relation126. Wang X, Wu Q, Wu Y, Chen G, Yue W, Liang Q. Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules. 2012;17(4):6769–83.
dc.relation127. Pingret D, Fabiano-Tixier AS, Farid C. Ultrasound-assisted extraction. En: Rostagno MA, Prado JM, editors. Natural product extraction: principles and applications. Royal Society of Chemistry; 2013. p. 89–112.
dc.relation128. Tomaz I, Maslov L, Stupic D, Preiner D, Ašperger D, Karoglan Kontic J. Multi-response optimisation of ultrasound-assisted extraction for recovery of flavonoids from red grape skins using response surface methodology. Phytochem Anal. 2016;27(1):13–22.
dc.relation129. Paini M, Casazza AA, Aliakbarian B, Perego P, Binello A, Cravotto G. Influence of ethanol/water ratio in ultrasound and high-pressure/high-temperature phenolic compound extraction from agri-food waste. Int J Food Sci Technol. 2016;51(2):349–58.
dc.relation130. Benyounis KY. Procedure of conducting an experiment using response surface methodology for manufacturing process modelling and optimization. En: Reference module in materials science and materials engineering. Elsevier Ltd.; 2019. p. 1–11.
dc.relation131. Mishra S, Datta-Gupta A. Experimental design and response surface analysis. En: Applied statistical modeling and data analytics. Elsevier Inc.; 2018. p. 169–93.
dc.relation132. Md Yusof AH, Abd Gani SS, Zaidan UH, Halmi MIE, Zainudin BH. Optimization of an ultrasound-assisted extraction condition for flavonoid compounds from Cocoa Shells (Theobroma cacao) using response surface methodology. Molecules. 2019;24(4):1–16.
dc.relation133. Lapornik B, Prosek M, Golc A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng. 2005;71:214–22.
dc.relation134. Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem. 2006;13(6):543–8.
dc.relation135. Yahya N, Attan N, Wahab R. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food Bioprod Process. 2018;112:69–85.
dc.relation136. Kaymak-Ertekin F, Gedik A. Kinetic modelling of quality deterioration in onions during drying and storage. J Food Eng. 2005;68(4):443–53.
dc.relation137. Gadioli IL, Sá M De, Veras M, Carvalho O De, Costa AM, Lacerda L De, et al. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit Rev Food Sci Nutr. 2018;58(5):785–807.
dc.relation138. Liu S, Yang F, Zhang C, Ji H, Hong P, Deng C. Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. J Supercrit Fluids. 2009;48(1):9–14.
dc.relation139. Ballesteros D, Alvarez G, Ibánez E, Parada F, Cifuentes A. Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography–high resolution mass spectrometry. J Chromatogr A. 2019;1595:144–57.
dc.relation140. de Santana FC, de Oliveira Torres LR, Shinagawa FB, de Oliveira e Silva AM, Yoshime LT, de Melo ILP, et al. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J Food Sci Technol. 2017;54(11):3552–61.
dc.relation141. Zeraik ML, Yariwake JH. Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem J. 2010;96(1):86–91.
dc.relation142. Santos TRJ, Barbosa PF, Rodrigues HGA, Narain N, de Aquino Santana LCL. Granadilla seed extract as antimicrobial and bioactive compounds source: mathematical modelling of extraction conditions. Qual Assur Saf Crop Foods. 2019;11(2):157–70.
dc.relation143. Toma M, Vinatoru M, Mason TJ. Ultrasonically assisted extraction of bioactive principles from plants and their constituents. En: Advances in Sonochemistry. JAI Press Inc; 1999. p. 209–47.
dc.relation144. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006;17:300–12.
dc.relation145. Biesaga M. Influence of extraction methods on stability of flavonoids. J Chromatogr A. 2011;1218(18):2505–12.
dc.relation146. Sun Y, Liu Z, Wang J. Ultrasound-assisted extraction of five isoflavones from Iris tectorum Maxim. Sep Purif Technol. 2011;78(1):49–54.
dc.relation147. Moraes MDLL, Vilegas JHY, Lan FM. Supercritical fluid extraction of glycosylated flavonoids from Passiflora leaves. Phytochem Anal. 1997;8(February):257–60.
dc.relation148. Ong ES. Extraction methods and chemical standardization of botanicals and herbal preparations. J Chromatogr B Anal Technol Biomed Life Sci. 2004;812:23–33.
dc.relation149. Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR. Extraction and analysis of polyphenols: Recent trends. Crit Rev Biotechnol. 2011;31(3):227–49.
dc.relation150. Lee MH, Lin CC. Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae: Ultrasonic and pressurized solvent extractions. Food Chem. 2007;105(1):223–8.
dc.relation151. Gil-Chávez G, Villa JA, Ayala-Zavala JF, Basilio Heredia J, Sepulveda D, Yahia EM, et al. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr Rev Food Sci Food Saf. 2013;12(1):5–23.
dc.relation152. Mason TJ, Riera E, Vercet A, Lopez-buesa P. Application of ultrasound. En: Emerging technologies for food processing: An overview. Elsevier Ltd; 2005. p. 323–51.
dc.relation153. Echeverry SM, Medina HI, Costa GM, Aragón DM. Optimization of flavonoid extraction from Passiflora quadrangularis leaves with sedative activity and evaluation of its stability under stress conditions. Rev Bras Farmacogn. 2018;28(5):610–7.
dc.relation154. Díaz L, Luna D. Productos finales de glicación avanzada en la enfermedad cardiovascular como complicación de la diabetes. Med e Investig. 2016;4(1):52–7.
dc.relation155. Ahmed N. Advanced glycation endproducts - Role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3–21.
dc.relation156. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14.
dc.relation157. Da Silva Morrone M, De Assis AM, Da Rocha RF, Gasparotto J, Gazola AC, Costa GM, et al. Passiflora manicata (Juss.) aqueous leaf extract protects against reactive oxygen species and protein glycation in vitro and ex vivo models. Food Chem Toxicol. 2013;60:45–51.
dc.relation158. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017;25(1):84–92.
dc.relation159. Chinchansure AA, Korwar AM, Kulkarni MJ, Joshi SP. Recent development of plant products with anti-glycation activity: A review. R Soc Chem. 2015;5:31113–38.
dc.relation160. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, et al. Tuning a 96-Well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013;18:14320–39.
dc.relation161. Matsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorganic Med Chem. 2003;11(24):5317–23.
dc.relation162. Jang DS, Kim JM, Kim J, Yoo JL, Kim YS, Kim JS. Effects of compounds isolated from the fruits of Rumex japonicus on the protein glycation. Chem Biodivers. 2008;5(12):2718–23.
dc.relation163. Jang MH, Piao XL, Kim JM, Kwon SW, Park JH. Inhibiroty effect of the cree traditional medicine Wiischichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproduct formation: Identificaction of active principles. Phyther Res. 2010;24:741–7.
dc.relation164. Ospina LF, Olarte J, Calle J, Pinzón R. Comprobacion de la actividad hipoglicemiante y captadora de radicales libres oxigenados de los principios activos de Curatella americana L. Rev Colomb Ciencias Químico-Farmacéuticas. 1995;24(1):6–11.
dc.relation165. Alarcon Aguilara FJ, Roman Ramos R, Perez Gutierrez S, Aguilar Contreras A, Contreras Weber CC, Flores Saenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998;61(2):101–10.
dc.relation166. Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin- induced diabetes in mice. J Ethnopharmacol. 2012;139(3):801–6.
dc.relation167. Sudasinghe HP, Peiris DC. Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ. 2018;6(2).
dc.relation168. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MSRB, Folador P, Damazio RG, et al. Flavonoids: cellular and molecular mechanism of action in glucose homeostasis. Mini Rev Med Chem. 2008;8(10):1032–8.
dc.relation169. Nicolle E, Souard F, Faure P, Boumendjel A. Flavonoids as promising lead compounds in type 2 diabetes mellitus: Molecules of interest and structure-activity relationship. Curr Med Chem. 2011;18(17):2661–72.
dc.relation170. Ballard CR, Roberto M, Junior M. Health benefits of flavonoids. En: Segura MR, editor. Bioactive compounds: Health benefits and potential applications. Elsevier Inc.; 2019. p. 185–201.
dc.relation171. ICH. International Conference on Harmonization. Stability testing of new drug substances and products 2003 p. 1–20.
dc.relation172. Singh S, Bakshi M. Guidance on conduct of stress tests to determine inherent stability of drugs. Pharm Technol. 2000;1–14.
dc.relation173. Liu Y, Chen HB, Zhao YY, Wang B, Zhang QY, Zhang L, et al. Quantification and stability studies on the flavonoids of Radix hedysari. J Agric Food Chem. 2006;54(18):6634–9.
dc.relation174. Mei X, Wang Y, Liu Z, Wang S, Dong F, Wang Z, et al. The chemical transformations for Radix Astragali via different alkaline wash conditions by quantitative and qualitative analyses. J Pharm Biomed Anal. 2020;185:113164.
dc.relation175. Graham N, Jiang CC, Li XZ, Jiang JQ, Ma J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere. 2004;56(10):949–56.
dc.relation176. Peng S, Zou L, Zhou W, Liu W, Liu C, McClements DJ. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: Advantages and disadvantages. J Agric Food Chem. 2019;67(26):7506–11.
dc.relation177. Jin Y, Zhang W yu, Meng Q fan, Li D hui, Garg S, Teng L rong, et al. Forced degradation of flavonol glycosides extraced from Ginkgo biloba. Chem Res Chinese Univ. 2013;29(4):667–70.
dc.relation178. Plaza M, Pozzo T, Liu J, Gulshan KZ, Turner C, Karlsson EN. Substituent Effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 2014;62:3321–33.
dc.relation179. Lai YZ. Kinetic evidence of anionic intermediates in the base-catalyzed cleavage of glycosidic bonds in the methyl D-glucopyranosides. Carbohydr Res. 1972;24(1):57–65.
dc.relation180. Garegg PJ. Synthesis and reactions of glycosides. En: Advances in carbohydrate chemistry and biochemistry. 2004. p. 69–134.
dc.relation181. Smith GJ, Thomsen SJ, Markham KR, Andary C, Cardon D. The photostabilities of naturally occurring 5-hydroxyflavones, flavonols, their glycosides and their aluminium complexes. J Photochem Photobiol A Chem. 2000;136(1–2):87–91.
dc.relation182. Chaaban H, Ioannou I, Paris C, Charbonnel C, Ghoul M. The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. J Photochem Photobiol A Chem. 2017;336:131–9.
dc.relation183. Švehlíková V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65(16):2323–32.
dc.relation184. Thomas VH, Bhattachar S, Hitchingham L, Zocharski P, Naath M, Surendran N, et al. The road map to oral bioavailability: An industrial perspective. Expert Opin Drug Metab Toxicol. 2006;2(4):591–608.
dc.relation185. USP 39-NF 34. Soluciones. En: Farmacopea de los Estados Unidos de América. 2016. p. 2369–70.
dc.relation186. Oh DM, Sinko PJ, Amidon GL. Predicting oral drug absorption in humans: a macroscopic mass balance approach for passive and carrier-mediated compounds. En: D’Argenio DZ, editor. Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. Nueva York: Springer; 1991. p. 3–11.
dc.relation187. Center for Drug Evaluation and Research. Guidance for Industry: Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. FDA 2005 p. 1–27.
dc.relation188. Xin L, Liu XH, Yang J, Shen HY, Ji G, Shi XF, et al. The intestinal absorption properties of flavonoids in Hippophaë rhamnoides extracts by an in situ single-pass intestinal perfusion model. J Asian Nat Prod Res. 2019;21(1):62–75.
dc.relation189. He X, Song ZJ, Jiang CP, Zhang CF. Absorption properties of luteolin and apigenin in Genkwa Flos using in situ Single-Pass Intestinal Perfusion system in the rat. Am J Chin Med. 2017;45(8):1–15.
dc.relation190. Merchant HA, Rabbie SC, Varum FJO, Afonso-Pereira F, Basit AW. Influence of ageing on the gastrointestinal environment of the rat and its implications for drug delivery. Eur J Pharm Sci. 2014;62:76–85.
dc.relation191. Afonso-Pereira F, Dou L, Trenfield SJ, Madla CM, Murdan S, Sousa J, et al. Sex differences in the gastrointestinal tract of rats and the implications for oral drug delivery. Eur J Pharm Sci. 2018;115:339–44.
dc.relation192. Roos C, Dahlgren D, Sjögren E, Tannergren C, Abrahamsson B, Lennernäs H. Regional intestinal permeability in rats: A comparison of methods. Mol Pharm. 2017;1–29.
dc.relation193. Dezani TM, Dezani AB, Junior JBDS, Serra CHDR. Single-Pass Intestinal Perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: A study with antiretroviral drugs. Eur J Pharm Biopharm. 2016;104:131–9.
dc.relation194. Issa C, Gupta P, Bansal AK. Implications of density correction in gravimetric method for water flux determination using-rat single-pass intestinal perfusion technique: A technical note. AAPS PharmSciTech. 2003;4(2):2–7.
dc.relation195. Acharya PC, Fernandes C, Suares D, Shetty S, Tekade RK. Solubility and solubilization approaches in pharmaceutical product development. En: Tekade R, editor. Dosage Form Design Considerations. 1ª ed. Elsevier Inc.; 2018. p. 513–47.
dc.relation196. Smith BT. Solubility and Dissolution. En: Remington education: Physical Pharmacy. 1ª ed. Pharmaceutical Press; 2016. p. 249–64.
dc.relation197. Mosharraf M, Sebhatu T, Nyström C. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs. Int J Pharm. 1999;177(1):29–51.
dc.relation198. Álvarez-Diduk R, Ramírez-Silva MT, Galano A, Merkoçi A. Deprotonation mechanism and acidity constants in aqueous solution of flavonols: a combined experimental and theoretical study. J Phys Chem B. 2013;117(41):12347–59.
dc.relation199. Lemańska K, Van Der Woude H, Szymusiak H, Boersma MG, Gliszczyńska-Swigło A, Rietjens IMCM, et al. The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin - A mechanistic insight. Free Radic Res. 2004;38(6):639–47.
dc.relation200. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G. Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. J Org Chem. 2009;74(7):2699–709.
dc.relation201. Gao S, Basu S, Yang Z, Deb A, Hu M. Bioavailability challenges associated with development of saponins as therapeutic and chemopreventive agents. Curr Drug Targets. 2012;13:1885–99.
dc.relation202. Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H. Enzymatically modified isoquercitrin, α-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol Pharm Bull. 2009;32(12):2034–40.
dc.relation203. Lee YS, Woo J Bin, Ryu SI, Moon SK, Han NS, Lee SB. Glucosylation of flavonol and flavanones by Bacillus cyclodextrin glucosyltransferase to enhance their solubility and stability. Food Chem. 2017;229:75–83.
dc.relation204. Makino T, Kanemaru M, Okuyama S, Shimizu R, Tanaka H, Mizukami H. Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J Nat Med. 2013;67(4):881–6.
dc.relation205. Jürgenliemk G, Nahrstedt A. Dissolution, solubility and cooperativity of phenolic compounds from Hypericum perforatum L. in aqueous systems. Pharmazie. 2003;58(3):200–3.
dc.relation206. Zhao Q, Luan X, Zheng M, Tian XH, Zhao J, Zhang WD, et al. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics. 2020;12(2):128.
dc.relation207. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.
dc.relation208. Hyman Yalkowsky S. Physical modification of the solute. En: Solubility and solubilization in aqueous media. Nueva York: American Chemical Society; 1999. p. 81–92.
dc.relation209. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11(4):740–6.
dc.relation210. Zhang R, Yao Y, Wang Y, Ren G. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutr Metab. 2011;8(85):1–6.
dc.relation211. Fagerholm U, Johansson M, Lennernäs H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13(9):1336–42.
dc.relation212. Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Azarmi Y, Islambolchilar Z, Barzegar S, et al. Predicting human intestinal permeability using single-pass intestinal perfusion to rat. J Pharm Pharm Sci. 2007;10(3):368–79.
dc.relation213. Sutton SC, Rinaldi MT, Vukovinsky KE. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS PharmSci. 2001;3(3):1–5.
dc.relation214. An T, Liu Z, Zhang Z, Zhou J, Wang M, Zou M, et al. Design, synthesis and performance evaluation of mPEG-PR: A novel non-absorbable marker. Eur J Pharm Sci. 2019;131:50–7.
dc.relation215. Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm. 2012;436(1–2):311–7.
dc.relation216. Ruiz DH, Baltazar EH, Lara JCE, Martínez I de la L, Beltrán Torres AA, Martínez Alejo JM. Técnicas de complejidad variable para evaluar la absorción de fármacos. Rev Mex Ciencias Farm. 2012;43(1):18–32.
dc.relation217. B. Shekhawat P, B. Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B. 2017;7(3):260–80.
dc.relation218. Cook TJ, Shenoy SS. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat. Toxicology. 2003;184(2–3):125–33.
dc.relation219. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am Soc Clin Nutr. 1995;62:1276–82.
dc.relation220. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr. 2000;130(11):2765–71.
dc.relation221. Sesink ALA, O’Leary KA, Hollman PCH. Quercetin glucuronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4′-glucoside. J Nutr. 2001;131(7):1938–41.
dc.relation222. Crespy V, Morand C, Besson C, Manach C, Démigné C, Rémésy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J Nutr. 2001;131(8):2109–14.
dc.relation223. Sesink A LA, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3- glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J Nutr. 2003;133:773–6.
dc.relation224. Zuo Z, Zhang L, Zhou L, Chang Q, Chow M. Intestinal absorption of hawthorn flavonoids - in vitro, in situ and in vivo correlations. Life Sci. 2006;79(26):2455–62.
dc.relation225. Hollman PC. Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol. 2004;42:74–83.
dc.relation226. Németh K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, et al. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 2003;42(1):29–42.
dc.relation227. Gonçalves BMF, Cardoso DSP, Ferreira MJU. Overcoming multidrug resistance: Flavonoid and terpenoid nitrogen-containing derivatives as ABC transporter modulators. Molecules. 2020;25(3364).
dc.relation228. Yao Y, Mi W, Cao G, Yang R, Chen H, Liu Y, et al. The absorption characteristics of nonvolatile components in a water extraction from amomi fructus as determined by in situ Single-Pass Intestinal Perfusion and High-Performance Liquid Chromatography. Front Pharmacol. 2020;11(June).
dc.relation229. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: The role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28.
dc.relation230. Dahan A, Beig A, Lindley D, Miller JM. The solubility–permeability interplay and oral drug formulation design: Two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107.
dc.relation231. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J Clin Pharmacol. 2002;42(6):620–43.
dc.relation232. Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm. 2017;43(2):177–89.
dc.relation233. Piazzini V, Monteforte E, Luceri C, Bigagli E, Bilia AR, Bergonzi MC. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv. 2017;24(1):380–90.
dc.relation234. Sermkaew N, Ketjinda W, Boonme P, Phadoongsombut N, Wiwattanapatapee R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur J Pharm Sci. 2013;50(3–4):459–66.
dc.relation235. Cardona MI, Nguyen Le NM, Zaichik S, Aragón DM, Bernkop-Schnürch A. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. Int J Pharm. 2019;562:180–6.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleContribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución