dc.contributorOrjuela Londoño, Álvaro
dc.contributorNarváez Rincón, Paulo César
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorBautista Triana, William Esteban
dc.date.accessioned2021-02-02T19:51:27Z
dc.date.available2021-02-02T19:51:27Z
dc.date.created2021-02-02T19:51:27Z
dc.date.issued2020-07-07
dc.identifierW. Bautista, "Metodología para la implementación de modelos predictivos para la estimación de propiedades termodinámicas y de transporte en la simulación de procesos oleoquímicos", UN Bogotá, 2020.
dc.identifierW. Bautista, "Methodology for deployment of predictive models to estimate thermodynamic and transport properties in oleochemicals process simulation applications", UN Bogota, 2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79038
dc.description.abstractProperties of a liquid oleochemicals blend (molecular weight, density, specific heat capacity, heat of combustion, vapor pressure, heat of vaporization, viscosity, and phase equilibria) could be estimated directly from pure substance properties by adjusting parameters of models and mixing rules. This document has as main goal to present a methodology to deploy models, adjusting its equation parameters to calculate thermodynamic and transport properties for oleochemicals systems in liquid phase as pure substances, and then for blends, using mixing rules. Data was collected from 131 literature sources. As a result of this work a case of study was created in Aspen Plus v10 to assess predictive capacity of the models to estimate properties values for oleochemicals pure substance and blends. It has been found a deviation of 10% on the estimated properties when polar components, such as water, methanol and ethanol, were in the blending system. Variations of 2% to 5% on the content of a component could produce deviations up to 13% of the blend property value.
dc.description.abstractLas propiedades de una mezcla líquida de oleoquímicos (peso molecular, densidad, calor específico, calor de combustión, presión de vapor, calor de vaporización, viscosidad y composición en las fases) pueden estimarse directamente a partir de las propiedades de las sustancias puras mediante el ajuste de parámetros de modelos y reglas de mezclado. Este trabajo tiene como objetivo mostrar una metodología para implementar modelos, ajustando los parámetros de las ecuaciones para calcular algunas propiedades termodinámicas y de transporte en sistemas de oleoquímicos en fase líquida como sustancias puras, y posteriormente utilizar reglas de mezclado para calcular las propiedades de las mezclas. La información utilizada consta de 131 fuentes de la literatura. Como resultado se evaluó con un caso de estudio en el simulador Aspen Plus V10 la capacidad predictiva de los modelos para la estimación de valores de propiedades de sustancias puras y de mezclas de oleoquímicos. Se encontró desviación de hasta el 10% en las propiedades estimadas al adicionar sustancias polares como agua, metanol y etanol al sistema. Variaciones del 2 al 5% en la concentración de un componente en la mezcla oleoquímica puede generar desviaciones en la estimación de la propiedad en la mezcla hasta un 13%.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBailey.A, Industrial Oils and Fats. New York: Reverté SA, 1984.
dc.relationH. Sanli, M. Canakci, and E. Alptekin, “Characterization of Waste Frying Oils Obtained from Different Facilities,” World Renew. Energy Congr., pp. 479–485, 2011.
dc.relationA. Talebian-Kiakalaieh, N. A. S. Amin, and H. Mazaheri, “A review on novel processes of biodiesel production from waste cooking oil,” Appl. Energy, vol. 104, pp. 683–710, Apr. 2013.
dc.relationA. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chem. Rev., vol. 107, no. 6, pp. 2411–2502, 2007.
dc.relationG. L. Maddikeri, A. B. Pandit, and P. R. Gogate, “Intensification approaches for biodiesel synthesis from waste cooking oil: A review,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14610–14628, 2012.
dc.relationC. A. Guerrero, A. Guerrero-romero, and F. E. Sierra, “Biodiesel Production from Waste Cooking Oil,” Biodiesel - Feed. Process. Technol., pp. 23–44, 2011.
dc.relationG. Anitescu and T. J. Bruno, “Liquid Biofuels: Fluid Properties to Optimize Feedstock Selection, Processing, Refining/Blending, Storage/Transportation, and Combustion,” Energy & Fuels, vol. 26, pp. 324–348, 2011.
dc.relationJ. C. Andrea Kleinová, Zuzana Cvengrošová, “Standard methyl esters from used frying oils,” Fuel, vol. 109, pp. 588–596, 2013.
dc.relationOECD-FAO and S. Nicholson, “OECD-FAO Agricultural Outlook 2016-2025,” 2016.
dc.relationFedepalma, “Desarrollo de la industria del Biodiesel en Colombia” 2015.
dc.relationW. W. Christie, “What is a Lipid ?,” AOCS Lipid Library. pp. 1–12, 2013.
dc.relationM. H. van Vliet and G. M. P. van Kempen, “Computational estimation of the triacylglycerol composition of vegetable fats from gas and liquid chromatography data,” Eur. J. Lipid Sci. Technol., vol. 106, no. 10, pp. 697–706, Oct. 2004.
dc.relationN. R. A. Filho, O. L. Mendes, and F. M. Lanças, “Computer prediction of triacylglycerol composition of vegetable oils by HRGC,” Chromatographia, vol. 40, no. 9, pp. 557–562, 1995.
dc.relationC. M. Oliveira, B. R. Garavazo, and C. E. C. Rodrigues, “Liquid-liquid equilibria for systems composed of rice bran oil and alcohol-rich solvents: Application to extraction and deacidification of oil,” J. Food Eng., vol. 110, no. 3, pp. 418–427, 2012.
dc.relationA. J. A. Meirelles et al., “Measurement, correlation and prediction of isothermal vapor-liquid equilibria of different systems containing vegetable oils,” Fluid Phase Equilib., vol. 395, pp. 15–25, 2015.
dc.relationA. E. Silva, M. Lanza, E. A. C. Batista, A. M. C. Rodrigues, A. J. A. Meirelles, and L. M. da S. Helena, “Liquid-Liquid Equilibrium Data for Systems Containing Palm Oil Fractions + Fatty Acids + Ethanol + Water,” J. Chem. Eng. Data, no. 56, pp. 1892–1898, 2011.
dc.relationD. Strayer, “Food Fats and Oils,” Inst. Shortening Edible Oils Inc. Inc., 2016.
dc.relationG. F. Hirata, C. R. A. Abreu, L. C. B. A. Bessa, M. C. Ferreira, E. A. C. Batista, and A. J. A. Meirelles, “Liquid–liquid equilibrium of fatty systems: A new approach for adjusting UNIFAC interaction parameters,” Fluid Phase Equilib., vol. 360, pp. 379–391, 2013.
dc.relationW. Christie, “Lipids : Definitions , Classification and Nomenclature,” The Lipid Web, 2018.
dc.relationD. U. N. Shen S., Wang D., Food chemistry. 2012.
dc.relationJ. D. Haley and C. McCabe, “Predicting the phase behavior of fatty acid methyl esters and their mixtures using the GC-SAFT-VR approach,” Fluid Phase Equilib., vol. 411, pp. 43–52, 2016.
dc.relationL. Zong, S. Ramanathan, and C. C. Chen, “Predicting thermophysical properties of mono- and diglycerides with the chemical constituent fragment approach,” Ind. Eng. Chem. Res., vol. 49, no. 11, pp. 5479–5484, 2010.
dc.relationBailey A., Industrial Oil and Fats, NY 6th Edition. 1992.
dc.relationR. L. Lundblad and F. M. MacDonald, Eds., Handbook of Biochemistry and Molecular Biology, Fourth Edi. 2010.
dc.relationL. Zong, S. Ramanathan, and C. Chen, “Fragment-Based Approach for Estimating Thermophysical Properties of Fats and Vegetable Oils for Modeling Biodiesel production process,” Ind.Eng.chem.Res, vol. 49: 3022–3, no. 2, pp. 3022–3023, 2010.
dc.relationAspentech, “Aspen Plus Biodiesel Model,” Components, 2008.
dc.relationM. J. Pratas et al., “Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel,” J. Chem. Eng. Data, vol. 56, pp. 2175–2180, 2011.
dc.relationF. . Gunstone, “Fatty Acid and Lipid Chemistry,” 1996.
dc.relationG. Knothe and K. R. Steidley, “Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbon-oxygen equivalents,” Fuel, vol. 90, pp. 3217–3224, 2011.
dc.relationA. W. Weitkamp and L. C. Brunstrum, “Analysis of Fatty Acids by Ester Fractionation,” Oil Soap, 1941.
dc.relationC. D. Evans, D. G. McCONNELL, G. R. List, and C. R. Scholfield, “Structure of Unsaturated, Vegetable Oil Glycerides: Direct Calculation From Fatty Acid Composition,” J. Am. Oil Chem. Soc., vol. 46, no. 8, 1965.
dc.relationF. C. de Matos, M. C. da Costa, A. J. de A. Meirelles, and E. A. C. Batista, “Binary solid-liquid equilibrium systems containing fatty acids, fatty alcohols and trilaurin by differential scanning calorimetry,” Fluid Phase Equilib., vol. 423, pp. 74–83, 2016.
dc.relationG. J. Maximo et al., “On the solid-liquid equilibrium of binary mixtures of fatty alcohols and fatty acids,” Fluid Phase Equilib., vol. 366, pp. 88–98, 2014.
dc.relationP. Specifications, “Product Data Sheet,” Homo, vol. 1, no. 3, pp. 1–2, 1999.
dc.relationJ. Rarey-Nies, D. Tiltmann, and J. Gmehling, “Recommended gE·Model Parameters by Simultaneous Fitting of Different Excess Properties,” Phys. Prop. Predict. Org. Chemestry, pp. 1–2, 1988.
dc.relationIUPAC, “Selmer groups and Tate-Shafarevich groups for the congruent number problem,” Pure Appl. Chem., vol. 52, no. 1, pp. 2349–2384, 1980.
dc.relationG. Knothe and K. R. Steidley, “A comprehensive evaluation of the density of neat fatty acids and esters,” J. Am. Oil Chem. Soc., vol. 91, pp. 1711–1722, 2014.
dc.relationW. Dispersive et al., “Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter ( Precision Method ) 1,” pp. 1–10, 2015.
dc.relationF. Levine, R. V Kayea, R. Wexler, D. J. Sadvary, C. Melick, and J. La Scala, “Heats of Combustion of Fatty Acids and Fatty Acid Esters,” JAOCS, J. Am. Oil Chem. Soc. AOCS, vol. 91, pp. 235–249, 2014.
dc.relationL. Felipe Ramírez-Verduzco, J. E. Rodríguez-Rodríguez, A. Del, and R. Jaramillo-Jacob, “Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition,” Fuel, vol. 91, pp. 102–111, 2012.
dc.relationJ. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to chemical engineering thermodynamics, 7th ed. Boston: McGraw-Hill chemical engineering series, 2005.
dc.relationJ. R. Elliot and C. Lira., “Determinación de coeficientes de fugacidad y fugacidades en cada fase, para la mezcla.,” in Introductory Chemical Engineering Thermodynamics., 2009.
dc.relationG. M. Acosta, R. L. Smith, and K. Arai, “High-Pressure PVT Behavior of Natural Fats and Oils , Trilaurin , Triolein , and n -Tridecane from 303 K to 353 K from Atmospheric Pressure to 150 MPa,” J. Chem. Eng. Data Eng. Data Eng. Data, vol. 41, no. 96, pp. 961–969, 1996.
dc.relationL. Zong, S. Ramanathan, and C. Chen, “Fragment-Based Approach for Estimating Thermophysical Properties of Fats and Vegetable Oils for Modeling Biodiesel Production Processes,” Ind.Eng.chem.Res, vol. 49, no. 2, pp. 3022–3023, 2010.
dc.relationJ. D. Halvorsen, J. Mammel, W.C., and L. . Clements, “Density Estimation for Fatty Acids and Vegetable Oils Based on Their Fatty Acid Composition,” J. Am. Oil Chem, vol. 70, pp. 875–880, 1993.
dc.relationE. C. Ihmels and J. Gmehling, “Extension and Revision of the Group Contribution Method GCVOL for the Prediction of Pure Compound Liquid Densities,” Ind. Eng. Chem. Res, vol. 42, pp. 408–412, 2003.
dc.relationAspenTech, “Aspen Plus Help Files.” Aspen Technology Inc., 2016.
dc.relationW. Yuan, A. C. Hansen, and Q. Zhang, “Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels,” Fuel, vol. 84, no. 7–8, pp. 943–950, May 2005.
dc.relationP. Saxena, J. Patel, and M. H. Joshipura, “Comparison of various methods for the estimation of vapor pressure of fatty acid methyl and ethyl esters (FAAE’s),” Fuel, vol. 182, pp. 842–849, 2016.
dc.relationP. Saxena, J. C. Patel, and M. H. Joshipura, “Prediction of vapor pressure of fatty acid methyl esters,” in Procedia Engineering, 2013, vol. 51, pp. 403–408.
dc.relationR. Ceriani and A. J. A. Meirelles, “Predicting vapor-liquid equilibria of fatty systems,” Fluid Phase Equilib., vol. 215, no. 2, pp. 227–236, 2004.
dc.relationL. Zong, S. Ramanathan, and C. C. Chen, “Predicting thermophysical properties of mono- and diglycerides with the chemical constituent fragment approach,” Ind. Eng. Chem. Res., vol. 49, no. 11, pp. 5479–5484, 2010.
dc.relationT. Wallek, J. Rarey, J. O. Metzger, and J. Gmehling, “Estimation of pure-component properties of biodiesel-related components: Fatty acid methyl esters, fatty acids, and triglycerides,” Ind. Eng. Chem. Res., vol. 52, pp. 16966–16978, 2013.
dc.relationM. L. Corazza, W. A. Fouad, and W. G. Chapman, “PC-SAFT predictions of VLE and LLE of systems related to biodiesel production,” Fluid Phase Equilib., vol. 416, pp. 130–137, 2016.
dc.relationT. H. Gouw, J. C. Vlugter, and C. J. A. Roelands, “Physical properties of fatty acid methyl esters. VI. Viscosity,” J. Am. Oil Chem. Soc., vol. 43, pp. 433–434, 1966.
dc.relationR. Ceriani, C. B. Gonçalves, and J. A. P. Coutinho, “Prediction of viscosities of fatty compounds and biodiesel by group contribution,” Energy and Fuels, vol. 25, no. 8, pp. 3712–3717, 2011.
dc.relationI. D. U. N. de C. Gil C, J. R. U. N. de C. Guevara L., J. L. U. N. de C. García Z., and A. U. N. de C. Leguizamón R., Análisis y simulacion de procesos en Ingeniería Química. Bogotá D.C., 2011.
dc.relationH. Kuramochi, K. Maeda, S. Kato, M. Osako, K. Nakamura, and S. ichi Sakai, “Application of UNIFAC models for prediction of vapor-liquid and liquid-liquid equilibria relevant to separation and purification processes of crude biodiesel fuel,” Fuel, vol. 88, no. 8, pp. 1472–1477, 2009.
dc.relationD. S. Damaceno, O. A. Perederic, R. Ceriani, G. M. Kontogeorgis, and R. Gani, “Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology,” Fluid Phase Equilib., vol. 470, 2017.
dc.relationT. T. X. Nguyen and D. NguyenHuynh, “Predicting the phase equilibria of esters/alcohols mixtures and biodiesel density from its fatty acid composition using the modified group-contribution PC-SAFT,” Fluid Phase Equilib., vol. 472, pp. 128–146, 2018.
dc.relationS. W. Dean, M. O. McLinden, T. J. Bruno, M. Frenkel, and M. L. Huber, “Standard Reference Data for the Thermophysical Properties of Biofuels,” J. ASTM Int., vol. 7, no. 3, p. 102586, 2010.
dc.relationS. M. Stigler, Statistics on the table : the history of statistical concepts and methods. Harvard University Press, 1999.
dc.relationM. A. Noriega, P. C. Narvaez, A. D. Imbachi, J. G. Cadavid, and A. C. Habert, “Liquid-liquid equilibrium for biodiesel-glycerol-methanol or ethanol systems using UNIFAC correlated parameters,” Energy, vol. 111, pp. 841–849, 2016.
dc.relationO. A. Perederic et al., “Systematic identification method for data analysis and phase equilibria modelling for lipids systems,” J. Chem. Thermodyn., vol. 121, pp. 153–169, 2018.
dc.relationA. Plus, A. Properties, A. E. Suite, A. Technology, T. C. Park, and O. Systems, “Part Number : Aspen Physical Property System 11 . 1 September 2001,” pp. 2–18, 2001.
dc.relationP. C. Narváez, S. M. Rincón, L. Z. Castañeda, and F. J. Sánchez, “Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters,” Lat. Am. Appl. Res., vol. 38, pp. 1–6, 2008.
dc.relationR. Ceriani and A. J. A. Meirelles, “Simulation of continuous physical refiners for edible oil deacidification,” J. Food Eng., vol. 76, no. 3, pp. 261–271, 2006.
dc.relationC. B. Gonçalves and A. J. A. Meirelles, “Liquid-liquid equilibrium data for the system palm oil + fatty acids + ethanol + water at 318.2 K,” Fluid Phase Equilib., vol. 221, no. 1–2, pp. 139–150, 2004.
dc.relationM. B. Oliveira, S. Barbedo, J. I. Soletti, S. H. V Carvalho, A. J. Queimada, and J. A. P. Coutinho, “Liquid–liquid equilibria for the canola oil biodiesel + ethanol + glycerol system,” Fuel, vol. 90, pp. 2738–2745, 2011.
dc.relationJ. Saleh, “A Membrane Separation Process for Biodiesel Purification,” 2011.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMetodología para la implementación de modelos predictivos para la estimación de propiedades termodinámicas y de transporte en la simulación de procesos oleoquímicos
dc.typeManual


Este ítem pertenece a la siguiente institución