dc.contributor | Uribe Vélez, Daniel | |
dc.contributor | Microbiologia Agricola | |
dc.creator | Carreño Carreño, Jibda del Pilar | |
dc.date.accessioned | 2020-03-10T01:07:47Z | |
dc.date.available | 2020-03-10T01:07:47Z | |
dc.date.created | 2020-03-10T01:07:47Z | |
dc.date.issued | 2019-11-06 | |
dc.identifier | Carreño Carreño, Pilar | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/76023 | |
dc.description.abstract | The return of plant residues to the soil is one of the alternative agricultural practices for the efficient management of post-harvest waste, however, is poor known the impact it has on edaphic microorganisms, responsible for determining soil quality parameters as nutrient availability and cycling. Therefore, a field experiment was proposed to evaluate the changes generated by 4 different treatments of rice straw management on microorganisms related to the nitrogen cycle, consisting of: (Cob+mo) rice straw as a mulch inoculated with a microbial consortium, (Inc+mo) rice straw incorporated and inoculated with the microbial consortium, (Quema) open field burning (Cob) and rice straw as a mulch without inoculation. Four bulk and rhizospheric soil samplings were carried out before and during the cultivation cycle. The diversity, structure and composition of the bacterial community linked to the nitrogen cycle was evaluated through the analysis of the 16S rRNA gene and the activity of nitrogenase, protease and urease enzymes linked to the entry of nitrogen into the soil system was determined. Heat maps based on the composition and abundance of species showed particular groupings of the treatments in each of the sampling stages, evidencing the effect of rice straw management on the structure and composition of the bacterial community over time. The activity of the protease and urease enzymes was affected by the application of the degradation consortium and by the way rice straw is returned to the soil respectively.
Keywords: Incorporation, mulch, rice straw, enzymatic activity, 16S rRNA) | |
dc.description.abstract | La quema del tamo de arroz a campo abierto es una de las mayores fuentes de contaminación agrícola, es por esto que el retorno de los residuos vegetales al suelo ha sido propuesto como una alternativa de manejo eficiente de los residuos pos-cosecha. Sin embargo, es poco conocido el impacto que tiene sobre los microorganismos edáficos involucrados en la disponibilidad y ciclaje de nutrientes. Por lo anterior, se planteó un experimento en campo para evaluar los cambios generados sobre la comunidad microbiana vinculada al ciclo del nitrógeno por la aplicación de 4 tratamientos diferentes de manejo del tamo de arroz: (Cob+mo) cobertura del terreno con tamo de arroz inoculado con un consorcio microbiano de degradación, (Inc+mo) tamo de arroz inoculado con el consorcio microbiano e incorporado, (Quema) quema del tamo y (Cob) cobertura del terreno con tamo de arroz sin inocular. Se realizaron 4 muestreos de suelo de soporte y suelo rizosférico antes y durante el ciclo de cultivo. Se evaluó la diversidad, estructura y composición de la comunidad bacteriana a través del análisis del gen 16S rRNA y se determinó la actividad de las enzimas nitrogenasa, proteasa y ureasa vinculadas con el ingreso de nitrógeno al sistema edáfico. Al final del ciclo de cultivo, los mapas de calor basados en la composición y abundancia de especies, mostraron que las comunidades microbianas de los tratamientos alternos a la quema son más similares entre sí, indicando que la adición de materia orgánica influencia la comunidad edáfica microbiana. La actividad de las enzimas proteasa y ureasa se vio afectada por la aplicación del consorcio de degradación y la forma de retorno del tamo de arroz al suelo respectivamente.
Palabras clave: (Incorporación, cobertura, tamo de arroz, actividad enzimática, 16S rRNA). | |
dc.language | spa | |
dc.publisher | Instituto de Biotecnología | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Acharya, C. L., Hati, K. M., & Bandyopadhyay, K. K. (2005). MULCHES. Encyclopedia of Soils in the Environment, 521–532. https://doi.org/10.1016/B0-12-348530-4/00250-2 | |
dc.relation | Adamchuk, V. I., Ferguson, R. B., & Hergert, G. W. (2010). Soil Heterogeneity and Crop Growth. In Precision Crop Protection - the Challenge and Use of Heterogeneity (pp. 3–16). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-9277-9_1 | |
dc.relation | Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of B-glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of Soil Science and Plant Nutrition, 17(3), 794–807. https://doi.org/10.4067/S0718-95162017000300018 | |
dc.relation | Ahn, J.-H., Song, J., Kim, B.-Y., Kim, M.-S., Joa, J.-H., & Weon, H.-Y. (2012). Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. Journal of Microbiology, 50(5), 754–765. https://doi.org/10.1007/s12275-012-2409-6 | |
dc.relation | Ambardar, S., Gupta, R., Trakroo, D., Lal, R., & Vakhlu, J. (2016). High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian Journal of Microbiology, 56(4), 394–404. https://doi.org/10.1007/s12088-016-0606-4 | |
dc.relation | American Society of Plant Biologists. (2018). New approach to improve nitrogen use, enhance yield, and promote flowering in rice: Expression of the nitrate transporter gene OsNRT1.1A improves yield and accelerates maturation. The Plant Cell, 30(3), 638–651. https://doi.org/10.1105/tpc.17.00809 | |
dc.relation | Andrews, S. (2010). FastQC A Quality Control tool for High Throughput Sequence Data. Retrieved from https://www.bioinformatics.babraham.ac.uk/projects/fastqc | |
dc.relation | Anguria, P., Chemining’wa, G. N., Onwonga, R. N., & Ugen, M. A. (2017). Decomposition and Nutrient Release of Selected Cereal and Legume Crop Residues. Journal of Agricultural Science, 9(6), 108. https://doi.org/10.5539/jas.v9n6p108 | |
dc.relation | Awika, J. M. (2011). Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion (pp. 1–13). https://doi.org/10.1021/bk-2011-1089.ch001 | |
dc.relation | BAO, Q., DING, L.-J., HUANG, Y., & XIAO, K. (2019). Effect of rice straw and/or nitrogen fertiliser inputs on methanogenic archaeal and denitrifying communities in a typical rice paddy soil. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109(3–4), 375–386. https://doi.org/10.1017/S1755691018000580 | |
dc.relation | Bao, Q., Ju, X., Gao, B., Qu, Z., Christie, P., & Lu, Y. (2012). Response of Nitrous Oxide and Corresponding Bacteria to Managements in an Agricultural Soil. Soil Science Society of America Journal, 76(1), 130. https://doi.org/10.2136/sssaj2011.0152 | |
dc.relation | Bastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147(3–4), 159–171. https://doi.org/10.1016/J.GEODERMA.2008.08.007 | |
dc.relation | Belal, E. B. (2013). Bioethanol production from rice straw residues. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 44(1), 225–234. https://doi.org/10.1590/S1517-83822013000100033 | |
dc.relation | Bending, G. D., Putland, C., & Rayns, F. (2000). Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biology and Fertility of Soils, 31(1), 78–84. https://doi.org/10.1007/s003740050627 | |
dc.relation | Bending, G. D., Turner, M. K., Rayns, F., Marx, M.-C., & Wood, M. (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry, 36(11), 1785–1792. https://doi.org/10.1016/J.SOILBIO.2004.04.035 | |
dc.relation | Berg, J. M. (Jeremy M., Tymoczko, J. L., Stryer, L., & Stryer, L. (2002). Biochemistry. W.H. Freeman. | |
dc.relation | Bernard, L., Mougel, C., Maron, P.-A., Nowak, V., Lévêque, J., Henault, C., … Ranjard, L. (2007). Dynamics and identification of soil microbial populations actively assimilating carbon from 13 C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environmental Microbiology, 9(3), 752–764. https://doi.org/10.1111/j.1462-2920.2006.01197.x | |
dc.relation | Bhattacharyya, P., & Barman, D. (2018). Crop Residue Management and Greenhouse Gases Emissions in Tropical Rice Lands. Soil Management and Climate Change, 323–335. https://doi.org/10.1016/B978-0-12-812128-3.00021-5 | |
dc.relation | Bhattacharyya, P., Roy, K. S., Neogi, S., Adhya, T. K., Rao, K. S., & Manna, M. C. (2012). Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, 119–130. https://doi.org/10.1016/J.STILL.2012.05.015 | |
dc.relation | Bijay-Singh, Shan, Y. H., Johnson-Beebout, S. E., Yadvinder-Singh, & Buresh, R. J. (2008). Chapter 3 Crop Residue Management for Lowland Rice-Based Cropping Systems in Asia. Advances in Agronomy, 98, 117–199. https://doi.org/10.1016/S0065-2113(08)00203-4 | |
dc.relation | Bisen Neelam, R. C. P. (2017). Crop residues management option for sustainable soil health in rice-wheat system: A review. International Journal of Chemical Studies, 5, 1038–1042. Retrieved from https://www.researchgate.net/publication/318959582_Crop_residues_management_option_for_sustainable_soil_health_in_rice-wheat_system_A_review | |
dc.relation | Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., … Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z | |
dc.relation | Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27295v2 | |
dc.relation | Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171 | |
dc.relation | Bothe, H. (Hermann), Ferguson, S. J. (Stuart J., & Newton, W. E. (William E. (2007). Biology of the nitrogen cycle. Elsevier. | |
dc.relation | Breidenbach, B., & Conrad, R. (2015). Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Frontiers in Microbiology, 5, 752. https://doi.org/10.3389/fmicb.2014.00752 | |
dc.relation | Bremner, J. M. (1955). Studies on soil humic acids: I. The chemical nature of humic nitrogen. The Journal of Agricultural Science, 46(02), 247. https://doi.org/10.1017/S002185960003999X | |
dc.relation | Brimacombe, R., & Stiege, W. (1985). Structure and function of ribosomal RNA. The Biochemical Journal, 229(1), 1–17. https://doi.org/10.1042/bj2290001 | |
dc.relation | Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106 | |
dc.relation | Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49(6), 637–644. https://doi.org/10.1016/j.pedobi.2005.06.003 | |
dc.relation | Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 | |
dc.relation | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 | |
dc.relation | Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002 | |
dc.relation | Carlsson, H., & Nordlander, E. (2010). Computational modeling of the mechanism of urease. Bioinorganic Chemistry and Applications, 2010. https://doi.org/10.1155/2010/364891 | |
dc.relation | Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., & Kjelleberg, S. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and Environmental Microbiology, 73(1), 278–288. https://doi.org/10.1128/AEM.01177-06 | |
dc.relation | Castillo, M., Mamaril, C., Paterno, E., Sanchez, P., Badayos, R., Sta. Cruz, P., & Quimbo, M. (2012). Soil chemical and physical properties with rice straw management during fallow period. Philippine Journal of Crop Science , 37, 15–16. Retrieved from https://www.researchgate.net/publication/327645078_Soil_Chemical_and_Physical_Properties_with_Rice_Straw_Management_During_Fallow_Period | |
dc.relation | Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330. https://doi.org/10.1016/J.MIMET.2007.02.005 | |
dc.relation | Chen, H. (2014). Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose (pp. 25–71). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6898-7_2 | |
dc.relation | Chowdhury, N., & Chowdhury, N. (2016). Influence of Rice Straw Incorporation on the Microbial Biomass and Activity in Coastal Saline Soils of Bangladesh. Open Journal of Soil Science, 06(10), 159–173. https://doi.org/10.4236/ojss.2016.610016 | |
dc.relation | Christian, D. G., & Bacon, E. T. G. (1991). The effects of straw disposal and depth of cultivation on the growth, nutrient uptake and yield of winter wheat on a clay and a silt soil. Soil Use and Management, 7(4), 217–222. https://doi.org/10.1111/j.1475-2743.1991.tb00877.x | |
dc.relation | Cruz Ramírez, C. A., Gómez Ramírez, L. F., & Uribe Vélez, D. (2017). Manejo biológico del tamo de arroz bajo diferentes relaciones C:N empleando co-inóculos microbianos y promotores de crecimiento vegetal. Revista Colombiana de Biotecnología, 19(2), 47–62. https://doi.org/10.15446/rev.colomb.biote.v19n2.70168 | |
dc.relation | Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., … Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504–509. https://doi.org/10.1038/nature16461 | |
dc.relation | Dandeniya, W. S., & Thies, J. E. (2015). Rhizosphere Nitrification and Nitrogen Nutrition of Rice Plants as Affected by Water Management. Tropical Agricultural Research, 24(1), 1. https://doi.org/10.4038/tar.v24i1.7984 | |
dc.relation | Delmont, T. O., Robe, P., Cecillon, S., Clark, I. M., Constancias, F., Simonet, P., … Vogel, T. M. (2011). Accessing the Soil Metagenome for Studies of Microbial Diversity. Applied and Environmental Microbiology, 77(4), 1315–1324. https://doi.org/10.1128/AEM.01526-10 | |
dc.relation | DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/AEM.03006-05 | |
dc.relation | Devereux, R. D., & Wilkinson, S. S. (2004). AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES - Book Chapter. Dordrecht, Netherlands: Kluwer Academic Publishers. Retrieved from https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=103990&Lab=NHEERL | |
dc.relation | Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 | |
dc.relation | Doerr, S. H., & Cerdá, A. (2005). Fire effects on soil system functioning: new insights and future challenges. International Journal of Wildland Fire, 14(4), 339. https://doi.org/10.1071/WF05094 | |
dc.relation | Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere Effect on Nutrient Availability in Soil and Its Uptake by Plants: A Review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(1), 1–12. https://doi.org/10.1007/s40011-013-0297-0 | |
dc.relation | Drake, D., Nader, G., & Forero, L. (2002). Feeding Rice Straw to Cattle. University of California , 8079, 1–18. Retrieved from https://www.researchgate.net/publication/237450148_Feeding_Rice_Straw_to_Cattle | |
dc.relation | Eagle, A. J., Bird, J. A., Horwath, W. R., Linquist, B. A., Brouder, S. M., Hill, J. E., & van Kessel, C. (2000). Rice Yield and Nitrogen Utilization Efficiency under Alternative Straw Management Practices. Agronomy Journal, 92(6), 1096. https://doi.org/10.2134/agronj2000.9261096x | |
dc.relation | Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., … Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911-20. https://doi.org/10.1073/pnas.1414592112 | |
dc.relation | Erenstein, O. (2002). Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil and Tillage Research, 67(2), 115–133. https://doi.org/10.1016/S0167-1987(02)00062-4 | |
dc.relation | Fageria, N. K. (2007). Green Manuring in Crop Production. Journal of Plant Nutrition, 30(5), 691–719. https://doi.org/10.1080/01904160701289529 | |
dc.relation | Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.), 320(5879), 1034–1039. https://doi.org/10.1126/science.1153213 | |
dc.relation | Fedearroz, D., Gerente, D., Perfetti, M., Corral, D., Hernández, R., Subdirector, L., … Bogotá, D. C. (2017). Boletín 4° CENSO NACIONAL ARROCERO. Retrieved from http://www.dane.gov.co/files/investigaciones/agropecuario/censo-nacional-arrocero/boletin-tecnico-4to-censo-nacional-arrocero-2016.pdf | |
dc.relation | Federación Nacional de Arroceros (Fedearroz). (2018). Area, Producción y Rendimientos. Bogotá. Retrieved from http://www.fedearroz.com.co/new/apr_public.php | |
dc.relation | Feng, Y., & Balkcom, K. S. (2017). Nutrient Cycling and Soil Biology in Row Crop Systems under Intensive Tillage. Soil Health and Intensification of Agroecosytems, 231–255. https://doi.org/10.1016/B978-0-12-805317-1.00011-7 | |
dc.relation | Ferreira, E. P. B., & Martin-Didonet, C. C. G. (2012). Mulching and Cover Crops Effects on the Soil and Rhizosphere-associated Bacterial Communities in Field Experiment. Journal of Agricultural Science and Technology, 14(3), 671–681. Retrieved from http://jast.modares.ac.ir/article-23-7618-en.html | |
dc.relation | Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87 | |
dc.relation | Filip, Z. (2002). International approach to assessing soil quality by ecologically-related biological parameters. Agriculture, Ecosystems & Environment, 88(2), 169–174. https://doi.org/10.1016/S0167-8809(01)00254-7 | |
dc.relation | Flores, E., López-Lozano, A., & Herrero, A. (2015). Nitrogen Fixation in the Oxygenic Phototrophic Prokaryotes (Cyanobacteria): The Fight Against Oxygen. In Biological Nitrogen Fixation (pp. 879–890). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119053095.ch86 | |
dc.relation | Food and Agriculture Organization of the United Nations (FAO). (2018). Rice Market Monitor (RMM). Retrieved from http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/ | |
dc.relation | Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., & Reitz, T. (2016). Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 7, 1446. https://doi.org/10.3389/fmicb.2016.01446 | |
dc.relation | Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554–1558. https://doi.org/10.1016/J.ENVPOL.2009.01.004 | |
dc.relation | García-Orenes, F., Morugán-Coronado, A., Zornoza, R., Cerdà, A., & Scow, K. (2013). Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PloS One, 8(11), e80522. https://doi.org/10.1371/journal.pone.0080522 | |
dc.relation | Gardner, T., Acosta-Martinez, V., Senwo, Z., Dowd, S. E., Gardner, T., Acosta-Martinez, V., … Dowd, S. E. (2011). Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama. Diversity, 3(3), 308–328. https://doi.org/10.3390/d3030308 | |
dc.relation | Geisseler, D., & Horwath, W. R. (2008). Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biology and Biochemistry, 40(12), 3040–3048. https://doi.org/10.1016/J.SOILBIO.2008.09.001 | |
dc.relation | Good, I. J. (1953). The Population Frequencies of Species and the Estimation of Population Parameters. Biometrika, 40(3/4), 237. https://doi.org/10.2307/2333344 | |
dc.relation | Gordon, J. K., & Brill, W. J. (1974). Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochemical and Biophysical Research Communications, 59(3), 967–971. https://doi.org/10.1016/S0006-291X(74)80074-4 | |
dc.relation | Guo, J., Liu, W., Zhu, C., Luo, G., Kong, Y., Ling, N., … Guo, S. (2018). Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant and Soil, 424(1–2), 335–349. https://doi.org/10.1007/s11104-017-3547-8 | |
dc.relation | Guo, L., Zheng, S., Cao, C., & Li, C. (2016). Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China. Scientific Reports, 6(1), 33155. https://doi.org/10.1038/srep33155 | |
dc.relation | Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., & Zhou, W. (2018). Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Scientific Reports, 8(1), 1847. https://doi.org/10.1038/s41598-018-20293-5 | |
dc.relation | Haizel, K. A. (1989). Weed science in the tropics. Principles and practices. Journal of Tropical Ecology, 5(01), 126. https://doi.org/10.1017/S0266467400003369 | |
dc.relation | Halbleib, C. M., & Ludden, P. W. (2000). Regulation of Biological Nitrogen Fixation. The Journal of Nutrition, 130(5), 1081–1084. https://doi.org/10.1093/jn/130.5.1081 | |
dc.relation | Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiology, 43(8), 1185–1207. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16656902 | |
dc.relation | Harris, J. A. (2007). Microbiological Methods for Assessing Soil Quality - Edited by J. Bloem, D.W. Hopkins & A. Benedetti. European Journal of Soil Science, 58(5), 1214–1215. https://doi.org/10.1111/j.1365-2389.2007.00943_3.x | |
dc.relation | Hasanuzzaman, M., Fujita, M., Nahar, K., & Biswas, J. K. (2018). Advances in rice research for abiotic stress tolerance. (W. Publishing, Ed.). Chennai, India: Elsevier. Retrieved from https://books.google.com.co/books?id=fZt5DwAAQBAJ&hl=es&source=gbs_navlinks_s | |
dc.relation | Hayano, K. (1993). Protease activity in a paddy field soil: Origin and some properties. Soil Science and Plant Nutrition, 39(3), 539–546. https://doi.org/10.1080/00380768.1993.10419794 | |
dc.relation | Hayashi, K., Ono, K., Kajiura, M., Sudo, S., Yonemura, S., Fushimi, A., … Tanabe, K. (2014). Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmospheric Environment, 95, 36–44. https://doi.org/10.1016/J.ATMOSENV.2014.06.023 | |
dc.relation | Henderson, S. L., Dandie, C. E., Patten, C. L., Zebarth, B. J., Burton, D. L., Trevors, J. T., & Goyer, C. (2010). Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Applied and Environmental Microbiology, 76(7), 2155–2164. https://doi.org/10.1128/AEM.02993-09 | |
dc.relation | Henriquez, C., Uribe, L., Valenciano, A., & Nogales, R. (2014). Agronomía costarricense. Agronomía Costarricense (Vol. 38). nc-nd/3.0/. Retrieved from https://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S0377-94242014000100003&lng=en&nrm=iso | |
dc.relation | Herath, H. M. I. K., Wickramasinghe, W. M. D. B., & Mapa, R. B. (2004). Use of effective micro-organisms (EM) and urea in accelerating the decomposition of rice straw. Tropical Agricultural Research and Extension, 7, 62–68. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20063024245 | |
dc.relation | Hernández-León, R., Hernández-León, R., Velázquez-Sepúlveda, I., Orozco-Mosqueda, M., & Santoyo, G. (2010). Metagenómica de suelos: grandes desafíos y nuevas oportunidades biotecnológicas. Phyton (Buenos Aires). Retrieved from https://www.biodiversitylibrary.org/part/113931 | |
dc.relation | Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H., & Jin, Z. J. (2012). Microbial community dynamics and function associated with rhizosphere over periods of rice growth. Plant, Soil and Environment, 58(No. 2), 55–61. https://doi.org/10.17221/390/2010-PSE | |
dc.relation | International Rice Research Institute. (2013). Rice almanac (4th ed.). Los Baños: Global Rice Science Partnership 2013. https://doi.org/http://books.irri.org/9789712203008_content.pdf | |
dc.relation | Isobe, K., & Ohte, N. (2014). Ecological perspectives on microbes involved in N-cycling. Microbes and Environments, 29(1), 4–16. https://doi.org/10.1264/JSME2.ME13159 | |
dc.relation | Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., … Whitman, W. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40(11), 2843–2853. https://doi.org/10.1016/J.SOILBIO.2008.07.030 | |
dc.relation | Jensen, H. L., & Jensen, H. L. (1940). Nitrogen fixation and cellulose decomposition by soil microorganisms. I. Aerobic cellulose-decomposers in association with Azotobacter. Proceedings of the Linnean Society of New South Wales., 65, 543–556. Retrieved from https://www.biodiversitylibrary.org/part/48124 | |
dc.relation | Kadam, K. L., Forrest, L. H., & Jacobson, W. A. (2000). Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), 369–389. https://doi.org/10.1016/S0961-9534(00)00005-2 | |
dc.relation | Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/BF00257924 | |
dc.relation | Karaca, A., Cetin, S. C., Turgay, O. C., & Kizilkaya, R. (2010). Soil Enzymes as Indication of Soil Quality (pp. 119–148). https://doi.org/10.1007/978-3-642-14225-3_7 | |
dc.relation | Kausar, H., Sariah, M., Mohd Saud, H., Zahangir Alam, M., & Razi Ismail, M. (2010). Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7), 594–600. https://doi.org/10.1016/J.IBIOD.2010.06.012 | |
dc.relation | Keegstra, K. (2010). Plant cell walls. Plant Physiology, 154(2), 483–486. https://doi.org/10.1104/pp.110.161240 | |
dc.relation | Kennedy, C., Doetsch, N., Meletzus, D., Patriarca, E., Amar, M., & Iaccarino, M. (1994). Ammonium sensing in nitrogen fixing bacteria: Functions of theglnB andglnD gene products. Plant and Soil, 161(1), 43–57. https://doi.org/10.1007/BF02183084 | |
dc.relation | Kimura, M., Miyaki, M., Fujinaka, K.-I., & Maie, N. (2001). Microbiota responsible for the decomposition of rice straw in a submerged paddy soil estimated from phospholipid fatty acid composition. Soil Science and Plant Nutrition, 47(3), 569–578. https://doi.org/10.1080/00380768.2001.10408420 | |
dc.relation | Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58(2), 169–188. https://doi.org/10.1016/j.mimet.2004.04.006 | |
dc.relation | Kirti, R., Rana, R., & Datt, S. (2012). Review on latest overview of proteases. International Journal of Current Life Sciences, 2, 12–18. Retrieved from https://www.researchgate.net/publication/265865007_Review_on_latest_overview_of_proteases | |
dc.relation | Knoblauch, R., Ernani, P. R., Deschamps, F. C., Gatiboni, L. C., Walker, T. W., Lourenço, K. S., … Pegoraro, A. (2014). Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen. Revista Brasileira de Ciência Do Solo, 38(1), 177–184. https://doi.org/10.1590/S0100-06832014000100017 | |
dc.relation | Kowalchuk, G. A., Yergeau, E., Leveau, J. H. J., Sessitsch, A., & Bailey, M. (2010). Plant-associated Microbial Communities. Retrieved from http://nora.nerc.ac.uk/id/eprint/9205/ | |
dc.relation | Kumar, A., Gaind, S., & Nain, L. (2008). Evaluation of thermophilic fungal consortium for paddy straw composting. Biodegradation, 19(3), 395–402. https://doi.org/10.1007/s10532-007-9145-3 | |
dc.relation | Kumar, K., & Goh, K. M. (1999). Crop Residues and Management Practices: Effects on Soil Quality, Soil Nitrogen Dynamics, Crop Yield, and Nitrogen Recovery. Advances in Agronomy, 68, 197–319. https://doi.org/10.1016/S0065-2113(08)60846-9 | |
dc.relation | Laane, C., Krone, W., Konings, W., Haaker, H., & Veeger, C. (1980). Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. European Journal of Biochemistry, 103(1), 39–46. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6928406 | |
dc.relation | Ladd, J. N., & Butler, J. H. A. (1972). Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry, 4(1), 19–30. https://doi.org/10.1016/0038-0717(72)90038-7 | |
dc.relation | Lagos, L., Maruyama, F., Nannipieri, P., Mora, M. ., Ogram, A., & Jorquera, M. . (2015). Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini‒review. Journal of Soil Science and Plant Nutrition, 15(ahead), 0–0. https://doi.org/10.4067/S0718-95162015005000042 | |
dc.relation | Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31(4), 575–584. https://doi.org/10.1016/J.ENVINT.2004.09.005 | |
dc.relation | Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676 | |
dc.relation | Latt, Z. K., Yu, S. S., Kyaw, E. P., Lynn, T. M., Nwe, M. T., Mon, W. W., & Aye, K. N. (2018). Using Cellulolytic Nitrogen Fixing Bacterium, Azomonas agilis for Effective Degradation of Agricultural Residues. The Open Microbiology Journal, 12(1), 154–162. https://doi.org/10.2174/1874285801812010154 | |
dc.relation | Lee, C. T., Ismail, M. N., Razali, F., Muhamad, I. I., Sarmidi, M. R., & Khamis, A. K. (2008). Application of effective microorganisms on soil and maize. Journal of Chemical & Natural Resources Engineering, 2, 1–13. Retrieved from http://eprints.utm.my/id/eprint/12227/ | |
dc.relation | LI, J., LI, Y., YANG, X., ZHANG, J., LIN, Z., & ZHAO, B. (2015). Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. Journal of Integrative Agriculture, 14(12), 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1 | |
dc.relation | Li, P., Li, Y., Zheng, X., Ding, L., Ming, F., Pan, A., … Tang, X. (2018). Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria. Journal of Soils and Sediments, 18(1), 248–258. https://doi.org/10.1007/s11368-017-1749-6 | |
dc.relation | Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), 625–645. https://doi.org/10.1111/j.1574-6976.2000.tb00563.x | |
dc.relation | Limmer, C., & Drake, H. L. (1996). Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: Aerobic and anaerobic differentials. Soil Biology and Biochemistry, 28(2), 177–183. https://doi.org/10.1016/0038-0717(95)00118-2 | |
dc.relation | Liu, C., Lu, M., Cui, J., Li, B., & Fang, C. (2014). Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology, 20(5), 1366–1381. https://doi.org/10.1111/gcb.12517 | |
dc.relation | Liu, X., Wang, H., Zhou, J., Hu, F., Zhu, D., Chen, Z., & Liu, Y. (2016). Effect of N Fertilization Pattern on Rice Yield, N Use Efficiency and Fertilizer–N Fate in the Yangtze River Basin, China. PLOS ONE, 11(11), e0166002. https://doi.org/10.1371/journal.pone.0166002 | |
dc.relation | Liu, Y., Wang, J., Liu, D., Li, Z., Zhang, G., Tao, Y., … Chen, F. (2014). Straw Mulching Reduces the Harmful Effects of Extreme Hydrological and Temperature Conditions in Citrus Orchards. PLoS ONE, 9(1), e87094. https://doi.org/10.1371/journal.pone.0087094 | |
dc.relation | Lüdemann, H., Arth, I., & Liesack, W. (2000). Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology, 66(2), 754–762. https://doi.org/10.1128/aem.66.2.754-762.2000 | |
dc.relation | Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., Chen, W., & Huang, Q. (2016). Microbial communities play important roles in modulating paddy soil fertility. Scientific Reports, 6(1), 20326. https://doi.org/10.1038/srep20326 | |
dc.relation | Maarastawi, S. A., Frindte, K., Linnartz, M., & Knief, C. (2018). Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Zea mays. Frontiers in Microbiology, 9, 1295. https://doi.org/10.3389/fmicb.2018.01295 | |
dc.relation | Makoi, J., & Ndakidemi, P. (2008). Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7(3), 181–191. Retrieved from https://www.ajol.info/index.php/ajb/article/view/58355 | |
dc.relation | Malhi, S. S., & Kutcher, H. R. (2007). Small grains stubble burning and tillage effects on soil organic C and N, and aggregation in northeastern Saskatchewan. Soil and Tillage Research, 94(2), 353–361. https://doi.org/10.1016/J.STILL.2006.08.009 | |
dc.relation | Mandal, K. G. (author), Misra, A. K. (author), Hati, K. M. (author), Bandyopadhyay, K. K. (author), Ghosh, P. K. (author), & Mohanty, M. (author). (2004). Rice residue- management options and effects on soil properties and crop productivity. Food, Agriculture & Environment, 2, 224–231. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=FI2016100038 | |
dc.relation | Mandic-Mulec, I., Stefanic, P., & van Elsas, J. D. (2015). Ecology of Bacillaceae. Microbiology Spectrum, 3(2). https://doi.org/10.1128/microbiolspec.TBS-0017-2013 | |
dc.relation | Marcondes de Souza, J. A., Carareto Alves, L. M., de Mello Varani, A., & de Macedo Lemos, E. G. (2014). The Family Bradyrhizobiaceae. In The Prokaryotes (pp. 135–154). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_253 | |
dc.relation | Mardis, E. R. (2017). DNA sequencing technologies: 2006–2016. Nature Protocols, 12(2), 213–218. https://doi.org/10.1038/nprot.2016.182 | |
dc.relation | Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 29(5), 347–354. https://doi.org/10.1016/J.BIOMBIOE.2004.06.015 | |
dc.relation | McLaughlin, O., Mawhood, R., Jamieson, C., & Slade, R. (2016). Rice Straw for Bioenergy: the Effectiveness of Policymaking and Implementation in Asia. European Biomass Conference and Exhibition Proceedings, 1540–1554. https://doi.org/10.5071/24THEUBCE2016-4AV.3.20 | |
dc.relation | Mcnabb, D. H., & Geist, J. M. (1979). Acetylene Reduction Assay of Symbiotic N"2 Fixation Under Field Conditions. Ecology, 60(5), 1070–1072. https://doi.org/10.2307/1936873 | |
dc.relation | Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics & Development, 15(6), 589–594. https://doi.org/10.1016/J.GDE.2005.09.006 | |
dc.relation | Mengel, K. (1996). Turnover of organic nitrogen in soils and its availability to crops. Plant and Soil, 181(1), 83–93. https://doi.org/10.1007/BF00011295 | |
dc.relation | Miller, M. N., Dandie, C. E., Zebarth, B. J., Burton, D. L., Goyer, C., & Trevors, J. T. (2012). Influence of carbon amendments on soil denitrifier abundance in soil microcosms. Geoderma, 170, 48–55. https://doi.org/10.1016/j.geoderma.2011.11.022 | |
dc.relation | Ministerio de Agricultura y desarrollo rural, Ministerio de ambiente, vivienda y territorial. RESOLUCIÓN 510 DE 2007, Pub. L. No. 510 DE 2007, 46.585 (2007). | |
dc.relation | Minomo, K., Ohtsuka, N., Nojiri, K., Hosono, S., & Kawamura, K. (2011). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice straw smoke and their origins in Japan. Chemosphere, 84(7), 950–956. https://doi.org/10.1016/j.chemosphere.2011.06.006 | |
dc.relation | Miura, Y., & Kanno, T. (1997). Emissions of trace gases (CO 2 , CO, CH 4 , and N 2 O) resulting from rice straw burning. Soil Science and Plant Nutrition, 43(4), 849–854. https://doi.org/10.1080/00380768.1997.10414651 | |
dc.relation | Mousavi, S. F., Moazzeni, M., Mostafazadeh-Fard, B., & Yazdani, M. R. (2012). Effects of Rice Straw Incorporation on Some Physical Characteristics of Paddy Soils. Journal of Agricultural Science and Technology, 14(5), 1173–1183. Retrieved from http://hehp.modares.ac.ir/browse.php?a_id=10382&sid=23&slc_lang=en | |
dc.relation | Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D., … Peters, J. W. (2016). Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710. | |
dc.relation | Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14. https://doi.org/10.1111/nyas.12540 | |
dc.relation | Muto, H., Saitoh, K., & Takizawa, Y. (1993). Polychlorinated dibenzo-p-dioxins and dibenzofurans in rice straw smoke generated by laboratory burning experiments. Bulletin of Environmental Contamination and Toxicology, 50(3), 340–347. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8428111 | |
dc.relation | Naether, A., Foesel, B. U., Naegele, V., Wüst, P. K., Weinert, J., Bonkowski, M., … Friedrich, M. W. (2012). Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology, 78(20), 7398–7406. https://doi.org/10.1128/AEM.01325-12 | |
dc.relation | Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670. https://doi.org/10.1046/J.1351-0754.2003.0556.X | |
dc.relation | Nayak, D. R., Babu, Y. J., & Adhya, T. K. (2007). Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biology and Biochemistry, 39(8), 1897–1906. https://doi.org/10.1016/J.SOILBIO.2007.02.003 | |
dc.relation | Ng, L. C., Sariah, M., Radziah, O., Zainal Abidin, M. A., & Sariam, O. (2016). Development of Microbial-Fortified Rice Straw Compost to Improve Plant Growth, Productivity, Soil Health, and Rice Blast Disease Management of Aerobic Rice. Compost Science & Utilization, 24(2), 86–97. https://doi.org/10.1080/1065657X.2015.1076750 | |
dc.relation | Oanh, N. T. K., Bich, T. L., Tipayarom, D., Manadhar, B. R., Prapat, P., Simpson, C. D., & Liu, L.-J. S. (2011). CHARACTERIZATION OF PARTICULATE MATTER EMISSION FROM OPEN BURNING OF RICE STRAW. Atmospheric Environment (Oxford, England : 1994), 45(2), 493–502. https://doi.org/10.1016/j.atmosenv.2010.09.023 | |
dc.relation | Ochoa Villarreal Marisol, E. A.-H., Vargas Arispuro Irasema and, & Martínez Téllez Miguel Ángel. (2012). Plant Cell Wall Polymers: Function, Structure and Biological Activity of Their Derivatives. In Polymerization. InTech. https://doi.org/10.5772/46094 | |
dc.relation | Ogbodo, E. N. (2011). Effect of crop residue on soil chemical properties and rice yield on an Ultisol at Abakaliki, Southeastern Nigeria. American-Eurasian Journal of Sustainable Agriculture, 7(3), 13–18. Retrieved from https://www.researchgate.net/publication/284487372_Effect_of_crop_residue_on_soil_chemical_properties_and_rice_yield_on_an_Ultisol_at_Abakaliki_Southeastern_Nigeria | |
dc.relation | Oladosu, Y., Rafii, M. Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., & Miah, G. (2016). Fermentation Quality and Additives: A Case of Rice Straw Silage. BioMed Research International, 2016, 1–14. https://doi.org/10.1155/2016/7985167 | |
dc.relation | Oren, A. (2014). The Family Rhodocyclaceae. In The Prokaryotes (pp. 975–998). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_292 | |
dc.relation | Ott, T., van Dongen, J. T., Gu¨nther, C., Krusell, L., Desbrosses, G., Vigeolas, H., … Udvardi, M. K. (2005). Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Current Biology, 15(6), 531–535. https://doi.org/10.1016/J.CUB.2005.01.042 | |
dc.relation | Pajares, S., & Bohannan, B. J. M. (2016). Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Frontiers in Microbiology, 7, 1045. https://doi.org/10.3389/fmicb.2016.01045 | |
dc.relation | Pan, F., Li, Y., Chapman, S. J., & Yao, H. (2016). Effect of rice straw application on microbial community and activity in paddy soil under different water status. Environmental Science and Pollution Research, 23(6), 5941–5948. https://doi.org/10.1007/s11356-015-5832-5 | |
dc.relation | Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics (Oxford, England), 30(21), 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 | |
dc.relation | Pettit, N. M., Smith, A. R. J., Freedman, R. B., & Burns, R. G. (1976). Soil urease: Activity, stability and kinetic properties. Soil Biology and Biochemistry, 8(6), 479–484. https://doi.org/10.1016/0038-0717(76)90089-4 | |
dc.relation | Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 | |
dc.relation | Pinton, R., Varanini, Z., & Nannipieri, P. (2007). The rhizosphere : biochemistry and organic substances at the soil-plant interface. CRC Press. Retrieved from https://www.crcpress.com/The-Rhizosphere-Biochemistry-and-Organic-Substances-at-the-Soil-Plant/Pinton-Varanini-Nannipieri/p/book/9780849338557 | |
dc.relation | Piotrowska-Długosz, A., & Wilczewski, E. (2014). Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol. Environmental Monitoring and Assessment, 186(12), 8425–8441. https://doi.org/10.1007/s10661-014-4014-0 | |
dc.relation | Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L., & Valiati, V. H. (2018). Bacterial Community of the Rice Floodwater Using Cultivation-Independent Approaches. International Journal of Microbiology, 2018, 1–13. https://doi.org/10.1155/2018/6280484 | |
dc.relation | Ponnanaperuma, F. N. (1984). Straw on a source of nutrients for wetland rice. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=XB8411352 | |
dc.relation | Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 | |
dc.relation | Qin, S., Jiao, K., Lyu, D., Shi, L., & Liu, L. (2015). Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd. Archives of Agronomy and Soil Science, 61(2), 173–184. https://doi.org/10.1080/03650340.2014.928927 | |
dc.relation | Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue), D590. https://doi.org/10.1093/NAR/GKS1219 | |
dc.relation | Quesada, A., Leganés, F., & Fernández-Valiente, E. (1997). Environmental Factors Controlling N2 Fixation in Mediterranean Rice Fields. Microbial Ecology, 34, 39–48. https://doi.org/10.2307/4251502 | |
dc.relation | Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1–2), 341–361. https://doi.org/10.1007/s11104-008-9568-6 | |
dc.relation | Rajaramamohan-Rao, V. (1976). Nitrogen fixation as influenced by moisture content, ammonium sulphate and organic sources in a paddy soil. Soil Biology and Biochemistry, 8(5), 445–448. https://doi.org/10.1016/0038-0717(76)90048-1 | |
dc.relation | Reddy, K. R. (1982). Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.). Plant and Soil, 67(1–3), 209–220. https://doi.org/10.1007/BF02182768 | |
dc.relation | Reicosky, D. C., & Wilts, A. R. (2005). CROP-RESIDUE MANAGEMENT. Encyclopedia of Soils in the Environment, 334–338. https://doi.org/10.1016/B0-12-348530-4/00254-X | |
dc.relation | Riches, D., Porter, I. J., Oliver, D. P., Bramley, R. G. V., Rawnsley, B., Edwards, J., & White, R. E. (2013). Review: soil biological properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, n/a-n/a. https://doi.org/10.1111/ajgw.12034 | |
dc.relation | Robertson, G. P., & Groffman, P. M. (2015). Nitrogen Transformations. In Soil Microbiology, Ecology and Biochemistry (pp. 421–446). Elsevier. https://doi.org/10.1016/B978-0-12-415955-6.00014-1 | |
dc.relation | Roberttson, G. P., & Groffman, G. M. (2015). Nitrogen transformations. In E. A. Paul (Ed.), Soil microbiology, ecology, and biochemistry (4th ed., pp. 421–446). Burlington. https://doi.org/https://lter.kbs.msu.edu/docs/robertson/Robertson_and_Groffman_2015_N_Transformations_SMEB.pdf | |
dc.relation | Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454(7206), 841–845. https://doi.org/10.1038/nature07190 | |
dc.relation | Ruda de Schenquer, E. E., Mongiello, A., & Acosta, A. (2004). Contaminacion y salud del suelo (Ediciones UNL). Santa Fé, República de Argentina. Retrieved from https://books.google.com.co/books?id=GYWdzzcyZp0C&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false | |
dc.relation | Satlewal, A., Agrawal, R., Bhagia, S., Das, P., & Ragauskas, A. J. (2018). Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels, Bioproducts and Biorefining, 12(1), 83–107. https://doi.org/10.1002/bbb.1818 | |
dc.relation | Schimel, J. P., & Bennett, J. (2004). NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM. Ecology, 85(3), 591–602. https://doi.org/10.1890/03-8002 | |
dc.relation | Schloss, P. D., & Handelsman, J. (2003). Biotechnological prospects from metagenomics. Current Opinion in Biotechnology, 14(3), 303–310. https://doi.org/10.1016/S0958-1669(03)00067-3 | |
dc.relation | Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54(1), 1–10. https://doi.org/10.1007/s00374-017-1248-3 | |
dc.relation | Seck, P. A., Diagne, A., Mohanty, S., & Wopereis, M. C. S. (2012). Crops that feed the world 7: Rice. Food Security, 4(1), 7–24. https://doi.org/10.1007/s12571-012-0168-1 | |
dc.relation | Shamseldin, A., Abdelkhalek, A., & Sadowsky, M. J. (2017). Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis, 71(2), 91–109. https://doi.org/10.1007/s13199-016-0462-3 | |
dc.relation | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | |
dc.relation | Sharma, P. K., & Mishra, B. (2001). Effect of Burning Rice and Wheat Crop Residues: Loss of N, P, K and S from Soil and Changes in the Nutrient Availability. Journal of the Indian Society of Soil Science, 49(3), 425–429. Retrieved from http://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=49&issue=3&article=006 | |
dc.relation | Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., & Baggs, E. M. (2006). Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology, 8(2), 214–222. https://doi.org/10.1111/j.1462-2920.2005.00882.x | |
dc.relation | Shen, S. M., Pruden, G., & Jenkinson, D. S. (1984). Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biology and Biochemistry, 16(5), 437–444. https://doi.org/10.1016/0038-0717(84)90049-X | |
dc.relation | Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. https://doi.org/10.1038/nbt1486 | |
dc.relation | Shukla, G., & Varma, A. (Ajit). (2011). Soil enzymology. Springer. | |
dc.relation | Singh, Y.-S., Singh, B., Meelu, O., & Khind, C. (2000). Long-term Effects of Organic Manuring and Crop Residues on the Productivity and Sustainability of Rice-Wheat Cropping System in Northwest India. In R. G. IP Abrol, KF Bronson, JM Duxbury (Ed.), Long-term soil fertility experiments in rice-wheat cropping systems (pp. 149–162). | |
dc.relation | Rice-Wheat Consortium for the Indo-Gangetic Plain. Retrieved from https://www.researchgate.net/publication/259571342_Long-term_Effects_of_Organic_Manuring_and_Crop_Residues_on_the_Productivity_and_Sustainability_of_Rice-Wheat_Cropping_System_in_Northwest_India | |
dc.relation | Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94–R98. https://doi.org/10.1016/J.CUB.2015.12.021 | |
dc.relation | Strock, J. S. (2008). Ammonification. Encyclopedia of Ecology, 162–165. https://doi.org/10.1016/B978-008045405-4.00256-1 | |
dc.relation | Sun, R., Guo, X., Wang, D., & Chu, H. (2015). Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Applied Soil Ecology, 95, 171–178. https://doi.org/10.1016/j.apsoil.2015.06.010 | |
dc.relation | Tabatabai, M. A., & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4(4), 479–487. https://doi.org/10.1016/0038-0717(72)90064-8 | |
dc.relation | Takahashi, S., Uenosono, S., & Ono, S. (2003). Short- and long-term effects of rice straw application on nitrogen uptake by crops and nitrogen mineralization under flooded and upland conditions. Plant and Soil, 251(2), 291–301. https://doi.org/10.1023/A:1023006304935 | |
dc.relation | Takakai, F., Kikuchi, T., Sato, T., Takeda, M., Sato, K., Nakagawa, S., … Kaneta, Y. (2017). Changes in the Nitrogen Budget and Soil Nitrogen in a Field with Paddy–Upland Rotation with Different Histories of Manure Application. Agriculture, 7(5), 39. https://doi.org/10.3390/agriculture7050039 | |
dc.relation | Tan, K. H. (Kim H. (2000). Environmental soil science (3rd ed.). Boca Ratón, Florida: M. Dekker. Retrieved from https://books.google.com.co/books/about/Environmental_Soil_Science_Third_Edition.html?id=bqn-rlVmz4IC&redir_esc=y | |
dc.relation | Thamdrup, B. (2012). New Pathways and Processes in the Global Nitrogen Cycle. Annual Review of Ecology, Evolution, and Systematics, 43(1), 407–428. https://doi.org/10.1146/annurev-ecolsys-102710-145048 | |
dc.relation | Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics, 27(1), 77–83. https://doi.org/10.3102/10769986027001077 | |
dc.relation | Torsvik, V., Goksøyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), 782–787. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2317046 | |
dc.relation | Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3), 240–245. https://doi.org/10.1016/S1369-5274(02)00324-7 | |
dc.relation | Tung, N. S., Cự, N. X., & Hai, N. (2014). Impact of rice straw burning methods on soil temperature and microorganism distribution in the paddy soil ecosystems. ARPN Journal of Agricultural and Biological Science, 9(5), 157–160. Retrieved from http://www.arpnjournals.com/jabs/volume_05_2014.htm | |
dc.relation | Unger, I. M., Kennedy, A. C., & Muzika, R.-M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology, 42(1), 1–8. https://doi.org/10.1016/J.APSOIL.2009.01.007 | |
dc.relation | Vaishampayan, A., Sinha, R. P., Hader, D.-P., Dey, T., Gupta, A. K., Bhan, U., & Rao, A. L. (2001). Cyanobacterial biofertilizers in rice agriculture. The Botanical Review, 67(4), 453–516. https://doi.org/10.1007/BF02857893 | |
dc.relation | Van Es, H. (2017). A New Definition of Soil. CSA News, 62(10), 20. https://doi.org/10.2134/csa2017.62.1016 | |
dc.relation | Vasileiadis, S., Puglisi, E., Arena, M., Cappa, F., Cocconcelli, P. S., & Trevisan, M. (2012). Soil Bacterial Diversity Screening Using Single 16S rRNA Gene V Regions Coupled with Multi-Million Read Generating Sequencing Technologies. PLoS ONE, 7(8), e42671. https://doi.org/10.1371/journal.pone.0042671 | |
dc.relation | Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience, 2(1), 16. https://doi.org/10.1186/2047-217X-2-16 | |
dc.relation | Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry, 117(1), 81–99. https://doi.org/10.1007/s10533-013-9868-7 | |
dc.relation | Vranova, V., Rejsek, K., & Formanek, P. (2013). Proteolytic activity in soil: A review. Applied Soil Ecology, 70, 23–32. https://doi.org/10.1016/j.apsoil.2013.04.003 | |
dc.relation | Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J. G., … Shen, Q. (2017). Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112, 42–50. https://doi.org/10.1016/J.APSOIL.2017.01.005 | |
dc.relation | Wang, M. Y., Siddiqi, M. Y., Ruth, T. J., & Glass, A. (1993). Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiology, 103(4), 1259–1267. https://doi.org/10.1104/pp.103.4.1259 | |
dc.relation | Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015). Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil and Tillage Research, 152, 8–16. https://doi.org/10.1016/J.STILL.2015.03.011 | |
dc.relation | Wang, Y., Xu, L., Gu, Y. Q., & Coleman-Derr, D. (2016). MetaCoMET: a web platform for discovery and visualization of the core microbiome. Bioinformatics (Oxford, England), 32(22), 3469–3470. https://doi.org/10.1093/bioinformatics/btw507 | |
dc.relation | Ward, B. B. (2013). Nitrification. In Encyclopedia of Ecology (pp. 351–358). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.00697-7 | |
dc.relation | Ward, B. B., & Jensen, M. M. (2014). The microbial nitrogen cycle. Frontiers in Microbiology, 5, 553. https://doi.org/10.3389/fmicb.2014.00553 | |
dc.relation | Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., … Kuske, C. R. (2009). Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils. Applied and Environmental Microbiology, 75(7), 2046. https://doi.org/10.1128/AEM.02294-08 | |
dc.relation | Watanabe, A., Machida, N., Takahashi, K., Kitamura, S., & Kimura, M. (2004). Flow of photosynthesized carbon from rice plants into the paddy soil ecosystem at different stages of rice growth. Plant and Soil, 258(1), 151–160. https://doi.org/10.1023/B:PLSO.0000016545.36421.bc | |
dc.relation | Watanabe, K., & Hayano, K. (1993). Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation. Canadian Journal of Microbiology, 39(7), 674–680. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8364803 | |
dc.relation | Weber, S., Stubner, S., & Conrad, R. (2001). Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Applied and Environmental Microbiology, 67(3), 1318–1327. https://doi.org/10.1128/AEM.67.3.1318-1327.2001 | |
dc.relation | Wei, T., Zhang, P., Wang, K., Ding, R., Yang, B., Nie, J., … Han, Q. (2015). Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas. PLOS ONE, 10(4), e0120994. https://doi.org/10.1371/journal.pone.0120994 | |
dc.relation | Willems, A. (2014). The Family Comamonadaceae. In The Prokaryotes (pp. 777–851). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_238 | |
dc.relation | Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87(12), 4576–4579. https://doi.org/10.1073/pnas.87.12.4576 | |
dc.relation | Wu, M., Qin, H., Chen, Z., Wu, J., & Wei, W. (2011). Effect of long-term fertilization on bacterial composition in rice paddy soil. Biology and Fertility of Soils, 47(4), 397–405. https://doi.org/10.1007/s00374-010-0535-z | |
dc.relation | Y. Chen, Y., S. Tessier, S., C. Cavers, C., X. Xu, X., & F. Monero, F. (2005). A SURVEY OF CROP RESIDUE BURNING PRACTICES IN MANITOBA. Applied Engineering in Agriculture, 21(3), 317–323. https://doi.org/10.13031/2013.18446 | |
dc.relation | Yang, B., Wang, Y., & Qian, P.-Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17(1), 135. https://doi.org/10.1186/s12859-016-0992-y | |
dc.relation | Yang, S., Wang, Y., Liu, R., Xing, L., & Yang, Z. (2018). Improved crop yield and reduced nitrate nitrogen leaching with straw return in a rice-wheat rotation of Ningxia irrigation district. Scientific Reports, 8(1), 9458. https://doi.org/10.1038/s41598-018-27776-5 | |
dc.relation | Yi, X., Yuan, J., Zhu, Y., Yi, X., Zhao, Q., Fang, K., & Cao, L. (2018). Comparison of the Abundance and Community Structure of N-Cycling Bacteria in Paddy Rhizosphere Soil under Different Rice Cultivation Patterns. International Journal of Molecular Sciences, 19(12), 3772. https://doi.org/10.3390/ijms19123772 | |
dc.relation | Ying-Hua, D., Ya-Li, Z., SHEN, Q.-R., & Song-Wei, W. (2006). Nitrate Effect on Rice Growth and Nitrogen Absorption and Assimilation at Different Growth Stages. Pedosphere, 16(6), 707–717. https://doi.org/10.1016/S1002-0160(06)60106-9 | |
dc.relation | Zaneveld, J. R., Lozupone, C., Gordon, J. I., & Knight, R. (2010). Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Research, 38(12), 3869–3879. https://doi.org/10.1093/nar/gkq066 | |
dc.relation | Zeng, H., Lu-sheng, Liao, Min, Chen, Cheng-li, … Chang-yong. (2005). Variation of Soil Microbial Biomass and Enzyme Activities at Different Growth Stages of Rice (Oryza sativa). Rice Science, 12(4), 283–288. Retrieved from https://www.semanticscholar.org/paper/Variation-of-Soil-Microbial-Biomass-and-Enzyme-at-Zeng-Lu-sheng/1a9d96781de487d7b005f96a127ebe7157af7a80 | |
dc.relation | Zhan, Y., Liu, W., Bao, Y., Zhang, J., Petropoulos, E., Li, Z., … Feng, Y. (2018). Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Scientific Reports, 8(1), 7981. https://doi.org/10.1038/s41598-018-26375-8 | |
dc.relation | Zhang, B., Pang, C., Qin, J., Liu, K., Xu, H., & Li, H. (2013). Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field. Biology and Fertility of Soils, 49(8), 1039–1052. https://doi.org/10.1007/s00374-013-0805-7 | |
dc.relation | Zhou, S., Nakashimada, Y., & Hosomi, M. (2009). Nitrogen transformations in vertical flow systems with and without rice (Oryza sativa) studied with a high-resolution soil–water profiler. Ecological Engineering, 35(2), 213–220. https://doi.org/10.1016/j.ecoleng.2008.04.014 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo | |
dc.type | Otro | |