dc.contributorJimenez Cartagena, Claudio
dc.contributorCastañeda Sánchez, Darío Antonio
dc.contributorGrupo de investigación aplicada al medio ambiente – GAMA
dc.creatorOsorio Bermudez, Johanna Marcela
dc.date.accessioned2022-03-15T16:42:41Z
dc.date.accessioned2022-09-21T15:22:22Z
dc.date.available2022-03-15T16:42:41Z
dc.date.available2022-09-21T15:22:22Z
dc.date.created2022-03-15T16:42:41Z
dc.date.issued2019-12
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81222
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3379248
dc.description.abstractLa gulupa es la tercera fruta tropical de mayor exportación en Colombia, su principal destino la UE, presenta normas de inocuidad estrictas en los LMR de plaguicidas y contenidos de metales. Dada la importancia que tiene la gulupa para el renglón productivo de Colombia, este estudio buscó identificar si el tipo de sistema productivo se relacionaba con la residualidad de plaguicidas y el contenido de metales en el suelo y fruto. Para esto se realizaron visitas y encuestas a 35 productores de gulupa. Los cuales se agruparon a partir de un análisis FAMD. De los grupos más contrastantes se tomaron 10 muestras de fruta para análisis de plaguicidas y 12 de fruta y suelo para análisis de metales tóxicos. Se identificaron tres sistemas productivos: tecnificados de grandes productores en el Suroeste, convencional de pequeños productores en el Oriente y en transición de medianos productores en ambas regiones. El 20% de las muestras no presentaron residuos de plaguicidas, el 50% contenía residuos que sobrepasaba el LMR. El Azoxystrobin y tebuconazole, fueron las sustancias identificadas con mayor frecuencia. El sistema convencional cuya asistencia técnica era recibida por casas comerciales de agroquímicos, se caracterizó por el uso de plaguicidas con mayor nivel de peligrosidad y mayores conflictos con el cumplimiento de los LMR. Se identificaron diferencias significativas mediante un ANOVA de dos vías entre el contenido de metales en suelo y el material litológico. Los suelos de origen aluvial presentaron mayores niveles de Cu, Cr y Cd con respecto a suelos ígneos. Las propiedades fisicoquímicas: pH, materia orgánica y capacidad de intercambio catiónico, no se correlacionaron con mayores contenidos de metales en la fruta. El tipo de sistema productivo se relacionó con altos niveles de residualidad de plaguicidas en fruta, pero no con el contenido de metales. Para futuros estudios se sugiere incrementar los puntos de muestreo. (Texto tomado de la fuente)
dc.description.abstractThe passion fruit is the third most exported tropical fruit in Colombia, its main destination in the EU, has strict safety standards in pesticide MRLs and metal content. Given the importance of gulupa for the productive line of Colombia, this study sought to identify if the type of productive system was related to the residuality of pesticides and the content of metals in the soil and fruit. For this, visits and surveys were conducted with 35 gulupa producers. Which were grouped from a FAMD analysis. From the most contrasting groups, 10 fruit samples were taken for pesticide analysis and 12 for fruit and soil for toxic metal analysis. Three productive systems were identified: technified from large producers in the Southwest, conventional from small producers in the East and in transition from medium producers in both regions. 20% of the samples did not present pesticide residues, 50% contained residues that exceeded the MRL. Azoxystrobin and tebuconazole were the most frequently identified substances. The conventional system whose technical assistance was received by commercial houses of agrochemicals, was characterized by the use of pesticides with a higher level of danger and greater conflicts with compliance with the MRLs. Significant differences were identified by a two-way ANOVA between the content of metals in soil and the lithological material. The soils of alluvial origin had higher levels of Cu, Cr and Cd with respect to igneous soils. The physicochemical properties: pH, organic matter and cation exchange capacity, were not correlated with higher metal content in the fruit. The type of production system was related to high levels of pesticide residuality in fruit, but not to the metal content. For future studies it is suggested to increase the sampling points.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAERU. (2007). Pesticide Properties Database. Retrieved December 1, 2019, from https://sitem.herts.ac.uk/aeru/footprint/es/index.htm
dc.relationAgronet. (2018). Red de información y comunicación del sector Agropecuario Colombiano. Retrieved December 1, 2019, from http://www.agronet.gov.co/estadistica/Paginas/
dc.relationAhouangninou, C., Fayomi, B. E., & Martin, T. (2011). Assessing health and environmental risks as regards pesticide practices of vegetable growers in the rural city of Tori-Bossito in southern Benin . Cahiers Agricultures, 20(3), 216–222. https://doi.org/10.1684/agr.2011.0485
dc.relationAli, S., Ahmad, M., Ali, T., Shahbaz, B., Khan, G. A., Iftikhar, M., & Nosheen, F. (2013). Role of private sector in promoting IPM practices among farming community in Punjab, Pakistan. Journal of Animal and Plant Sciences, 23(5), 1473–1476.
dc.relationÁngel-Coca, C., Nates-Parra, G., Ospina-Torres, R., Ortiz, C. D. M., & Amaya-Márquez, M. (2011). Biología floral y reproductiva de la gulupa Passiflora edulis sims f. edulis. Caldasia, 33(2), 433–451.
dc.relationAngulo, R. (2009). Gulupa (Passiflora edulis var. edulis). (Bayer CropScience, Ed.). Bogotá. Bagheri, A., Emami, N., Damalas, C. A., & Allahyari, M. S. (2019). Farmers’ knowledge, attitudes, and perceptions of pesticide use in apple farms of northern Iran: impact on safety behavior. Environmental Science and Pollution Research, 26(9), 9343–9351. https://doi.org/10.1007/s11356-019-04330-y
dc.relationBastidas, D. A., Guerrero, J. A., & Wyckhuys, K. (2013). Residuos de plaguicidas en cultivos de pasifloras en regiones de alta producción en Colombia. Revista Colombia Quimica, 42(2), 39–47.
dc.relationCalatayud-Vernich, P., Calatayud, F., Simó, E., & Picó, Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106– 114. https://doi.org/https://doi.org/10.1016/j.envpol.2018.05.062
dc.relationCardona, N., & Pino, L. M. (2016). Exposición laboral a plaguicidas en una muestra de trabajadores de café y gulupa mediante una matriz de tarea-exposición en el municipio de Jericó, Antioquia entre enero y mayo 2016. Universidad de Antioquia.
dc.relationChaney, R. L. (1989). Toxic Element Accumulation in Soils and Crops: Protecting Soil Fertility and Agricultural Food-Chains. Ecological Studies, 140–158. https://doi.org/10.1007/978-3- 642-74451-8_10
dc.relationChen, M., Chen, L., & Huang, P. (2015). Assessment, Composition and Possible Source of Organochlorine Pesticides in Surface Soils from Ürümqi, China. Pedosphere, 25(6), 888– 900. https://doi.org/10.1016/S1002-0160(15)30069-2
dc.relationClaeys, W. L., Schmit, J.-F., Bragard, C., Maghuin-Rogister, G., Pussemier, L., & Schiffers, B. (2011). Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control, 22(3), 508–516. https://doi.org/https://doi.org/10.1016/j.foodcont.2010.09.037
dc.relationCleves, J., & Jarma, A. (2014). Characterization and typification of citrus production systems in the department of Meta. Agronomia Colombiana, 32(1), 113–121. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0- 84901001337&partnerID=40&md5=4aee789f3dc5f353f4cae3f4f9d0794c
dc.relationCodex Alimentarium. Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos (1995). Retrieved from http://www.fao.org/fao-who- codexalimentarius/sh- proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex %252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193s.pdf
dc.relationCollin, B., & Doelsch, E. (2010). Impact of high natural soilborne heavy metal concentrations on the mobility and phytoavailability of these elements for sugarcane. Geoderma, 159(3), 452– 458. https://doi.org/https://doi.org/10.1016/j.geoderma.2010.09.013
dc.relationCollins, C., Martin, I., & Fryer, M. (2006). Evaluation of models for predicting plant uptake of chemicals from soil. Bristol. https://doi.org/978-1-84432-788-1
dc.relationCowan, R., & Gunby, P. (1996). Sprayed to death: path dependence, lock-in and pest control strategies. The Economic Journal, 106(436), 521–542.
dc.relationDœlsch, E., de Kerchove, V. Van, & Macary, H. Saint. (2006). Heavy metal content in soils of Réunion (Indian Ocean). Geoderma, 134(1), 119–134. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.09.003
dc.relationElahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461–474. https://doi.org/10.1016/j.landusepol.2019.02.023
dc.relationEmurotu, J. E., & Onianwa, P. C. (2017). Bioaccumulation of heavy metals in soil and selected food crops cultivated in Kogi State, north central Nigeria. Environmental Systems Research, 6(1), 21. https://doi.org/10.1186/s40068-017-0098-1
dc.relationEPA. (1996). METHOD 3052. California, USA. Retrieved from https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf
dc.relationEPA. (2018a). Potential Annual Cancer Report 2018.
dc.relationEPA. Regulación 83 FR 22595 (2018). USA. Retrieved from https://www.govinfo.gov/content/pkg/FR-2018-05-16/pdf/2018-10345.pdf
dc.relationEPA. (2019a). CompTox Chemistry Dashboard. Retrieved December 1, 2019, from https://comptox.epa.gov/dashboard
dc.relationEPA. (2019b). ECOTOX Knowledgebase.
dc.relationEscobar, G., & Berdegué, J. (1990). Conceptos y metodología para la tipificación de sistemas de finca: la experiencia de RIMISP. In G. Escobar & J. Berdegué (Eds.), Tipificación de sistemas de producción agricola (p. 282). Santiago de Chile. https://doi.org/ISBN. 956.7110- 01-07.
dc.relationFadigas, F. D. S., Do Amaral Sobrinho, N. M. B., Mazur, N., & Cunha Dos Anjos, L. H. (2006). Estimation of reference values for cadmium, cobalt, chromium, copper, nickel, lead, and zinc in Brazilian soils. Communications in Soil Science and Plant Analysis, 37(7–8), 945–959. https://doi.org/10.1080/00103620600583885
dc.relationFan, J.-J., Wang, S., Tang, J.-P., Zhao, J.-L., Wang, L., Wang, J.-X., ... Yang, Y. (2019). Bioaccumulation of endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China. Environmental Pollution, 999–1008. https://doi.org/10.1016/j.envpol.2019.01.113
dc.relationFAO. (2000). Parameters of pesticides that influence processes in the soil. Assessing soil contamination A reference manual. Roma. Retrieved from http://www.fao.org/3/X2570E/X2570E00.htm#TOC
dc.relationFAO. (2001). Sistemas de Producción Agropecuaria y Pobreza. (J. Dixon, A. Gulliver, & D. Gibbon, Eds.).
dc.relationFeola, G., & Binder, C. R. (2010). Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyacá, Colombia. Crop Protection, 29(6), 612–622. https://doi.org/10.1016/j.cropro.2010.01.008
dc.relationFontes, M. (2013). Behavior of Heavy Metals in Soils: Individual and Multiple Competitive Adsorption. In H. M. Selim (Ed.), Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media (pp. 77–106). Boca Raton.
dc.relationForero, J., Rodríguez, C. S., Gutiérrez, Á., & Nieto, A. (2016). Eficiencia económica de la agricultura familiar colombiana y sus potencialidades para superar la pobreza rural. In El desarrollo equitativo, competitivo y sostenible del sector agropecuario en Colombia (pp. 57– 100). Retrieved from http://repositorio.banrep.gov.co/handle/20.500.12134/9328
dc.relationForget, G. (1991). Pesticides and the third world. Journal of Toxicology and Environmental Health, 32(1), 11–31. https://doi.org/10.1080/15287399109531462
dc.relationFranco, G. (2013). Caracterización fisiológica del fruto de gulupa (Passiflora edulis Sims), en condiciones del Bosque Húmedo Montano Bajo de Colombia. Universidad Nacional de Colombia sede Medellín. Retrieved from http://bdigital.unal.edu.co/11083/1/10253852.2013.pdf
dc.relationGlasbergen, P. (2018). Smallholders do not Eat Certificates Pieter. Ecological Economics Journal, 147, 243–252.
dc.relationGleissy, S., Santos, A. R., Quintão, L., Henriques, S., França, D., Santos, O., ... Scherer, R. (2016). GIS applied to agriclimatological zoning and agrotoxin residue monitoring in tomatoes: A case study in Espírito Santo state, Brazil. Journal of Environmental Management, 166, 429–439. https://doi.org/10.1016/j.jenvman.2015.10.040
dc.relationGökbel, H., Harmankaya, M., & Özcan, M. M. (2015). Determination of metal, non-metal and heavy metal contents of some tropical fruits growing in Indonesia. Quality Assurance and Safety of Crops and Foods, 7(4), 545–549. https://doi.org/10.3920/QAS2014.0397
dc.relationGuerrero, E., Potosí, C., Melgarejo, L. M., & Hoyos, L. (2012). Manejo agronómico de gulupa (Passiflora edulis Sims) en el marco de las Buenas Prácticas Agrícolas (BPA). In L. M. Melgarejo (Ed.), Ecofisiología del cultivo de la gulupa (Passiflora edulis Sims) (pp. 123– 144). Bogotá. Retrieved from http://www.bdigital.unal.edu.co/8547/16/09_Cap07.pdf
dc.relationHao, X., Zhou, D., Wang, Y., Shi, F., & Jiang, P. (2011). Accumulation of Cu, Zn, Pb, and Cd in Edible Parts of Four Commonly Grown Crops in Two Contaminated Soils. International Journal of Phytoremediation, 13(3), 289–301. https://doi.org/10.1080/15226514.2010.483260
dc.relationHjorth, K., Johansen, K., Holen, B., Andersson, A., Christensen, H. B., Siivinen, K., & Toome, M. (2011). Pesticide residues in fruits and vegetables from South America – A Nordic project. Food Control, 22(11), 1701–1706. https://doi.org/https://doi.org/10.1016/j.foodcont.2010.05.017
dc.relationHohl, H., & Varma, A. (2010). Soil: The Living Matrix. In I. Sherameti & A. Varma (Eds.), Soil Heavy Metals (pp. 1–18). London. https://doi.org/10.1007/978-3-642-02436-8
dc.relationIARC, & OMS. (2019). Colombia Source: Globocan 2018. París.
dc.relationIbanez, M., & Blackman, A. (2016). Is Eco-Certification a Win–Win for Developing Country Agriculture? Organic Coffee Certification in Colombia. World Development, 82, 14–27. https://doi.org/10.1016/j.worlddev.2016.01.004
dc.relationICA. (1992). Fertilización de diversos cultivos Quinta Aproximación. Bogotá. Retrieved from https://repository.agrosavia.co/bitstream/handle/20.500.12324/14124/27733_16902.pdf?sequ ence=1&isAllowed=y
dc.relationICA. (2016). Estadísticas de Comercialización de Plaguicidas Químicos de Uso Agrícola 2016. Bogotá. Retrieved from https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control- de-plaguicidas-quimicos/estadisticas/cartilla-plaguicidas-2016_22-01-18.aspx
dc.relationICA. (2019a). Registros de Venta de Plaguicidas Químicos de Uso Agrícola - Octubre 30 de 2019. Bogotá. Retrieved from https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control- de-plaguicidas-quimicos/registros-de-venta-feb-28-2017.aspx
dc.relationICA. (2019b). Resgistros Nacionales Septiembre 17 2019. Bogotá. Retrieved from https://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registrosnacionales- pqua-15-04-09.aspx
dc.relationIGAC, I. G. A. C. (n.d.). GUÍA DE MUESTREO. Bogotá.
dc.relationImeri, R., Kullaj, E., Duhani, E., & Millaku, L. (2019). Concentrations of heavy metals of in apple fruits around the industerial area of Mitrovica, Kosovo. Iraqi Journal of Agricultural Sciences, 50(1), 256–266. Retrieved from https://www.scopus.com/inward/record.uri?eid=2- s2.0-85062694403&partnerID=40&md5=7e541a19da7e6de4c7bd853b51a5f73f
dc.relationJafarnejadi, A. R., Sayyad, G., Homaee, M., & Davamei, A. H. (2013). Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics. Environmental Monitoring and Assessment, 185(5), 4087–4096. https://doi.org/10.1007/s10661-012-2851-2
dc.relationJallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017). Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Science of the Total Environment, 574, 490–498. https://doi.org/10.1016/j.scitotenv.2016.09.085
dc.relationJiménez C., J., Aranda C., Y., & Darghan, E. (2017). Tipificación de un sistema de producción de tabaco (Nicotiana tabacum) en la provincia de Guanentá, departamento de Santander, Colombia. Agronomia Colombiana, 35(2), 247–255. https://doi.org/10.15446/agron.colomb.v35n2.63972
dc.relationJiménez, J., Carranza, C., & Rodríguez, M. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. Flórez (Eds.), Manejo integrado del cultivo de gulupa (Passiflora edulis Sims). (Vol. 1, pp. 159–191). Bogotá. https://doi.org/10.1017/CBO9781107415324.004
dc.relationJohn, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. In E. du Bray (Ed.), Preliminary compilation of descriptive geoenvironmental mineral deposit models (pp. 10–18). Denver.
dc.relationKabata, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. (K. Alina & H. Pendias, Eds.) (3rd ed.). Boca Raton. https://doi.org/10.1201/b10158-25
dc.relationKamal, S., Prasad, R., & Varma, A. (2010). Soil Microbial Diversity in Relation to Heavy Metals. In I. Sherameti & A. Varma (Eds.), Soil Heavy Metals (19th ed., pp. 31–63). London. https://doi.org/10.1007/978-3-642-02436-8
dc.relationKassambara, A. (2017). STHDA Statical Tools for hifh - throughput data analysis.
dc.relationKhan, M., Mahmood, H. Z., & Damalas, C. A. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection, 67(1), 184–190. https://doi.org/10.1016/j.cropro.2014.10.013
dc.relationKudsk, P., Jørgensen, L. N., & Ørum, J. E. (2018). Pesticide Load - A new Danish pesticide risk indicator with multiple applications. Land Use Policy, 70, 384–393. https://doi.org/https://doi.org/10.1016/j.landusepol.2017.11.010
dc.relationLi, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of The Total Environment, 472, 407–420. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.11.046
dc.relationLondoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153
dc.relationMachado Vargas, M. M., Nicholls, C. I., Márquez, S. M., & Turbay, S. (2015). Caracterización de nueve agroecosistemas de café de la cuenca del río Porce, Colombia, con un enfoque agroecológico. Idesia (Arica), 33(1), 69–83. https://doi.org/10.4067/S0718- 34292015000100008
dc.relationMADR, & MinSalud. Resolución Número 2906 DE 2007 (2007). Bogotá. Retrieved from http://www.sical.gov.co/files/notificaciones/xwm1d5nogg- resolucionminproteccion2906plaguicidas.pdf
dc.relationMADR, & MinSalud. Resolución 5897 del 2018 (2018). Bogotá.
dc.relationMao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., ... Theiss, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA, 175, 339–348. https://doi.org/https://doi.org/10.1016/j.catena.2018.12.029
dc.relationMarique, R., & Prager, M. (2001). El enfoque de sistemas: una opción para el análisis de las unidades de producción agrícola.
dc.relationMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., ... Gil-Izquierdo, A. (2017). Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT- DAD-MS/MS. Food Chemistry, 229, 1–8. https://doi.org/10.1016/j.foodchem.2017.02.049
dc.relationMelgarejo, L. M. (2012). Ecofisiología del cultivo de la gulupa (Passiflora edulis Sims). (L. M. Melgarejo, Ed.). Bogotá: Universidad Nacional de Colombia.
dc.relationMelgarejo, L. M., & Hernández, M. S. (2011). Poscosecha de la Gulupa (Passiflora edulis Sims). (L. M. Melgarejo & M. S. Hernández, Eds.). Bogotá: Universidad Nacional de Colombia.
dc.relationMinAgricultura. (2018). Red de Información y Comunicación del Sector Agropecuario Colombiano.
dc.relationMinAmbiente. Resolución Número 1207, Pub. L. No. 1207, 9 (2014). Retrieved from http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Re s_1207_2014.pdf
dc.relationMinAmbiente. Resolución 631 de 2015 (2015). Retrieved from https://docs.supersalud.gov.co/PortalW eb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf
dc.relationMinSalud. (2012). Plan decenal para el control del cáncer en Colombia. Bogotá. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INCA/plan-nacional- control-cancer.pdf
dc.relationMinSalud. Resolución 4506 de 2013 (2013). Colombia. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion- 4506-de-2013.pdf
dc.relationMiranda, D., & Carranza, C. (2010). Caracterización de los sistemas productivos de Pasifloráceas, 59.
dc.relationMiranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., & Zurita, J. (2011). Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2 SE-SECCION DE HORTALIZAS). https://doi.org/10.17584/rcch.2008v2i2.1186
dc.relationMiranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahita, W., & Flórez, L. E. (2009). Cultivo , poscosecha y comercialización de las pasifloráceas en Colombia : maracuyá , granadilla , gulupa y curuba. (D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahita, & L. E. Flórez, Eds.). Bogotá: Sociedad Colombiana de Ciencias Hortículas.
dc.relationMora, T. M., & Muñoz, J. C. (2008). Concentración de la propiedad de la tierra y producto agrícola en Antioquia. 1995-2004. Ecos de Economía: A Latin American Journal of Applied Economics, 12(26), 71–108. Retrieved from http://publicaciones.eafit.edu.co/index.php/ecos- economia/article/view/714
dc.relationMorton, J. F. (1987). Fruits of Warm Climates. Fruits of Warm Climates.
dc.relationNaqvi, G.-Z., Shoaib, N., & Ali, A. M. (2017). Pesticides impact on protein in fish (Oreochromis mossambicus) tissues. Indian Journal of Geo-Marine Sciences, 46(9), 1864–1868. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85027409257&partnerID=40&md5=42ff9adbd51f2a0c617d758625aaef29
dc.relationNavarro Aviñó, E., & Alonso, A. (2007). Asociación Española de Ecología Terrestre Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas: Revista Científica y Técnica de Ecología y Medio Ambiente, 16(2), 1–17. Retrieved from http://www.revistaecosistemas.net/articulo.asp?Id=488&Id_Categoria=1&tipo=portada
dc.relationNicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6
dc.relationNorton, R. (2017). Colombia: A Strategic Assessment of National Crop Competitiveness. In The Competitiveness of Tropical Agriculture (pp. 87–145). https://doi.org/10.1017/CBO9781107298002.004
dc.relationOcampo, J. (2013). Diversity and Distribution of Passifloraceae in the Department of Huila in Colombia / Diversidad y distribución de las passifloraceae en el departamento del huila en colombia. Acta Biológica Colombiana, 18(3), 511–516. Retrieved from http://www.revista.unal.edu.co/index.php/actabiol/article/download/38500/42437
dc.relationOcampo, J., Marin, C., López, C., & Casas, A. (2012). Manejo del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 38–43).
dc.relationOcampo, J., Marin, C., Posada, P., López, N., & Solano, R. (2012). Establecimiento y zonas productoras del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 33–43). Bogotá.
dc.relationOcampo, J., Melo, D., Rendón, J., Arias, J., & Marín, V. (2012). Aspectos fisiológicos de la Gulupa (Passiflora edulis f. edulis Sims). In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 13–15). Bogotá.
dc.relationOcampo, J., & Morales, L. (2012). Aspectos generales de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 7–12). Bogotá.
dc.relationOcampo, J., & Posada, P. (2012). Ecología del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 29–32). Bogotá.
dc.relationOcampo, & Wyckhuys. (2012). Tecnología para el cultivo de la gulupa (Passiflora edulis f. edulis Sims) en Colombia.
dc.relationOMS. (2009). The WHO Recommended Classification of Pesticides by Hazard. Stuttgart.
dc.relationONU, & FAO. (2019). Productos Químicos del Anexo III. Retrieved November 29, 2019, from http://www.pic.int/ElConvenio/ProductosQuímicos/AnexoIII/tabid/2031/language/es- CO/Default.aspx
dc.relationOrjuela Baquero, N. M., Pérez Martínez, L. V., Flórez, L. M., Hernández, M. S., & Melgarejo, L. M. (2011). Propuesta de Norma Técnica Colombiana, Frutas Frescas, Gulupa, Especificaciones. In Poscosecha de la gulupa (Passiflora edulis Sims) (pp. 45–58). Retrieved from http://www.bdigital.unal.edu.co/8532/7/06_Cap04.pdf
dc.relationOrtega-Olvera, J. M., Winkler, R., Quitanilla-Vega, B., Shibayama, M., Chávez-Munguía, B., Martín-Tapia, D., ... González-Mariscal, L. (2018). The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicology and Applied Pharmacology, 360, 257–272. https://doi.org/10.1016/j.taap.2018.10.003
dc.relationOtsuki, T., Wilson, J. S., & Sewadeh, M. (2001). Saving two in a billion: Quantifying the trade effect of European food safety standards on African exports. Food Policy, 26(5), 495–514. https://doi.org/10.1016/S0306-9192(01)00018-5
dc.relationPagès J. (2004). Analyse factorielle de données mixtes. REVUE DE STATISTIQUE APPLIQUÉE, 4, 93–111. Retrieved from http://www.numdam.org/article/RSA_2004__52_4_93_0.pdf
dc.relationPAN. (2018). PAN International List of Highly Hazardous Pesticides. Hamburg.
dc.relationPerez Martinez, L. V., Melgarejo, L. M., Florez Gutierrez, L. M., Cruz Aguilar, M., Hernandez, M. S., Hoyos Carvajal, L. M., ... Medina, J. (2012). Caracterización ecofisiológica de la gulupa (Passiflora edulis Sims) bajo tres condiciones ambientales en el departamento de Cundinamarca. In L. M. Melgarejo (Ed.), Ecofisiologia del cultivo de la gulupa (Passiflora edulis Sims) (pp. 11–32). Bo. Retrieved from http://www.bdigital.unal.edu.co/8547/
dc.relationPiechowicz, B., Szpyrka, E., Zaręba, L., Podbielska, M., & Grodzicki, P. (2018). Transfer of the Active Ingredients of Some Plant Protection Products from Raspberry Plants to Beehives. Archives of Environmental Contamination and Toxicology, 75(1), 45–58. https://doi.org/10.1007/s00244-017-0488-4
dc.relationPoulsen, M. E., & Andersen, J. H. (2003). Results from the monitoring of pesticide residues in fruit and vegetables on the Danish market, 2000-01. Food Additives & Contaminants, 20(8), 742– 757. https://doi.org/10.1080/0265203031000152433
dc.relationQuinteros, Z., & Sánchez, E. (2017). DESCRIPCIÓN DEL SISTEMA AGRARIO DEL DISTRITO DE CAJATAMBO ( LIMA ) Y CLASIFICACIÓN DE LOS PRODUCTORES A PARTIR DE UNA ENCUESTA DESCRIPTION OF THE AGRICULTURE OF THE DISTRICT OF CAJATAMBO ( LIMA ) AND CLASSIFICATION OF PRODUCERS FROM A SURVEY, 16(2).
dc.relationRamírez, H., Bonilla, O., Ocampo, J., & Wyckhuys, K. (2012). Principales insectos plagas del cultivo de la Gulupa y su control. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 44–52). Bogotá.
dc.relationReijonen, I., & Hartikainen, H. (2016). Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil – pH as the master variable. Applied Geochemistry, 74, 84–93. https://doi.org/https://doi.org/10.1016/j.apgeochem.2016.08.017
dc.relationRendón, J. S., Ocampo, J., & Urrea, R. (2013). Estudio sobre polinización y biología floral en passiflora edulis f. Edulis sims, como base para el premejoramiento genetic. Acta Agronomica, 62(3), 232–241.
dc.relationRobaina, N., Vásquez, E., Restrepo, L. F., & Márquez, S. M. (2017). Characterization and typification of coffee production systems (Coffea arabica L.), Andes municipality. Revista Facultad Nacional de Agronomía, 70(3), 8327–8339. https://doi.org/10.15446/rfna.v70n3.66332
dc.relationRodríguez, E., McLaughlin, M., & Pennock, D. (2018). Soil Pollution: a hidden reality. Rome. https://doi.org/10.2105/ajph.12.5.426-b
dc.relationRueda, G., Rodríguez, J., & Madriñán, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia. Acta Agronómica, 60(3), 203–218. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Metodologías+para+establ ecer+valores+de+referencia+de+metales+pesados+en+suelos+agrícolas+:+Perspectivas+para +Colombia#0
dc.relationSaravia Matus, S., Cimpoeis, D., & Ronzon, T. (2013). Literature Review and Proposal for an International Typology of Agricultural Holdings.
dc.relationSchaetzl, R. J. (1991). A lithosequence of soils in extremely gravelly, dolomitic parent materials, bois blanc island, lake huron. Geoderma, 48(3), 305–320. https://doi.org/https://doi.org/10.1016/0016-7061(91)90050-4
dc.relationSchreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003
dc.relationSeitz, N., Traynor, K. S., Steinhauer, N., Rennich, K., Wilson, M. E., Ellis, J. D., ... vanEngelsdorp, D. (2015). A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research, 54(4), 292–304. https://doi.org/10.1080/00218839.2016.1153294
dc.relationSelim, H. (2013). Competitive Sorption of Heavy Metals in Soils: Experimental Evidence. In H. Magdi (Ed.), Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media (p. 2216). Boca Raton. https://doi.org/10.2136/sssaj2013.0004br
dc.relationSeptembre-Malaterre, A., Stanislas, G., Douraguia, E., & Gonthier, M. P. (2016). Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chemistry, 212, 225– 233. https://doi.org/10.1016/j.foodchem.2016.05.147
dc.relationSharifzadeh, M. S., Abdollahzadeh, G., Damalas, C. A., Rezaei, R., & Ahmadyousefi, M. (2019). Determinants of pesticide safety behavior among Iranian rice farmers. Science of The Total Environment, 651, 2953–2960. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.10.179
dc.relationSilva, S. R., Almeida, N. M., de Siqueira, K. M. M., Souza, J. T., & Castro, C. C. (2018). Isolation from natural habitat reduces yield and quality of passion fruit. Plant Biology. https://doi.org/10.1111/plb.12910
dc.relationSollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA, 80(3), 182–194. https://doi.org/https://doi.org/10.1016/j.catena.2009.11.005
dc.relationState Environmental Protection Administration. The Limits of Pollutants in Food (2005). China.
dc.relationSugeng, A. J., Beamer, P. I., Lutz, E. A., & Rosales, C. B. (2013). Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona. Science of The Total Environment, 463–464, 35–41. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.05.051
dc.relationTorres, O., Gallego, G., & Zakzuk, J. (1996). Conceptos básicos sobre la metodología de sistemas de producción. In Aplicacion del enfoque de sistemas de produccion. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=CO20000006951
dc.relationToxnet. (2019). A toxnet database Hazardous Substances Data Bank (HSDB). Retrieved from https://toxnet.nlm.nih.gov/help/newtoxnet/toxnetfs.html
dc.relationTraynor, K. S., Pettis, J. S., Tarpy, D. R., Mullin, C. A., Frazier, J. L., Frazier, M., & VanEngelsdorp, D. (2016). In-hive pesticide exposome: assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Nature, 6(1), 1–16. https://doi.org/10.1038/srep33207
dc.relationUE. Directiva 2002/63/CE de la Comisión (2002). Unión Europea. UE. Reglamento (CE) No 396/2005 (2005). Europa.
dc.relationUE. Reglamento (CE) No 1881/2006 de la comisión (2006). UE. UE. REGLAMENTO (CE) No 1272/2008 (2008).
dc.relationUE. REGLAMENTO (UE) No 899/2012 DE LA COMISIÓN (2012). UE. Retrieved from https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32012R0899&from=EN
dc.relationUE. (2016a). EU Pesticides database. Retrieved November 28, 2019, from https://ec.europa.eu/food/plant/pesticides/eu-pesticides- database/public/?event=product.resultat&language=EN&selectedID=68
dc.relationUE. Reglamento (UE) 2016/67 de la comisión (2016). UE. Retrieved from https://eur- lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32016R0067&from=EN
dc.relationVillegas, B., Ocampo, J., & Castillo, C. (2012). Principales enfermedades en el cultivo de Gulupa y su manejo. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 54–63). Bogotá.
dc.relationViviana, A., Eve, E., & Celso da Silva, N. (2007). Do farmers understand the information displayed on pesticide product labels? A key question to reduce pesticides exposure and risk of poisoning in the Brazilian Amazon. Crop Protection, 26(4), 576–583. https://doi.org/10.1016/j.cropro.2006.05.011
dc.relationWalters, J. P., Archer, D. W., Sassenrath, G. F., Hendrickson, J. R., Hanson, J. D., Halloran, J. M., ... Alarcon, V. J. (2016). Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecological Modelling, 333, 51–65. https://doi.org/10.1016/j.ecolmodel.2016.04.015
dc.relationWilson, S. G., Lambert, J.-J., Nanzyo, M., & Dahlgren, R. A. (2017). Soil genesis and mineralogy across a volcanic lithosequence. Geoderma, 285, 301–312. https://doi.org/https://doi.org/10.1016/j.geoderma.2016.09.013
dc.relationWyckhuys, K A G, Korytkowski, C., Martinez, J., Herrera, B., Rojas, M., & Ocampo, J. (2012). Species composition and seasonal occurrence of Diptera associated with passionfruit crops in Colombia. Crop Protection, 32, 90–98. https://doi.org/10.1016/j.cropro.2011.10.003
dc.relationWyckhuys, Kris A.G., Lopez, F., Rojas, M., & Ocampo, J. (2011). The relationship of farm surroundings and local infestation pressure to pest management in cultivated Passiflora species in Colombia? International Journal of Pest Management, 57(1), 1–10. https://doi.org/10.1080/09670874.2010.506223
dc.relationYahia, D., & Elsharkawy, E. E. (2014). Multi pesticide and PCB residues in Nile tilapia and catfish in Assiut city, Egypt. Science of The Total Environment, 466–467, 306–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.07.002
dc.relationYassoglou, N. J., Nobeli, C., & Vrahamis, S. C. (1969). A Study of Some Biosequences and Lithosequences in the Zone of Brown Forest Soils in Northern Greece: Morphological, Physical, and Chemical Properties1. Soil Science Society of America Journal, 33, 291–296. https://doi.org/10.2136/sssaj1969.03615995003300020035x
dc.relationZhang, Q., Zhu, D., Ding, J., Zheng, F., Zhou, S., Lu, T., ... Qian, H. (2019). The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environment International, 131, 104965. https://doi.org/https://doi.org/10.1016/j.envint.2019.104965
dc.relationZhao, F., Liu, J., Xie, D., Lv, D., & Luo, J. (2018). A novel and actual mode for study of soil degradation and transportation of difenoconazole in a mango field. RSC Advances, 8(16), 8671–8677. https://doi.org/10.1039/c8ra00251g
dc.relationZhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417–418, 45–54. https://doi.org/10.1016/j.scitotenv.2011.12.047
dc.relationZhou, J., Feng, K., Pei, Z., & Lu, M. (2016). Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China. Journal of Soils and Sediments, 16(3), 748–755. https://doi.org/10.1007/s11368-015-1289-x
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la residualidad de pesticidas en fruta y contaminación por metales pesados en suelo y pulpa de diferentes sistemas productivos de gulupa (Passiflora edulis sim)
dc.typeTesis


Este ítem pertenece a la siguiente institución