dc.relation | Agrow (2003) Agrochemical sales flat in 2002. Agrow: World Crop Protection News. http://ipm.osu.edu/trans/043_141.htm
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi:10.1109/tac.1974.1100705
Alexandratos, N, Bruinsma, J (2012). World agriculture towards 2030/2050: the 2012 revision, ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
Andújar, D., Ribeiro, A., Carmona, R., Fernández-Quintanilla, C., & Dorado, J. (2010). An assessment of the accuracy and consistency of human perception of weed cover. Weed Research, 50(6), 638–647. https://doi.org/10.1111/j.1365-3180.2010.00809.x
Anselin, L., & Bera, A. (1998). Spatial Dependence in Linear Regression Models with an introduction to spatial econometrics. En Handbook of Applied Economic Studies (pp. 237–289).
Anselin, L., Bongiovanni, R., & Lowenberg-Deboer, J. (2004). A spatial econometric approach to the economics of site-specific nitrogen management in corn production. American Journal of Agriculture economics, 86(August), 675–687.
Appleby AP, Muller F, Carpy S (2000) Weed control. In: Muller F (ed) Agrochemicals, Wiley, New York, p 687–707
Arbia, G. (2014). A Primer for Spatial Econometrics With Applications in R. London: Palgrave Macmillan.
Auld, B., & Tisdell, C. (1988). Influence of spatial distribution of weeds on crop yield loss. Plant Protection Quarterly, 3(January), 81.
Begueira, S. (2010). Generating spatially correlated random fields with R. Recuperado de http://santiago.begueria.es/2010/10/generating-spatially-correlated-random-fields-with-r/
Blanco, Y., & Leyva, A. (2007). Las arvenses en el agroecosistema y sus beneficios agroecológicos como hospederas de enemigos naturales. Cultivos tropicales, 28(2),21-28
Bosnic, A., & Swanton, C. (1997). Influence of barnyardgrass ( Echinochloa crus-galli ) time of emergence and density on corn ( Zea mays ). Weed Science, 45(2), 276–282.
Brain, P., & Cousens, R. (1990a). The Effect of Weed Distribution on Predictions of Yield Loss. Journal of Applied Ecology, 27(2), 735–742. https://doi.org/10.2307/2404315
Brain, P., & Cousens, R. (1990b). The Effect of Weed Distribution on Predictions of Yield Loss. Journal of Applied Ecology, 27(2), 735–742. https://doi.org/10.2307/2404315
Bridges, D. C., & Chandler, J. M. (1987). Influence of Johnsongrass (Sorghum halepense) Density and Period of Competition on Cotton Yield. Weed Science, 35, 63–67.
Calha IM, Sousa E, Gonzalez-Andujar JL (2014). Infestation maps and spatial stability of main weed species in maize culture. Planta Daninha 32: 275-282
Camps-Valls, G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1351–1362. https://doi.org/10.1109/TGRS.2005.846154
Cardina, J., Johnson, G., & Sparrow, D. (1997). The Nature and Consequence of Weed Spatial Distribution. Weed Science, 45(3), 364–373.
Cardona, F. (1971), Competencia de malezas en lechuga (Lactuca sativa var. Capitata). Tesis de Maestría. Universidad Nacional de Colombia. Pp 150.
Clements, F., Weaver, J., & Hanson, H. (1929). Plant competition: an analysis of community function. Washington, D.C.: Carnegie Institution of Washington.
Cousens, R. (1985a). A simple model relating yield loss to weed density. Annals of Applied Biology, 107(2), 239–252. https://doi.org/10.1111/j.1744-7348.1985.tb01567.x
Cousens, R. (1985b). An Empirical Model Relating Crop Yield to Weed and Crop Density and A Statistical Comparison with Other Models. The Journal of Agricultural Science, 105(3), 513–521. https://doi.org/10.1017/S0021859600059396
Cousens, R., Brain, P., O’Donovan, J., & O’Sullivan, P. (1987). The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Science, 35(5), 720–725.
Cressie, N. (1993). Statistics for spatial data. Hoboken, New Jersey: John Wiley & Sons.
Dale, M. R. T., Dixon, P., Legendre, P., Myers, D. E., & Rosenberg, M. S. (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25(5), 558–577. https://doi.org/10.1034/j.1600-0587.2002.250506.x
Deen, W., Cousens, R., Warringa, J., Bastiaans, L., Carberry, P., Rebel, K., … Wang, E. (2003). An evaluation of four crop: Weed competition models using a common data set. Weed Research, 43(2), 116–129. https://doi.org/10.1046/j.1365-3180.2003.00323.x
Dew, D. A. (1972). An Index of Competition for estimating Crop Loss Due to Weeds. Canadian Journal of Plant Science, 52, 921–927. https://doi.org/10.4141/cjps72-159
El Sharif, H., Wang, J., & Georgakakos, A. P. (2015). Modeling Regional Crop Yield and Irrigation Demand Using SMAP Type of Soil Moisture Data. Journal of Hydrometeorology, 16(2), 904–916. https://doi.org/10.1175/jhm-d-14-0034.1
Elhorst, J. P. (2010). Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1), 9–28. https://doi.org/10.1080/17421770903541772
Florax, R. J. G. M., Voortman, R. L., & Brouwer, J. (2002). Spatial dimensions of precision agriculture: A spatial econometric analysis of millet yield on Sahelian coversands. Agricultural Economics, 27(3), 425–443. https://doi.org/10.1016/S0169-5150(02)00068-3
Fuentes, C. & Romero, C. Una visión del problema de las malezas en Colombia. Agronomía Colombiana. 1991. 8(2), 364 - 378
Galon, l., Forte, C. T., Giacomini, j. P., Reichert Jr, f. W., Scariot, M. A., David, F. A., & Perin, G. F. (2016). Competitive Ability of Lettuce with Ryegrass. Planta Daninha, 34(2), 239–248. https://doi.org/10.1590/S0100-83582016340200005
Gherekhloo, J., Noroozi, S., Mazaheri, D., Ghanbari, A., Ghannadha, M., Vidal, R., & De Prado, R. (2010). Multispecies weed competition and their economic threshold on the wheat crop. Planta Daninha, 28(2), 239–246.
Godfray HC et al., (2010) Food security: The challenge of feeding 9 billion people. Science 327, 812–818
Gomez, A., & Gomez, K. (1984). Statistical procedures for agricultural research. Statistical procedures for agricultural research, 6, 680.
González-Andújar, J. L., Chantre, G. R., Morvillo, C., Blanco, A. M., & Forcella, F. (2016). Predicting field weed emergence with empirical models and soft computing techniques. Weed Research, 56(6), 415–423. https://doi.org/10.1111/wre.12223
González-Andújar, J. L., Fernández-Quintanilla, C., Bastida, F., Calvo, R., Izquierdo, J., & Lezaun, J. (2011). Assessment of a decision support system for chemical control of annual ryegrass (Lolium rigidum) in winter cereals. Weed Research, 51(3), 304–309. https://doi.org/10.1111/j.1365-3180.2011.00842.x
González-Andújar, J. L., Fernández-Quintanilla, C., & Torner, C. (1993). Competencia entre la avena loca (Avena sterilis) y el trigo de invierno: comparación de modelos empíricos. Investigación Agraria: Producción y Protección Vegetales, 8(3), 425–430.
González-Andújar, J. L., & Navarrete, L. (1995). Aplicación del índice de distancias t-cuadrado al estudio de las distribución espacial de las malas hierbas. Investigación Agraria Producción y protección vegetales, 10(2), 295–299.
González-Andújar, J. L., & Saavedra, M. (2003). Spatial distribution of annual grass weed populations in winter cereals. Crop Protection, 22(4), 629–633. https://doi.org/10.1016/S0261-2194(02)00247-8
González-Díaz, L., Blanco-Moreno, J. M., & González-Andújar, J. L. (2015). Spatially explicit bioeconomic model for weed management in cereals: Validation and evaluation of management strategies. Journal of Applied Ecology, 52(1), 240–249. https://doi.org/10.1111/1365-2664.12359
Goslee, S. C. (2006). Behavior of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecology, 187(2), 203–212. https://doi.org/10.1007/s11258-005-3495-x
Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. The R Journal, 8(1), 204–218.
Grinstead, C. M., & Snell, J. L. (1997). Introduction to Probability: Second Revised Edition. American Mathematical Society, 1–520. Recuperado de http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
Harvey, R., & Wagner, C. (1994). Using Estimates of Weed Pressure to Establish Crop Yield Loss Equations. Weed Technology, 8(1), 114–118. https://doi.org/doi:10.1017/S0890037X00039294
Heege, H. J. (2013). Precision in Crop Farming. Springer Science. https://doi.org/10.1007/978-94-007-6760-7
Heijting, S. (2007). Spatial analysis of weed patterns. Tesis de Doctorado.Universidad de Wageningen. Recuperado de http://library.wur.nl/wda/dissertations/dis4308.pdf
Heisel, T., Ersbøll, A. K., & Andreasen, C. (1999). Weed Mapping with Co-Kriging Using Soil Properties. Precision Agriculture, 1(1), 39–52. https://doi.org/10.1023/A:1009921718225
Holst, N., Rasmussen, I., & Bastiaans, L. (2007). Field weed population dynamics : a review of model approaches and applications. Weed Research, 47, 1–14.
Holzner, W., & Numata, M. (1982). Biology and ecology of weeds. (Springer, Ed.). The Hague.
Hughes, G. (1996). Incorporating spatial pattern of harmful organisms into crop loss models. Crop Protection, 15(5), 407–421. https://doi.org/10.1016/0261-2194(96)00003-8
Jadhav, B. D., & Patil, P. M. (2014). Hyperspectral Remote Sensing For Agricultural Management: A Survey. International Journal of Computer Applications, 106(7), 975–8887.
Jamaica-Tenjo, D. A., & González-Andújar, J. L. (2019). Modelos empíricos de competencia cultivo-mala hierba, Revisión bibliográfica. ITEA-Información Técnica Económica Agraria, xx, 1–18. https://doi.org/https://doi.org/10.12706/itea.2019.007
Jamaica, D. (2013). Dinámica espacial y temporal de poblaciones de malezas en cultivos de papa, espinaca y caña de azúcar y su relación con propiedades del suelo en dos localidades de Colombia. Tesis de Maestría. Facultad de Ciencias Agrarias. Universidad Nacional de Colombia. Pp 82
Jamaica, D., & Plaza, G. (2014). Evaluation of various conventional methods for sampling weeds in potato and spinach crops. Agronomia Colombiana, 32(1). pp.36-43. ISSN 0120-9965. http://dx.doi.org/10.15446/agron.colomb.v32n1.39613.
Jordan, N, Schut, M, Graham, S, Barney, JN, Childs, DZ, Christensen, S, Cousens, RD, Davis, AS, Eizenberg, H, Ervin, DE, Fernandez-Quintanilla, C, Harrison, LJ, Harsch, MA, Heijting, S, Liebman, M, Loddo, D, Mirsky, SB, Riemens, M, Neve, P, Peltzer, DA, Renton, M, Williams, M, Recasens, J, Sonderskov, M (2016). Transdisciplinary weed research: new leverage on challenging weed problems? Weed Research 56 345–358.
Jurado-Expósito, M., López-Granados, F., García, L., & García-Ferrer, A. (2003). Multi-Species Weed Spatial Variability and Site-Specific Management Maps in Cultivated Sunflower. Weed Science, 51(3), 319–328. https://doi.org/10.1614/0043-1745(2003)051
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016
Keller, M. 2014. Effects of weeds on yield and determination of economic thresholds for site-specific weed control using sensor technology. PhD Dissertation. University of Hohenheim. Pp 54.
Khazaei, I., Salehi, R., Abdolkarim, K., & Mirjalili, S. (2013). Improvement of lettuce growth and yield with spacing, mulching and organic fertilizer. International Journal of Agriculture and Crop Sciences, 6(16), 1137–1143.
Kropff, M., & Spitters, C. (1991). A simple model of crop loss by weed competition from early observations on relative leal area of the weeds. Weed Research, 31, 97–105.
Kropff, M., & van Laar, H. (1993). Modelling Crop-Weed Interactions. Modelling Crop-Weed Interactions. Wallingford: CAB INTERNATIONAL.
Labrada, R., Caseley, J., & Parker, C. (1996). Manejo de Malezas para Países en Desarrollo. Estudio FAO Producción y Portección vegetal - 120. Rome: Organización de las Naciones Unidas para la Agricultura y la Alimentación.
Legendre, P., Dale, M. R. T., Fortin, M. J., Gurevitch, J., Hohn, M., & Myers, D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25(5), 601–615. https://doi.org/10.1034/j.1600-0587.2002.250508.x
Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. Proceedings - IEEE International Conference on Robotics and Automation, 3024–3031. https://doi.org/10.1109/ICRA.2017.7989347
Lutman PJ. Wand Miller PCH (2007) Spatially variable herbicide application technology; opportunities for herbicide minimisation and protection of beneficial weeds. Research Review No. 62, Home-Grown Cereals Authority (HGCA), UK
Manning, W. G., & Mullahy, J. (1999). Estimating log models: to transform or not to transform? (No. 246). Cambridge.
Marshall, E. (1988). Field-Scale Estimates of Grass Weed Populations in Arable Land. Weed Research, 28(3), 191–198. https://doi.org/10.1111/j.1365-3180.1988.tb01606.x
Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
Mcmaster, G. S., & Wilhelm, W. (1997). Growing degree-days: one equation, two interpretation. Agricultural and Forest Meteorology, 87, 291–300. https://doi.org/10.1016/j.rhum.2013.05.004
Meyer, G. E., Neto, J. C., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture, 42(3), 161–180. https://doi.org/10.1016/j.compag.2003.08.002
Montgomery, D. (2013). Design and Analysis of Experiments (8a ed.). John Wiley & Sons.
Ngouajio, M., Leroux, G., & Lemieux, C. (1999). A flexible sigmoidal model relating crop yield to weed relative leaf cover and its comparison with nested models. Weed Research, 39(4), 329–343. https://doi.org/10.1046/j.1365-3180.1999.00150.x
Nkoa, R., Owen, M. D. K., & Swanton, C. J. (2015). Weed Abundance, Distribution, Diversity, and Community Analyses. Weed Science, 63(sp1), 64–90. https://doi.org/10.1614/WS-D-13-00075.1
Norris, R., Elmore, C., Rejmánek, M., & Akey, W. C. (2001). Spatial arrangement, density, and competition between barnyardgrass and tomato: I. Crop growth and yield. Weed Science, 49(1), 61–68. https://doi.org/10.1614/0043-1745
O’Donovan, J., de St. Remy, E., O’Sullivan, P., Dew, D., & Sharma, A. (1985). Influence of the relative time of emergence of wild oat (Avena fatua) on yield loss of barley (Hordeum vulgare) and wheat (Triticum aesitvum). Weed Science, 33, 498–503.
Oerke, E. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43. https://doi.org/10.1017/S0021859605005708
Osborn, S., Panayot, V., & Villa, U. (2017). A multilevel hierarchical sampling technique for spatially correlated random fields. SIAM Journal on Scientific computing, 39(5), S543–S562. https://doi.org/10.1137/090750688
Pérez-Ortiz, M., Peña-Barragán, J. M., Gutiérrez, P. A. A., Torres-Sánchez, J., Hervás-Martínez, C., López-Granados, F., … López-Granados, F. (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing, 37, 533–544. https://doi.org/10.1016/j.asoc.2015.08.027
Puerta, P., Ciannelli, L., & Johnson, B. (2019). A simulation framework for evaluating multi-stage sampling designs in populations with spatially structured traits. PeerJ, 7, e6471. https://doi.org/10.7717/peerj.6471
Puerto, A. (2017). Clasificación y cuantificación de maleza en cultivos de hortalizas por medio de procesamiento de imágenes digitales. Universidad Nacional de Colombia.
Radosevich, S. (1987). Methods to Study Interactions Among Crops and Weeds. Weed Technology, 1, 190–198.
Radosevich, S., Holt, J., & Ghersa, C. (2007). Ecology of weeds and invasive plants: Relationship to agriculture and natural resource management. (3 Ed, Ed.). Hoboken, New Jersey.
Rejmánek, M., Robinson, G., & Rejmánková, E. (1989). Weed-Crop Competition: Experimental Designs and Models for Data Analysis. Weed Science, 37(2), 276–284.
Rendon-Aguilar, B., Bernal-Ramirez, L., & Sánchez-Reyes, GA. (2017). Las plantas arvenses: más que hierbas del campo. Oikos=. Instituto de Ecología. Universidad Nacional Autónoma de México.
Renton, M., & Chauhan, B. (2017). Modelling crop-weed competition: Why, what, how and what lies ahead? Crop Protection, 95, 101–108. https://doi.org/10.1016/j.cropro.2016.09.003
Rodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214
Rodríguez, M., Plaza, G., Gil, R., & Chaves, B. (2008). Reconocimiento y fluctuación poblacional arvense en el cultivo de espinaca ( Spinacea oleracea L .) para el municipio de Cota , Cundinamarca Recognition and population fluctuation of weeds in spinach crop ( Spinacea oleracea L .) in the municipality of Co.
Ronchi, C., & Silva, A. (2006). Effects of weed species competition on the growth of young coffee plants. Planta Daninha, 24(3), 415–423. https://doi.org/10.1590/S0100-83582006000300001
Shukla, G., & Subrahmanyam, G. (1999). A Note on an Exact Test and Confidence Interval for Competition and Overlap Effects. Biometrics, 55(March), 273–276.
Smith, R. J. (1993). Logarithmic transformation bias in allometry. American Journal of Physical Anthropology, 90(2), 215–228. https://doi.org/10.1002/ajpa.1330900208
Spitters, C. (1983). An alternative approach to the analysis of mixed cropping experiments. Netherland Journal of Agricultural Science, 31, 1–11.
Swanton, C., Nkoa, R., & Blackshaw, R. E. (2015). Experimental Methods for Crop – Weed Competition Studies. Weed Science, (2), 2–11. https://doi.org/10.1614/WS-D-13-00062.1
Swanton, C., Weaver, S., Cowan, P., Van Acker, R., Deen, W., & Shreshta, A. (1999). Weed thresholds: theory and applicability. Journal of Crop Production, 2(1), 9–29. https://doi.org/10.1300/J144v02n01
Tang, J. L., Wang, D., Zhang, Z. G., He, L. J., Xin, J., & Xu, Y. (2017). Weed identification based on K-means feature learning combined with convolutional neural network. Computers and Electronics in Agriculture, 135, 63–70. https://doi.org/10.1016/j.compag.2017.01.001
Thorp, K. R., & Tian, L. F. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5(5), 477–508. https://doi.org/10.1007/s11119-004-5321-1
Torner, C., González-Andújar, J. L., & Fernández-Quintanilla, C. (1991). Wild Oat (Avena-Sterilis L) Competition With Winter Barley - Plant-Density Effects. Weed Research, 31(5), 301–307.
Torra, J., Cirujeda, A., Recasens, J., Taberner, A., & Powles, S. B. (2010). PIM (Poppy Integrated Management): A bio-economic decision support model for the management of Papaver rhoeas in rain-fed cropping systems. Weed Research, 50(2), 127–139. https://doi.org/10.1111/j.1365-3180.2010.00761.x
Torres-Sánchez, J., López-Granados, F., Peña, J. M., Peña-Barragán, J. M., Peña, J. M., & Peña-Barragán, J. M. (2015). An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43–52. https://doi.org/10.1016/j.compag.2015.03.019
Walter, A., Christensen, S., & Simmelsgaard, S. (2002). Spatial correlation between weed species densities and soil properties. Weed Research, 42(1), 26–38. https://doi.org/10.1046/j.1365-3180.2002.00259.x
Webster, R., & Oliver, M. (2007). Geostatistics for Environmental Scientists. Wiley. https://doi.org/10.2136/vzj2002.0321
Weiner, J., Griepentrog, H.-W., & Kristensen, L. (2001). Suppression of weeds by spring wheat. Journal of Applied Ecology, 38, 784–790.
Williams II, M. M., & Boydston, R. A. (2013). Intraspecific and interspecific competition in sweet corn. Agronomy Journal, 105(2), 503–508. https://doi.org/10.2134/agronj2012.0381
Yordanova, M., & Nikolov, A. (2017). Influence of plant density and mulching on weed infestation in lettuce (Lactuca sativa var . romana Hort .). Journal of Agriculture and Veterinary Science, 10(10), 71–76. https://doi.org/10.9790/2380-1010017176
Zanin, G., Berti, A., & Riello, L. (1998). Incorporation of weed spatial variability into the weed control decision-making process. Weed Research, 38(2), 107–118. https://doi.org/10.1046/j.1365-3180.1998.00074.x
Zeng, W. S., Zeng, W. S., & Tang, S. Z. (2011). Bias Correction in Logarithmic Regression and Comparison with Weighted Regression for Nonlinear Models. Nature Precedings, 1–11. https://doi.org/10.1038/npre.2011.6708
Zimdahl, R. (2004). Weed-Crop Competition. A Review (Second Edi). Blackwell Publishing.
Zimdahl, R. (2007). Fundamentals of weed science. Elsevier. https://doi.org/10.1016/0378-4290(95)90065-9 | |