dc.contributorOsorio Arias, Andrés Fernando
dc.contributorMontoya Ramírez, Rubén Darío
dc.contributorOCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacional
dc.creatorRíos Ocampo, Jose Daniel
dc.date.accessioned2021-02-10T14:10:23Z
dc.date.accessioned2022-09-21T15:21:55Z
dc.date.available2021-02-10T14:10:23Z
dc.date.available2022-09-21T15:21:55Z
dc.date.created2021-02-10T14:10:23Z
dc.date.issued2020-04-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79176
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3379122
dc.description.abstractUnderstanding the behavior of extreme waves during hurricane wind conditions allows the design and operation of marine structures (ports and offshore structures) and predicts potentially dangerous conditions for coastal regions (erosion and flooding). For this, it is crucial to consider the interaction of the atmospheric and oceanic components in the spectral modeling of the waves and thus characterize the behavior of the waves in weak and extreme wind conditions. Traditionally, physical parameterizations and computational methods have been used to estimate scalar parameters and wave energy spectra. However, the need for greater precision in the results for practical purposes has resulted in the development of methods that use the full spectrum of energy, that is, also taking into account the vector character of the waves, also called directional spectrum. This is important for engineering applications when considering parameters such as significant wave height (Hs) and peak period (Tp) that can lead to significant errors, so it is important to analyze the behavior of energy spectra. In this thesis, the results of the spectral modeling of hurricanes Katrina and Rita are presented, considering the effect of the wave-current interaction. The simulations are carried out with the WAVEWATCH III R (WWIII) wave model. The hurricane wind field is obtained by combining information from the NARR re-analysis database and the parametric hurricane wind model HURWIN, a combination known as HURNARR. Two scenarios are analyzed, using surface currents from AVISO's satellite measurements and integrating the effect of the current speed field obtained from the GLORYS database. In particular, this thesis studies the effect of the wave-current interaction on the spatio-temporal variability of the scalar parameters of significant wave height (Hs), peak period (Tp), and peak wave direction (θp). The variability of the source and sink terms S (f) and the changes in the scalar frequency spectrum E (f) and the directional energy spectrum E (f; θ) are analyzed. In addition, a methodology is proposed to quantify the effect of the 3D current velocity field in the calculation of wave energy parameters and spectra during extreme wind conditions. The study area is the Gulf of Mexico, located in the southeastern corner of North America and northeast of Central America, between approximately 18◦ N and 31◦ N and 79◦ W and 98◦ W. Simulations in extreme wind conditions are performed considering the passage of Hurricanes Katrina and Rita in August and September 2005, respectively. In order to validate the results of the model using the proposed methodology, the results of the spectral modeling are compared with the information available from the measurements of buoys 42001, 42002, 42036, 42038, 42039 and 42040 of the National Oceanic and Atmospheric Administration (NOAA). ). The results obtained show that there is a more adequate estimate of the scalar parameters and wave energy spectra when considering the effect of the wave interaction with surface and deep currents. The conclusions of this thesis suggest that the results obtained here may help in the adequate design of marine structures and in the prevention of disasters caused by hurricanes.
dc.description.abstractEntender el comportamiento del oleaje extremo durante condiciones de viento de huracán permite diseñar y operar estructuras marinas (puertos y estructuras offshore) y predecir condiciones potencialmente peligrosas para las regiones costeras (erosión e inundación). Para esto, es crucial considerar la interacción de las componentes atmosférica y oceánica en la modelación espectral del oleaje y así caracterizar el comportamiento de las olas en condiciones débiles y extremas de vientos. Tradicionalmente, se han empleado parametrizaciones físicas y métodos computacionales para estimar los parámetros escalares y los espectros de energía del oleaje. Sin embargo, la necesidad de mayor precisión en los resultados para efectos prácticos ha resultado en el desarrollo de métodos que emplean el espectro completo de energía, es decir, teniendo en cuenta también el carácter vectorial del oleaje, también llamado espectro direccional. Esto es importante para las aplicaciones de ingeniería cuando se considera parámetros como la altura de ola significante (Hs) y el período pico (Tp) que pueden conducir a errores significativos, por lo que resulta importante analizar el comportamiento de los espectros de energía. En esta tesis, se presentan los resultados de la modelación espectral de los huracanes Katrina y Rita, considerando el efecto de la interacci´on ola-corriente. Las simulaciones se realizan con el modelo del oleaje WAVEWATCH III R (WWIII). El campo de vientos de huracán se obtiene combinando información de la base de datos de re-análisis NARR y el modelo paramétrico de vientos de huracán HURWIN, combinación conocida como HURNARR. Se analizan dos escenarios, usando las corrientes superficiales de las mediciones satelitales de AVISO e integrando el efecto del campo de velocidad de corrientes obtenido de la base de datos GLORYS. En particular, esta tesis estudia el efecto de la interacción ola-corriente en la variabilidad espacio-temporal de los parámetros escalares de altura de ola significante (Hs), periodo pico (Tp), y dirección pico del oleaje (θp). Se analiza la variabilidad de los términos fuente y sumidero S(f) y los cambios en el espectro escalar de frecuencias E(f) y el espectro direccional de energía E(f; θ). Además, se propone una metodología para cuantificar el efecto del campo de velocidades de corrientes 3D en el cálculo de los parámetros y espectros de energía del oleaje durante condiciones extremas de viento. La zona de estudio es el Golfo de México, localizado en la esquina sureste de Norteamérica y nordeste de Centroamérica, comprendida aproximadamente entre 18◦ N y 31◦ N y 79◦ W y 98◦ W. Las simulaciones en condiciones extremas de viento se realizan considerando el paso de los huracanes Katrina y Rita en Agosto y Septiembre de 2005, respectivamente. Con el fin de validar los resultados del modelo usando la metodología propuesta se comparan los resultados de la modelación espectral con la información disponible de las mediciones de las boyas 42001, 42002, 42036, 42038, 42039 y 42040 de National Oceanic and Atmospheric Administration (NOAA). Los resultados obtenidos muestran que hay una estimación más adecuada de los parámetros escalares y espectros de energía del oleaje cuando se considera el efecto de la interacción del oleaje con las corrientes superficiales y profundas. Las conclusiones de esta tesis sugieren que los resultados aquí obtenidos podrán ayudar en el diseño adecuado de estructuras marinas y a la prevención de desastres a causa de los huracanes.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T. J., Smith, J. M., & Sikiric, M. D. (2020). Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in wavewatch iii wave model. Coastal Engineering, 157, 103656.
dc.relationAltomare, C., Suzuki, T., & Verwaest, T. (2020). Influence of directional spreading on wave overtopping of sea dikes with gentle and shallow foreshores. Coastal Engineering, 157, 103654. Barber, N. F. & Ursell, F. (1948). The generation and propagation of ocean waves and swell. i.
dc.relationBretherton, F. P. & Garrett, C. J. R. (1968). Wavetrains in inhomogeneous moving media. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 302 (1471), 529–554.
dc.relationCavaleri, L. & Rizzoli, P. M. (1981). Wind wave prediction in shallow water: Theory and applications. Journal of Geophysical Research: Oceans, 86 (C11), 10961–10973.
dc.relationCollins, J. I., Viehman, M. J., et al. (1971). A simplified empirical model for hurricane wind fields. In Offshore Technology Conference. Offshore Technology Conference.
dc.relationDietrich, J., Westerink, J., Kennedy, A., Smith, J., Jensen, R., Zijlema, M., Holthuijsen, L., Dawson, C., Luettich Jr, R., Powell, M., et al. (2011). Hurricane gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in southern louisiana. Monthly Weather Review, 139 (8), 2488–2522.
dc.relationElshinnawy, A. I., Medina, R., & Gonz´alez, M. (2018). On the influence of wave directional spreading on the equilibrium planform of embayed beaches. Coastal Engineering, 133, 59–75.
dc.relationGroup, T. W. (1988). The wam model—a third generation ocean wave prediction model. Journal of Physical Oceanography, 18 (12), 1775–1810.
dc.relationHalverson, J. B. & Rabenhorst, T. (2013). Hurricane sandy: The science and impacts of a superstorm. Weatherwise, 66 (2), 14–23
dc.relationHuang, Y., Weisberg, R. H., Zheng, L., & Zijlema, M. (2013). Gulf of mexico hurricane wave simulations using swan: Bulk formula-based drag coefficient sensitivity for hurricane ike. Journal of Geophysical Research: Oceans, 118 (8), 3916–3938.
dc.relationJelesnianski, C. P. (1974). Splash:(special program to list amplitudes of surges from hurricanes). part two, general track and variant storm conditions.
dc.relationJonsson, I. G., Skougaard, C., & Wang, J. D. (1970). Interaction between waves and currents. In Coastal Engineering 1970 (pp. 489–507).
dc.relationKirby, J. T. & Chen, T.-M. (1989). Surface waves on vertically sheared flows: approximate dispersion relations. Journal of Geophysical Research: Oceans, 94 (C1), 1013–1027.
dc.relationKrishnakumar, C., Sundar, V., & Sannasiraj, S. (2010). Pressures and forces due to directional waves on a vertical wall fronted by wave screens. Applied Ocean Research, 32 (1), 1–10.
dc.relationLiang, B., Li, H., & Lee, D. (2007). Numerical study of three-dimensional suspended sediment transport in waves and currents. Ocean Engineering, 34 (11-12), 1569–1583.
dc.relationMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jovi´c, D., Woollen, J., Rogers, E., Berbery, E. H., et al. (2006). North american regional reanalysis. Bulletin of the American Meteorological Society, 87 (3), 343–360.
dc.relationMoon, I.-J., Ginis, I., Hara, T., Tolman, H. L., Wright, C., & Walsh, E. J. (2003). Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of physical oceanography, 33 (8), 1680–1706.
dc.relationOrtiz-Royero, J. C. & Mercado-Irizarry, A. (2008). An intercomparison of swan and wavewatch iii models with data from ndbc-noaa buoys at oceanic scales. Coastal engineering journal, 50 (01), 47–73.
dc.relationPeregrine, D. (1976). Interaction of water waves and currents. In Advances in applied mechanics, volume 16 (pp. 9–117). Elsevier.
dc.relationPowell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 (6929), 279–283.
dc.relationRomanok, K. M., Szabo, Z., Reilly, T. J., Defne, Z., & Ganju, N. K. (2016). Sediment chemistry and toxicity in barnegat bay, new jersey: pre-and post-hurricane sandy, 2012–13. Marine pollution bulletin, 107 (2), 472–488.
dc.relationRuti, P. M., Marullo, S., D’Ortenzio, F., & Tremant, M. (2008). Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the mediterranean basin: Analyses, quikscat and buoy data. Journal of Marine Systems, 70 (1-2), 33–48.
dc.relationSahoo, B., Jose, F., & Bhaskaran, P. K. (2019). Hydrodynamic response of bahamas archipelago to storm surge and hurricane generated waves–a case study for hurricane joaquin. Ocean Engineering, 184, 227–238.
dc.relationSwain, J., Umesh, P., Bhaskaran, P. K., & Balchand, A. (2019). Simulation of nearshore waves using boundary conditions from wam and wwiii–a case study. ISH Journal of Hydraulic Engineering, 1–15.
dc.relationTamura, H., Waseda, T., & Miyazawa, Y. (2010). Impact of nonlinear energy transfer on the wave field in pacific hindcast experiments. Journal of Geophysical Research: Oceans, 115 (C12).
dc.relationTolman, H. L. & Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26 (11), 2497–2518.
dc.relationUmesh, P., Bhaskaran, P. K., Sandhya, K., & Nair, T. B. (2019). Numerical simulation and preliminary analysis of spectral slope and tail characteristics using nested wam-swan in a shallow water application off visakhapatnam. Ocean Engineering, 173, 268–283.
dc.relationVisbal, J. & Ortiz, J. (2006). Simulaci´on de huracanes bajo el lenguaje Java a partir del modelo HURWIN (HURricane WINd model) para su aplicaci´on sobre la costa Caribe Colombiana. PhD thesis, Tesis de pregrado en Ingenier´ıa de Sistemas]. Universidad Del Norte.
dc.relationWW3DG (2019). User manual and system documentation of wavewatch iii R version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 326 pp. + Appendices.
dc.relationXie, L., Liu, H., & Peng, M. (2008). The effect of wave–current interactions on the storm surge and inundation in charleston harbor during hurricane hugo 1989. Ocean modelling, 20 (3), 252–269.
dc.relationXu, K., Mickey, R. C., Chen, Q., Harris, C. K., Hetland, R. D., Hu, K., & Wang, J. (2016). Shelf sediment transport during hurricanes katrina and rita. Computers & Geosciences, 90, 24–39.
dc.relationYoung, I. R. (1999). Wind generated ocean waves. Elsevier.
dc.relationZhou, L.-m., Wang, A.-f., & Guo, P.-f. (2008). Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. Journal of Hydrodynamics, 20 (6), 776–783.
dc.relationZieger, S., Babanin, A. V., Rogers, W. E., & Young, I. R. (2015). Observation-based source terms in the third-generation wave model wavewatch. Ocean Modelling, 96, 2–25.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAnálisis de los efectos de la interacción ola-corriente en la modelación espectral del oleaje durante condiciones extremas de huracán
dc.typeOtros


Este ítem pertenece a la siguiente institución