dc.contributor | Salazar Jaramillo, Susana | |
dc.creator | Sotelo Buitrago, Jose Luis | |
dc.date.accessioned | 2021-02-22T20:06:48Z | |
dc.date.available | 2021-02-22T20:06:48Z | |
dc.date.created | 2021-02-22T20:06:48Z | |
dc.date.issued | 2020-12-04 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79280 | |
dc.description.abstract | Mediante análisis micromorfológicos se identificaron características pedogenéticas asociadas con la estacionalidad en el régimen de humedad en paleosuelos del miembro Baraya, en el Desierto de la Tatacoa, Colombia. Características tales como
el buen desarrollo de color, estructura, moteados, iluviación de arcillas, nódulos de Fe y Mn, carbonato de calcio y slickensides, sugieren un régimen de humedad con una variación contrastante entre periodos cálidos – húmedos y periodos fríos – secos.
Dichas características permiten clasificar los paleosuelos de las capas Ferruginosa y La Venta (miembro Baraya) como Alfisoles y Vertisoles, respectivamente. Algunos rasgos tales como colores tipo gley (tonalidades grises, grises verdosos, grises
azulosos, entre otros) son típicos de suelos hidromórficos (cuyos periodos de saturación de agua son prolongados), mientras otros como la presencia de carbonatos, óxidos e hidróxidos de hierro son producto de variaciones contrastantes
en las condiciones de humedad y drenaje del suelo. La buena expresión de estos rasgos pedogenéticos sugiere que estas condiciones climáticas coincidieron con un periodo relativamente largo de estabilidad en el paisaje, donde la actividad tectónica
durante la parte media del Serravaliense (~13.10 – 12.80 Ma) no afectó la pedogénesis. Como resultado, las bajas tasas de sedimentación favorecieron los procesos pedogenéticos dando origen a perfiles bien desarrollados. Estos suelos,
distales de los canales fluviales, son perfiles típicos de llanura de inundación y representan suelos cumulativos “cumulative soils”. Finalmente, se determinó que el relieve fue el factor formador con mayor relevancia en la génesis de estos paleosuelos.
Factores como el clima, el material parental, el tiempo y los organismos tuvieron una injerencia secundaria en esta zona geomorfológicamente estable.
Análisis geoquímicos de los paleosuelos de las capas Ferruginosa y La Venta, en el Desierto de la Tatacoa, permitieron deducir variaciones en las condiciones de régimen de humedad y drenaje durante el Serravaliense, Mioceno medio. Los datos de
Fluorescencia de Rayos X (FRX) indicaron alta concentración de óxidos mayores como SiO2, Al2O3 y Fe2O3, principalmente. En la capa La Venta, el Al2O3 es el más abundante, mientras K2O, CaO y Na2O presentaron los valores más bajos. Los
minerales de arcillas 2:1, identificados con difracción de rayos x (DRX), corresponden a esmectita, vermiculita, ilita e interestratificados de ilita-esmectita. La arcilla 1:1 predominante es caolinita. La esmectita (correspondiente a montmorillonita), la ilita y la caolinita son de origen detrítico, producto de materiales epiclásticos provenientes de la Cordillera Central. La vermiculita fue generada por pedogénesis. Los minerales de arcilla de origen pedogenético se relacionan con ambientes de clima cálido,
moderada a alta precipitación y condiciones contrastantes de régimen de humedad y drenaje. La ocurrencia de interestratificados ilita-esmectita, también de origen pedogenético, indica condiciones de pH neutro a ligeramente alcalino, favorables para
el proceso de esmectización. Diferentes indicadores geoquímicos se aplicaron para estimar el nivel de meteorización, lixiviación, perdida de bases intercambiables e intensidad del proceso de oxidación. Los resultados indican que ambos suelos
presentan alta meteorización química por oxidación y lixiviación, siendo más intensa en la capa Ferruginosa. Los indicadores geoquímicos también permitieron estimar la cantidad de precipitación media anual (MAP) y la temperatura media anual (MAT). Estimaciones de MAP utilizando el proxy CALMAG arrojaron valores entre 1261 a 1684 mm/año, y se obtuvieron valores entre 820 y 1307 mm/año usando del proxy CIA, en el paleosuelo de la capa Ferruginosa. Para el paleosuelo en la capa La Venta,
la MAP obtenida con el proxy CALMAG presentó un rango de valores entre 1572 y 1637 mm/año, y de 1047 a 1242 mm/año calculada con el proxy CIA. Dichos rangos de precipitación coinciden con un régimen de humedad údico, variando a ústico. Los
cálculos de la MAT utilizando los indicadores Argilización y Salinización, dieron valores en el paleosuelo de la capa Ferruginosa entre 15 y 23.6oC, y 12 a 15.9oC, respectivamente. Los resultados de MAT en el paleosuelo de la capa La Venta oscilaron entre 15 y 19.3oC, y 13.3 a 15.4oC. Estos valores indican un régimen de temperatura térmica, con variaciones a mésico. El régimen de humedad údico y el régimen de temperatura térmica – mésica, sugieren que, durante el Mioceno medio,
el Desierto de la Tatacoa correspondía a una zona de vida de bosque húmedo, muy contrastante con el bosque seco que domina en la actualidad. | |
dc.description.abstract | Micromorphological analysis, in the paleosols of the Baraya member, Tatacoa Desert, Colombia, allowed the identification of pedogenic features related to seasonality of soil moisture regime. Well-developed features like soil structure, color, mottling, clay illuviation, development of Fe and Mn nodules, CaCO3 precipitation, and slickensides, suggest a variation of the soil moisture regime between warm – wet and cold – dry periods. According to these characteristics, the paleosols of the Ferruginosa and La Venta layers (Baraya member) were classified as Alfisols and Vertisols, respectively. Drabbed colors are generally typical of hydromorphic conditions, while carbonates, iron oxides and hydroxides, result from contrasting variations in the soil moisture and its drainage. A relatively long period of landscape stability, low tectonic activity during the middle part of the Serravallian (~ 13.10 - 12.80 Ma), was interpreted from the marked pedogenetic features. During this time interval, low sedimentation rates favored pedogenesis, yielding well-developed paleosol profiles in the distal side of the fluvial channels. These floodplain profiles are known as cumulative soils. Pedogenic properties and processes indicate that the relief was the most important soil forming factor in the genesis of these fossil soils.
Geochemical analyses in the paleosols of the Ferruginosa and La Venta layers, Tatacoa Desert, Colombia, show variations in the conditions of soil moisture regime and soil drainage during the Serravallian, middle Miocene. X-Ray Fluorescence (XRF)
data indicates high concentration of SiO2, Al2O3 and Fe2O3 major oxides. In La Venta paleosol, Al2O3 is the most abundant major oxide, while K2O, CaO and Na2O have the lowest values. X-Ray diffraction (XRD) show that smectite, vermiculite, ilite and interstratified ilite-smectite are the mainly 2:1 clay minerals. The predominant 1:1 clay mineral is kaolinite. Smectite (montmorillonite), ilite and kaolinite, of detrital origin, are reworked epiclastic material from the Central Cordillera. Vermiculite is of pedogenetic origin. Clay minerals of pedogenetic origin are related to a warm climate, moderate to high rainfall and contrasting conditions of humidity and drainage. The occurrence of interstratified ilite-smectite, also of pedogenetic origin, indicates neutral to slightly alkaline pH conditions, favoring smectization process. Geochemical proxies were used to estimate the level of weathering, leaching, loss of exchangeable bases and intensity of oxidation. The results indicate that both soils show high levels of oxidation and leaching, being more intense in the Ferruginous layer. The amount of mean annual precipitation (MAP) and the mean annual temperature (MAT) were estimated using geochemical proxies. MAP estimates with the CALMAG proxy indicate values between 1261 to 1684 mm / year, and 820 to 1307 mm / using the CIA proxy, in Ferruginous paleosol. In La Venta paleosol, the MAP with the CALMAG proxy shows a range between 1572 and 1637 mm / year, and 1047 to 1242 mm / year with the CIA proxy. This precipitation range is consistent with a udic soil moisture regime, varying to ustic. MAT using Clayeness and Salinization proxies, in the paleosol of Ferruginous layer, are between 15 and 23.6°C, and 12 to 15.9°C, respectively. MAT in the paleosol of La Venta ranges between 15 and 19.3°C, and 13.3 to 15.4°C. These values agree with a thermal soil temperature regime, with variations to a mesic regime. The udic moisture regime and the thermal temperature regime (to mesic) suggest that, during the middle Miocene, the Tatacoa Desert fit in the moist forest life zone, very contrasting with the actual dry forest. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Geología | |
dc.publisher | Departamento de Geociencias | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Alonso-Zarza, A. M., & Wright, V. P. (2010). Calcretes. In A. M. Alonso-Zarza & L. . Tanner
(Eds.), Carbonates in Continental Settings (61st ed., pp. 225–268). Developments in
Sedimentology. | |
dc.relation | Anderson, V. (2015). UPLIFT AND EXHUMATION OF THE EASTERN CORDILLERA OF
COLOMBIA AND ITS INTERACTIONS WITH CLIMATE. | |
dc.relation | Anderson, V., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., & Ketcham,
R. . (2016). Andean topographic growth and basement uplift in southern Colombia :
Implications for the evolution of the Magdalena , Orinoco , and Amazon river systems.
12(4), 1235–1256. https://doi.org/10.1130/GES01294.1 | |
dc.relation | ANH. (2001). Upper Magdalena Basin. In Fabio Cediel & F. Colmenares (Eds.), Petroleum
Geology of colombia (p. 183). | |
dc.relation | ANH. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum
Geology, a New Proposal. Bogotá: Agencia Nacional de Hidrocarburos. | |
dc.relation | Atchley, S. C., Nordt, L. C., Dworkin, S. I., Ramezani, J., Parker, W. G., Ash, S. R., &
Bowring, S. A. (2013). A linkage among Pangean tectonism, cyclic alluviation, climate
change, and biologic turnover in the Late Triassic: the record from the Chinle
Formation, southwestern United States. Journal of Sedimentary Research, 83, 1147–
1161. | |
dc.relation | Birkeland, P. . (1999). Soils and Geomorphology (3rd ed.). New York: Oxford University
Press. | |
dc.relation | Butler, K., & Schamel, S. (1988). Structure along the eastern margin of the central
Cordillera, upper Magdalena Valley, Colombia. Journal of South American Earth
Sciences, 1, 109–120. | |
dc.relation | Catena, A. M., & Hembree, D. I. (2017). Paleosol and ichnofossil evidence for significant
Neotropical habitat variation during the late middle Miocene (Serravallian).
Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 381–398. | |
dc.relation | Catena, A. M., Hembree, D. I., Saylor, B. Z., Anaya, F., & Croft, D. A. (2016).
Paleoenvironmental analysis of the Neotropical fossil mammal site of Cerdas , Bolivia
( middle Miocene ) based on ichnofossils and paleopedology. Palaeogeography,
Palaeoclimatology, Palaeoecology, 459, 423–439.
https://doi.org/10.1016/j.palaeo.2016.07.028 | |
dc.relation | Catuneanu, O. (2006). Principles of Sequence Stratigraphy. In Elsevier. | |
dc.relation | Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic assembly of the Northern Andean
block. The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin
Formation and Plate Tectonics. American Association of Petroleum Geologists
Memoir, 79, 815–848. | |
dc.relation | De Porta, J. (1974). Lexique Stratigraphique International. Centre National de La
Recherche Scientifique., V Amérique, 692. | |
dc.relation | Dokuchaev, V. . (1883). Russkii Chernozem. Moskow. | |
dc.relation | Dokuchaev, V. . (1893). The Russian Steppes/Study of the Soil in Russia in Past and
Present. Department of Agricultural Ministry of Crown Domains for the World´s Columbian Exposition at Chicago. | |
dc.relation | Dokuchaev, V. . (1899). On the Theory of Natural Zones. St. Petersburg. | |
dc.relation | Driese, S. ., Mora, C. ., Stiles, C. ., Joeckel, R. ., & Nordt, L. . (2000). Mass-balance reconstruction of a modern Vertisol: implications for interpretations of geochemistry and
burial alteration of paleoVertisols. Geoderma, 95, 179–204. | |
dc.relation | Driese, S. G., & Ober, E. G. (2005). Paleopedologic and paleohydrologic records of
precipitation seasonality from Early Pennsylvanian “Underclay” paleosols, U.S.A.
Journal of Sedimentary Research, 75, 997–1010. | |
dc.relation | Driese, S. G., Peppe, D. J., Beverly, E. J., Dipietro, L. M., Arellano, L. N., & Lehmann, T.
(2016). Paleosols and paleoenvironments of the early Miocene deposits near
Karungu, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology,
443, 167–182. https://doi.org/10.1016/j.palaeo.2015.11.030 | |
dc.relation | Espinal, L. ., & Montenegro, M. E. (1963). Formaciones vegetales de Colombia. Bogotá,
Colombia: Instituto Geográfico Agustín Codazzi. | |
dc.relation | Espinal, L. S. (1990). Zonas de vida de Colombia. Medellín, Colombia: Facultad
deCiencias. Departamento de Ciencias de la Tierra,Universidad Nacional de
Colombia. | |
dc.relation | Fields, R. . (1959). Geology of the La Venta Badlands Colombia, South america. University
of California Publications in Geological Sciences, 32, 405–444. | |
dc.relation | Fields, R. ., & Henao. (1949). Honda Formation of the upper Magdalena river basin,
Colombia, S.A. Geological Society of America Bulletin, 60, 1894. | |
dc.relation | Flórez, M., Parra, L. N., & Jaramillo, D. F. (2013). Paleosuelos del mioceno en el desierto
de La Tatacoa. Rev. Acad. Colomb. Cienc. 37, 37, 229–244. | |
dc.relation | Flórez, M. T., et al., L. N. (2018). Evidencias macromorfológicas y micromorfológicas de
paleosuelos en el desierto de La Tatacoa y su variación sincrónica. 42(165), 422–438. | |
dc.relation | Flynn, J. J, Marshall, L. G., & Guerrero, J. (1989). Constraints on the age of the “Friasian”
(Miocene) faunas: Jour. Vert. Paleont, 9, 20A. | |
dc.relation | Flynn, John J, Guerrero, J., & Swisher III, C. C. (1997). Geochronology of the Honda Group
(p. 22). p. 22. | |
dc.relation | Goudie, A. S. (2013). Arid and Semi-Arid Geomorphology. Cambridge University Press. | |
dc.relation | Gradstein, F. . (2012). The geologic time scale (1st.). Amsterdam: Elsevier. | |
dc.relation | Guerrero, J. (1991). Magnetostratigraphy of the upper part of the Honda Group and Neiva
Formation. Miocene Uplift of the Colombian Andes. Duke University. | |
dc.relation | Guerrero, J. (1993). Magnetostratigraphy of the upper part of the Honda Group and Neiva
Formation. Miocene uplift of the Colombian Andes. Duke University, North Carolina. | |
dc.relation | Guerrero, J. (1994). Stratigraphy, sedimentary environments, and the Miocene Uplift of the Colombian Andes. In R.F. Kay, R. H. Madden, R. L. Cifelli, & J. J. Flynn (Eds.),
Vertebrate paleontology in the Neotropics: The vertebrate fauna of La Venta,
Colombia. (pp. 15–43). Washington D.C., USA.: Smithsonian Institution Press. | |
dc.relation | Guerrero, J. (1997). Stratigraphy and Sedimentary Environments Miocene Uplift of the Colombian Andes (p. 33). p. 33. | |
dc.relation | Hasiotis, S. T. (2002). Continental Trace Fossils. SEPM Short Course Notes 51. SEPM
Society for Sedimentary. | |
dc.relation | Hasiotis, S. T. (2007). Continental ichnology: fundamental processes and controls on trace
fossil distribution. In W. Miller III (Ed.), Trace Fossils: Concepts, Problems, Prospects
(pp. 268–284). Amsterdam: Elsevier. | |
dc.relation | Hermelin, M. (2016). Landscapes and Landforms of Colombia. Medellín, Colombia:
Springer. | |
dc.relation | Holdridge, L. (1967). Life zone ecology. San José, Costa Rica. | |
dc.relation | Hoorn, C., Guerrero, J., & Sarmiento, G. A. (1995). Andean tectonics as a cause for
changing drainage patterns in Miocene northern South America. (34), 237–240. | |
dc.relation | Jenny, H. (1941). Factors in Soil Formation. New York: McGraw-Hill. | |
dc.relation | Kay, F., Madden, H., & Michael, J. (1987). Stirtonia victorise , a new species of Miocene
Colombian primate. | |
dc.relation | Kay, Richard F, & Madden, R. H. (1996). Paleogeography and paleoecology. In R. F Kay,
R. H. Madden, R. L. Cifelli, & J. J. Flynn (Eds.). Vertebrate Paleontology in the
Neotropics: The Miocene Fauna of La Venta, Columbia. Washington D.C.,
Smithsonian Institution Press. | |
dc.relation | Kay, Richard F, Madden, R. H., & Cifelli, R. (1997). Vertebrate Paleontology in the
Neotropics The Miocene Fauna of (p. 17). p. 17. | |
dc.relation | Klappa, C. (1980). Rhizoliths in terrestrial carbonates: classification, recognition, genesis,
and significance. Sedimentology, 26, 613–629. | |
dc.relation | Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications.
Earth Science Reviews, 47, 41–70. | |
dc.relation | Kraus, M. J., & Aslan, A. (1993). Eocene hydromorphic paleosols: significance for
interpreting ancient floodplain processes. Journal of Sedimentary Petrology, 63(3),
453–463. https://doi.org/10.1306/D4267B22-2B26-11D7-8648000102C1865D | |
dc.relation | Kraus, M. J. & Hasiotis, S. (2006). Significance of differentmodes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary
Research, 76, 633–646. | |
dc.relation | Kubiëna, W. L. (1938). Micropedology. Colegiate Press. | |
dc.relation | Lindbo, D. L., Stolt, M. H., & Vepraskas, M. J. (2010). Redoximorphic Features. In
Interpretation of Micromorphological Features of Soils and Regoliths.
https://doi.org/10.1016/B978-0-444-53156-8.00008-8 | |
dc.relation | Loaiza, J. ., Sanchez, J., Rubiano, Y., & Poch, R. (2017). Late Pleistocene Polygenetic
Andean Wetland Soils. GeoResJ, 14, 20–35. | |
dc.relation | Loaiza, J. C., Stoops, G., Poch, R., & Casamitjana, M. (2015). Manual de micromorfología
de suelos y técnicas complementarias. Fondo Editorial Pascual Bravo. | |
dc.relation | Machette, M. N. (1985). Calcic soils of the southwestern United States. Geological Society of America Special Papers, 203, 1–22. https://doi.org/10.1130/SPE203-p1. | |
dc.relation | Marriott, S. B. & Wright, V. P. (1993). Paleosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of the Geological Society,
1109–1120. | |
dc.relation | Mojica, J., & Dorado, J. (1987). Andes Colombianos, Parte A: Geología y Estratigrafía. In
Bioestratigrafía del los Sistemas Regionales del Jurásico y Cretácico de América del
Sur. Tomo I:EI Jurásico anterior a los movimientos interandino (p. 32). Buenos
Aires: Volkheimer, W. ; Mussachio, E. | |
dc.relation | Mojica, J., & Franco, R. (1990). Estructura y evolución tectónica del Valle Medio y Superior
del Magdalena, Colombia. Geología Colombiana, 17, 41–64. | |
dc.relation | Morrison, R. . (1978). Quaternary soil stratigraphy—concepts, methods, and problems. In
W. . Mahaney (Ed.), Quaternary Soils (pp. 77–108). Norwich. | |
dc.relation | PiPujol, M., & Buurman, P. (1994). The distinction between ground-water gley and
surface-water gley phenomena in Tertiary paleosols of the Ebro basin , NE Spain.
Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 103–113. | |
dc.relation | Retallack, G. (1990). Fossil soils and grasses of a Middle Miocene East African grassland.
Science, 247, 1325–1328. | |
dc.relation | Retallack, G. (2008). Cambrian paleosols and landscapes of South Australia. Australian
Journal of Earth Sciences, 55, 1083–1106. | |
dc.relation | Retallack, G. J. (2001). Soils of the Past: An introduction yo Paleopedology (2nd ed.).
Eugene, USA: Blackwell Science. | |
dc.relation | Royo y Gómez, J. (1942). Contribución al conocimiento de la geología del Valle Superior
del Magdalena (Departamento del Huila). Compil. Est. Geol. Ofic. de Colomb, 5, 261–
326. | |
dc.relation | Schaetzl, R., & Anderson, S. (2005). Soils: Genesis and Geomorphology. New York:
Cambridge University Press. | |
dc.relation | Setoguchi, T., & Rosenberger, A. L. (1987). A fossil owl monkey from La Venta, colombia.
Nature, 326, 692–694. | |
dc.relation | Sheldon, N. (2005). Do red beds indicate paleoclimatic conditions?: A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3), 305–319.
https://doi.org/10.1016/j.palaeo.2005.06.009 | |
dc.relation | Soil Survey Staff. (1999). Soil Taxonomy. US Department of Agriculture Handbook, 436. | |
dc.relation | Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). United States Department of
Agriculture. | |
dc.relation | Spradley, J. P., Glazer, B. J., & Kay, R. F. (2019). Mammalian faunas, ecological indices,
and machine-learning regression for the purpose of paleoenvironment reconstruction
in the Miocene of South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 518 (January), 155–171. https://doi.org/10.1016/j.palaeo.2019.01.014 | |
dc.relation | Stiles, C., Mora, C., & Driese, S. (2001). Pedogenic iron-manganese nodules in
Vertisols: a new proxy for paleoprecipitation? Geology, 29, 943–946. | |
dc.relation | Stille, H. (1907). Geologische Studien im Gebiete des Rio Magdalena. Festchr. Adolf
V. Koenen, 277–358. | |
dc.relation | Stille, H. (1938). Estudios geológicos en la región del río Magdalena. Comp. Est. Geol.
Ofic. Col., 4(1), 125–182. | |
dc.relation | Stirton, R. (1953). Vertebrate paleontology and continental stratigraphy in Colombia.
Geological Society of America Bulletin, 64, 603–622. | |
dc.relation | Tabor, N. J., & Myers, T. S. (2015). Paleosols as Indicators of Paleoenvironment and
Paleoclimate. 333–363. https://doi.org/10.1146/annurev-earth-060614-105355 | |
dc.relation | Takemura, K. & Danhara, T. (1986). Fission-track dating the upper part of Miocene Honda
Group in La Venta Badlands, Colombia. Overseas Research Reports of New World
Monkeys, Vol. 5, pp. 31–38. Kyoto. | |
dc.relation | Van der Hammen, T. (1961). Late Cretaceous and Tertiary stratigraphy and tectogenesis
of the Colombian Andes. Geologie En Mijnbouw, 40, 181–188. | |
dc.relation | Van der Hammen, T., Werner, J. H., & Van Dommelen, H. (1973). Palynological record of
the upheaval of the Northern Andes: A study of the Pliocene and Lower Quaternary of
the Colombian Eastern Cordillera and the early evolution of its High-Andean biota.
Review of Palaeobotany and Palynology, 16, 1–122. | |
dc.relation | van der Wiel, A. M. (1991). Uplift and volcanism of the SE Colombian Andes in relation to
Neogene sedimentation in the Upper Magdalena Valley. University of Wageningen,
amsterdam. | |
dc.relation | van der Wiel, A. M., & van den Bergh, G. D. (1992). Uplift, subsidence, and volcanism in
the southern Neiva Basin, Colombia, Part 1: Influence on fluvial deposition in the
Miocene Honda Formation. Journal of South American Earth Sciences, 5, 153–173. | |
dc.relation | van der Wiel, A. M., van den Bergh, G. D., & Hebeda, E. (1992). Uplift, subsidence, and
volcanism in the southern Neiva Basin, Colombia, Part 2: Influence on fluvial
deposition in the Miocene Gigante Formation. Journal of South American Earth
Sciences, 5, 175–196. | |
dc.relation | Van Houten, F., & Travis, R. (1968). Cenozoic deposits, Upper Magdalena Valley,
Colombia: Am. Assoc. Petroleum Geologists Bull., 49, 675–702. | |
dc.relation | Vepraskas, M. (1999). Redoximorphic Features for Identifying Aquic Conditions.
N. Carolina Agricultural Research Service Technical Bulletin, 301. | |
dc.relation | Vepraskas, M., & Lindbo, D. (2012). Redoximorphic Features as Related to Soil
Hydrology and Hydric Soils. In H. Lin (Ed.), Hydropedology - Synergistic Integration of
Soil Science and Hydrology (pp. 143–172). Amsterdam: Academic Press. | |
dc.relation | Villarroel, C., Setoguchi, T., Brieva, J., & Macia, C. (1996). Geology of La Tatacoa " Desert
" (Huila , Colombia): Precisions on the Stratigraphy of the Honda Group, the
Evolution of the " Pata High " and the Presence of the La Venta Fauna. Memories of
the Faculty of Science, Kyoto University, 58, 41–66. | |
dc.relation | Weaver, C. (1989). Clays, Muds and Shales. Amsterdam: Elsevier. | |
dc.relation | Wellman, S. (1970). Stratigraphy and Petrology of the Nonmarine Honda Group (Miocene), Upper Magdalena Valley, Colombia. GSA Bulletin, 81(August), 2353–2374. https://doi.org/https://doi.org/10.1130/0016-7606(1970)81[2353:SAPOTN]2.0.CO;2 | |
dc.relation | Wolaver, B. D., Coogan, J. C., Horton, B. K., Suarez Bermudez, L., Sun, A. Y., Wawrzyniec,
T. F., de la Rocha, L. (2015). Structural and hydrogeologic evolution of the
Putumayo Basin and adjacent fold-thrust belt, Colombia. American Association of
Petroleum Geologists Bulletin, 99, 1893–1927. | |
dc.relation | Wright, V. P., & Marriott, S. B. (1996). A quantitative approach to soil occurrence in alluvial deposits and its application to the Old Red Sandstone of Britain. Journal of the
Geological Society, 153, 907–913. | |
dc.relation | Zambrano, E., Vasquez, E., Duval, B., Latreille, M., & Coffinieres, B. (1971). Síntesis
paleogeográfica y petrolera del occidente de Venezuela. Congreso Geológico
Venezolano IV, Proceedings, I, 483–552. | |
dc.relation | Arkley, R. (1963). Calculation of carbonate and water movement in soil from climatic data. Soil Science, 96, 239–248. | |
dc.relation | Ashley, G., & Driese, S. (2000). Paleopedology and paleohydrology of a volcaniclastic
paleosol interval: implications for an early Pleistocene stratigraphy and paleoclimate
record, Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 70, 1065–1080. | |
dc.relation | Biscaye, P. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic
Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–832. | |
dc.relation | Brewer, R. (1964). Fabric and mineral analysis of Soils. New York. | |
dc.relation | Chen, P.-Y. (1977). Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in
clays and Associated Rocks (p. 77). p. 77. | |
dc.relation | Fanning, D., & Fanning, M. C. (1989). Soil: Morphology, genesis and Classification. New
York: Wiley and Sons. | |
dc.relation | Flaig, P., Mccarthy, P., & Fiorillo, A. (2011). A tidally-influenced, high-latitude coastal
plain: the Upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska. In S. Davidson, S. Leleu, & C. North (Eds.), From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation (Vol. 97, pp. 233–264). Tulsa, Oklahoma: SEPM Society for Sedimentary Geology. | |
dc.relation | Gómez, C., Salazar-Jaramillo, S., & Bonilla, G. (2019). Minerales arcillosos presentes en
paleosuelos de la Formación Villavieja - Desierto de la Tatacoa: Proveniencia y
paleoclima. XVII Congreso Colombiano de Geología, 1106–1107. | |
dc.relation | Hamer, J. M., N.D, S., Nichols, G., & Collinson, M. (2007). Late Oligocene– Early
Miocene paleosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeography,
Palaeoclimatology, Palaeoecology, 247, 220–235. | |
dc.relation | Howe, M. W. (1974). Nonmarine Neiva Formation ( Pliocene ?), Upper Magdalena Valley,
Colombia : Regional Tectonism. Geological Society of America Bulletin, 85, 1031–
1042. | |
dc.relation | Jenny, H. (1941). Factors in Soil Formation. New York: McGraw-Hill. | |
dc.relation | Jenny, H., & Leonard, C. (1935). Functional relationships between soil properties and
rainfall: Soil Science, 38, 363–381. | |
dc.relation | Kahman, J., & Driese, S. (2008). Paleopedology and geochemistry of Late Mississippian
(Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA:
implications for high-frequency climate variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 357–381. | |
dc.relation | Leckie, D., Fox, C., & Tarnocai, C. (1989). Multiple paleosols of the Late Albian Boulder
Creek Formation, British Columbia, Canada. Sedimentology, 36, 307–323. | |
dc.relation | McCarthy, P. J., Martini, I. P., & Leckie, D. A. (1997). Anatomy and evolution of a Lower Cretaceous alluvial plain: sedimentology and palaeosols of the upper Blairmore Group, southwestern Alberta, Canada. Sedimentology, 44, 197–220. | |
dc.relation | Mccarthy, P. J., & Plint, A. G. (2003). Spatial variability of palaeosols across Cretaceous
interfluves in the Dunvegan Formation, NE British Columbia , Canada : palaeohydrological, palaeogeomorphological and stratigraphic implications. 1187–1220. https://doi.org/10.1046/j.1365-3091.2003.00600.x | |
dc.relation | Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals (2nd ed.). New York: Oxford University Press. | |
dc.relation | Moore, S., Ferrell, R. J., & Aharon, P. (1992). Diagenetic siderite and other ferroan
carbonates in a modern subsiding marsh sequence. Journal of Sedimentary Petrology,
357–366. | |
dc.relation | Nesbitt, H., & Young, G. (1982). Early Proterozoic climates and plate motions
inferredfrom major element chemistry of lutites. Nature, 299, 715–717. | |
dc.relation | Nordt, L., & Driese, S. (2010). New weathering index improves paleorainfall estimates
from Vertisols. Geology, 38, 407–410. | |
dc.relation | Retallack, G. (1994). The environmental factor approach to the interpretation of paleosols, in Amundson, R., et al., eds., Factors of soil formation: A fiftieth anniversary
retrospective. Soil Science Society of America Special Publication, 33, 31–64. | |
dc.relation | Retallack, G. J. (2001). Soils of the Past: An introduction yo Paleopedology (2nd ed.).
Eugene, USA: Blackwell Science. | |
dc.relation | Retallack, G. J. (2005). Pedogenic carbonate proxies for amount and seasonality of
precipitation in paleosols. Geology, 33(4), 333. https://doi.org/10.1130/G21263.1 | |
dc.relation | Retallack, G. J., & Huang, C. (2010). Depth to gypsic horizon as a proxy for
paleoprecipitation in paleosols of sedimentary environments. Geology, 38, 403–406.
https://doi.org/10.1130/G30514.1 | |
dc.relation | Schumacher, B., Day, W., Amacher, M., & Miller, B. (1988). Soils of the Mississippi
River alluvial plain in Louisiana. Louisiana Agriculture Experimental Station Bulletin,
796, 275. | |
dc.relation | Sheldon, N. (2006). Abrupt chemical weathering increase across the Permian– Triassic
boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 315–321. | |
dc.relation | Sheldon, N., Retallack, G., & Tanake, S. (2002). Geochemical climofunctions from North
American soils and application to paleosols across the Eocene– Oligocene Boundary
in Oregon. The Journal of Geology, 110, 687–696. | |
dc.relation | Sheldon, N. D., & Tabor, N. J. (2009). Earth-Science Reviews Quantitative
paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science
Reviews, 95(1–2), 1–52. https://doi.org/10.1016/j.earscirev.2009.03.004 | |
dc.relation | Song, Y., Wang, Q., An, Z., Qiang, X., Dong, J., Chang, H., Guo, X. (2018). Mid-Miocene
climatic optimum: Clay mineral evidence from the red clay succession, Longzhong
Basin, Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 512, | |
dc.relation | Thorez, J. (1976). Practical Identification of Clay Minerals: A Handbook for Teachers and
Students in Clay Mineralogy. Lelotte. | |
dc.relation | Yaalon, D., & Kalmar, D. (1978). Dynamics of craking and swelling clay soils: displacement
of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation.
Earth Surface Processes, 3, 31–42. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Micromorfología de paleosuelos del Desierto de la Tatacoa, Colombia: Interpretación paleoambiental del Mioceno Medio | |
dc.type | Otro | |