| dc.contributor | Camargo Pinzon, Sandra Milena | |
| dc.contributor | Patarroyo Gutiérrez, Manuel Alfonso | |
| dc.contributor | Biología Molecular e InmunologíaFundación Instituto de Inmunología de Colombia | |
| dc.creator | Pedraza Garcia, Leidy Adriana | |
| dc.date.accessioned | 2022-09-06T14:35:52Z | |
| dc.date.available | 2022-09-06T14:35:52Z | |
| dc.date.created | 2022-09-06T14:35:52Z | |
| dc.date.issued | 2011-02-02 | |
| dc.identifier | https://repositorio.unal.edu.co/handle/unal/82255 | |
| dc.identifier | Universidad Nacional de Colombia | |
| dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
| dc.identifier | https://repositorio.unal.edu.co/ | |
| dc.description.abstract | Las infecciones por Clamydia trachomatis (Ct) se encuentran dentro de las más comunes transmitidas sexualmente y de mayor impacto en la salud pública; la tasa de infección bacteriana descrita para este microorganismo es variable según según la región geográfica y la población de estudio. En los ultimos años se han desarrollado estudios que permiten ampliar la información sobre efectos de los alelos HLA en el curso clínico de las infecciones por Ct; algunos de ellos han permitido establecer la relación directa entre la enfermedad pélvica inflamatoria (EPI) con el HLA-A31 y la presencia de Ct. A su vez, se ha encontrado que alelos como DQA1*0401 y DQB1*0402 presentan una asociación significativa y al mismo tiempo una alta prevalencia en infecciones por Ct. En algunas poblaciones de mujeres se encontró la presencia de alelos DRB1 y DQB1 y una relación directa con la presencia de Ct y la infertilidad tubárica.
Las infecciones causadas por Ct y su interacción con el sistema inmune aún son tema de estudio, uno de los métodos que permite el análisis esta interacción son los modelos murinos. Algunos estudios en estos modelos han permitido demostrar que los linfocitos T CD8+ son indispensables en la resolución de las infecciones por Ct; no obstante, los linfocitos T CD4+ y los alelos HLA clase II han sido asociados con la respuesta inmune frente al patógeno. Diversas hipótesis han comprobado que las células epiteliales infectadas pueden presentar conjuntos alélicos del Complejo Mayor de Histocompatibilidad (CMH) clase II superpuestos, promoviendo así la inmunidad protectora hacia Ct.
Es así como conocer los genes de los antígenos leucocitarios humanos (HLA) que se relacionan con patologías derivadas de las infecciones por Ct, permite evaluar la respuesta inmune de los hospederos. Algunos análisis realizados en poblaciones de adolescentes mostraron que existen variantes alélicas que se relacionan con la presencia de Ct; sin embargo, las asociaciones entre los alelos HLA-II y las infecciones por Ct han sido pobremente exploradas. En este contexto, el objetivo de este estudio fue determinar el efecto de los alelos y haplotipos HLA DRB1-DQB1
6
sobre el resultado de la infección, persistencia, depuración y reinfección por Ct en una cohorte de mujeres colombianas.
Las muestas de este estudio corresponden a una cohorte bidireccional (prospectiva y retrospectiva); para el análisis prospectivo, se contó con muestras cervicales recolectadas entre los años 2007 y 2010 en centros hospitalarios de tres ciudades colombianas: Hospital San Juan Bautista en la ciudad de Chaparral en el departamento del Tolima; el Nuevo Hospital San Rafael en Girardot en Cundinamarca y el Hospital de Engativá Nivel II, en Bogotá, capital de Colombia; el objetivo de ese estudio fue determinar la historia natural de la infección por el virus de papiloma humano (VPH).
Para desarrollar el presente estudio, se establecieron como criterios de inclusión la disponibilidad de la muestra cervical para el análisis de HLA- DRB1 y DQB1, mujeres que contaran con al menos cuatro seguimientos (visitas) y una periodicidad entre las visitas de 6 meses (± 3 meses), con el fin de determinar los efectos de los alelos y haplotipos HLA relacionados con los distintos eventos promovidos por Ct.
Las muestras que cumplieron con los criterios de inclusión fueron sometidas a detección de Ct, ésta se llevó a cabo mediante reacción en cadena de la polimerasa (PCR), con sets de cebadores dirigidos hacia el ORF2 del plásmido críptico de Ct, amplificando los cebadores KL5/KL6 un fragmento de 350 pb y los cebadores KL1/KL2 un fragmento de 241 pb. La tipificación de los alelos HLA se realizó por NGS (de la sigla en inglés, Next Generation Sequencing) a partir de los exones 2 y 3 de los loci DRB1-DQB1 (resolución 3x) a través de la plataforma Illumina MiSeq. Como análsis adicional, a través del uso de herramientas inmunoinformáticas, se predijeron péptidos de proteínas derivadas de las serovariantes de Ct, seleccionadas para la evaluación de péptidos con alta actividad de unión a los alelos HLA-DRB1 y DQB1.
Modelos proporcionales de Cox se llevaron a cabo con el fin de evaluar la relación alelos y haplotipos HLA-DRB1 y DQB1 y el desenlace de las infecciones por Ct; estos modelos fueron ajustardos por variables sociodemográficas y factores de
7
riesgo. Esto permitió establecer la probabilidad de desarrollar los distintos eventos presentados por Ct en función del tiempo y sus coeficientes se expresaron como tasa de riesgo (HR, de la sigla en inglés Hazard ratio), aquellos valores por debajo de 1 se interpretaron como una menor probabilidad de ocurrencia del evento, mientras que los valores por encima de 1 se asociaron con una mayor probabilidad de ocurrencia del evento. Adicionalmente, se estimó el supuesto de riesgos proporcionales con tests basados en los residuos de Schoenfeld, cuando no se cumplieron los supuestos de proporcionalidad, se corrieron modelos paramétricos (Lognormal, Log-logistic, Weibull y Gompertz), los valores por debajo de 1 se relacionaban con una ocurrencia mas temprana del evento, mientras que los coeficientes por encima de 1 indicaban una ocurrencia tardía del evento.
Un total de 262 mujeres se incluyeron en el análisis retrospectivo, la media de edad fue de 41,7 años (DE= 23,1), un 29,8% (n=78) de las mujeres iniciaron el estudio con infección por Ct y un 8,9% presentaron al inicio del estudio alguna anormalidad cervical reportada por la citología. En cuanto a los alelos HLA-DRB1, se identificaron dieciséis alelos que presentan un efecto varible sobre el desenlace de las infecciones por Ct. Se observó que DRB1*08:02:01G y DRB1*12:01:01G se relacionaron con eventos que promueven la infección. Solo se encontró el alelo DQB1 *05:03:01G relacionado con eventos de depuración/persistencia para HLA-DQB1. Los sujetos homocigotos para HLA-DRB1 se asociaron a eventos con menor probabilidad de depuración y una aparición temprana de la persistencia.
En cuanto a los haplotipos HLA DRB1-DQB1, se identificaron 47 con asociaciones relacionados con los eventos de Ct. Se encontraron 17 haplotipos que favorencían los eventos de infección (probabilidad ó una ocurrencia temprana); 11 haplotipos se asociaron con una ocurrencia tardía de los eventos de infección. Para depuración, 3 haplotipos favorencían su ocurrencia temprana, mientras que 1 presentó menor probabilidad. En cuanto a la reinfección, se relacionaron 8 haplotipos con un un efecto favorable (mayor probabilidad u ocurrencia temprana). Finalmente, se encontraron 9 haplotipos que presentaban una asociación a más de un evento.
8
Como resultado adicional, se realizó la predicción de epítopes con fuerte unión predicha a alelos HLA-DRB1-DQB1. Los resultados mostraron la predicción de 109 pétidos, de los cuales 27 podrían estar asociados a inmunidad protectora frente a Ct; aquellos derivados de las proteínas OMP y PMP exhibieron regiones con doble potencial para ser un epítope de células T o B.
Gran parte de las infecciones por Ct cursan de forma asintomática, por lo que estudios epidemiológicos aportan al conocimiento del impacto de las Infecciones de Transmisión Sexual (ITS) en la salud sexual femenina. Aquí describimos por primera vez los alelos y haplotipos HLA-DRB1 y DQB1 relacionados con la resolución de las infecciones por Ct y los péptidos potencialmente involucrados en la respuesta inmune del hospedero. La información obtenida proporciona datos de base para el futuro desarrollo de medidas de promoción y prevención eficaces contra las infecciones por Ct. (Texto tomado de la funte) | |
| dc.description.abstract | HLA class II (HLA-II) genes’ polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes’ effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes’ effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twentyseven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection. | |
| dc.language | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
| dc.publisher | Departamento de Geociencias | |
| dc.publisher | Facultad de Ciencias | |
| dc.publisher | Bogotá, Colombia | |
| dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.relation | RedCol | |
| dc.relation | LaReferencia | |
| dc.relation | Abdelsamed, H., Peters, J., & Byrne, G. (2013). Genetic variation in Chlamydia
trachomatis and their hosts: impact on disease severity and tissue tropism.
Future Microbiology, 9(2), 1129–1146. https://doi.org/10.2307/2800087 | |
| dc.relation | Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther,
O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal
peptide predictions using deep neural networks. Nature Biotechnology, 37(4),
420–423. https://doi.org/10.1038/s41587-019-0036-z | |
| dc.relation | Anaene, M., Soyemi, K., & Caskey, R. (2016). International Journal of Infectious
Diseases Factors associated with the over-treatment and under-treatment of
gonorrhea and chlamydia in adolescents presenting to a public hospital
emergency department. International Journal of Infectious Diseases, 53, 34–38.
https://doi.org/10.1016/j.ijid.2016.10.009 | |
| dc.relation | Anaya, J., Shoenfeld, Y., Rojas, A., Levy, R., & Cervera, R. (2000). Autoimmunity
From Bench to Bedside. In Cancer and Autoimmunity.
https://doi.org/10.1016/b978-0-444-50331-2.x5000-0 | |
| dc.relation | Anttila, T., Saikku, P., Koskela, P., Bloigu, A., Dillner, J., & Ikaheimo, I. (2001).
Serotypes of Chlamydia trachomatis and Risk for Development of Cervical
Squamous Cell Carcinoma. JAMA, 285(1), 47–51. | |
| dc.relation | Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic &
Physiological Optics : The Journal of the British College of Ophthalmic Opticians
(Optometrists), 34(5), 502–508. https://doi.org/10.1111/opo.12131 | |
| dc.relation | Arrazola-García, M. A. (2005). Tipificación de los alelos HLA clases I y II. Revista
Médica Del IMSS, 43. | |
| dc.relation | Bavoil, P., Kaltenboeck, B., & Greub, B. (2013). In Chlamydia veritas. Pathogens
and Disease, 67(February), 89–90. https://doi.org/10.1111/2049-632X.12026 | |
| dc.relation | Bendtsen, D. J., Lars, K., Anders, F., & Søren, B. (2005). Non-classical protein
secretion in bacteria. BMC Microbiology, 5, 1–13. https://doi.org/10.1186/1471-
2180-5-58 | |
| dc.relation | Bhatla, N., Puri, K., Joseph, E., Kriplani, A., Iyer, V., & Sreenivas, V. (2013).
NoAssociation of Chlamydia trachomatis infection with human papillomavirus
(HPV) & cervical intraepithelial neoplasia - a pilot study Title. Indian J Med Res,
137(3), 533–539. | |
| dc.relation | Blackwell, J. M., Jamieson, S. E., & Burgner, D. (2009). HLA and infectious diseases.
Clinical Microbiology Reviews, 22(2), 370–385.
https://doi.org/10.1128/CMR.00048-08 | |
| dc.relation | Bom, R. J. M., Christerson, L., Loeff, M. F. S. Van Der, & Coutinho, R. A. (2011).
Evaluation of High-Resolution Typing Methods for Chlamydia trachomatis in
Samples from Heterosexual Couples ����� †. 49(8), 2844–2853.
https://doi.org/10.1128/JCM.00128-11 | |
| dc.relation | Bontadini, A. (2012). HLA techniques: Typing and antibody detection in the
laboratory of immunogenetics. Methods, 56(4), 471–476.
https://doi.org/10.1016/j.ymeth.2012.03.025 | |
| dc.relation | Borghans, J. A. M., Beltman, J. B., & Boer, R. J. De. (2004). MHC polymorphism
under host-pathogen coevolution. 732–739. https://doi.org/10.1007/s00251-
003-0630-5 | |
| dc.relation | Brunham, R. C. (2017). Perspective : my 37 year journey through Chlamydia
research : Chlamydia antigen analysis using monoclonal antibodies and major
histocompatibility complex molecules. July, 1–9.
https://doi.org/10.1093/femspd/ftx089 | |
| dc.relation | Brunham, R. C., & Rey-ladino, J. (2005). IMMUNOLOGY OF CHLAMYDIA
INFECTION : IMPLICATIONS FOR A CHLAMYDIA TRACHOMATIS VACCINE.
5(February). https://doi.org/10.1038/nri1551 | |
| dc.relation | Burgner, D., Jamieson, S., & Blackwell, J. M. (2006). Genetic susceptibility to
infectious diseases: big is beautiful, but will bigger be even better? The Lancet
Infectious Diseases, 6(Octubre), 19–21. | |
| dc.relation | Bush, R. M., & Everett, K. D. (2001). Molecular evolution of the Chlamydiaceae.
203–220. | |
| dc.relation | Carrero, Y., Bracho, A., García, W., Arguello, M., Silva, C., González, M., Marín, D.,
& Atencio, R. (2018). Hallazgos citológicos y factores de riesgo asociados a
lesión cervical en mujeres pertenecientes a tres etnias indígenas del Estado
Zulia. Kasmera, 46(2), 159–169. | |
| dc.relation | Clarke, I. (2011). Evolution of Chlamydia trachomatis. ANNALS OF THE NEW
YORK ACADEMY OF SCIENCES, 1230, 11–18. https://doi.org/10.1111/j.1749-
6632.2011.06194.x | |
| dc.relation | Cohen, C. R., Gichui, J., Rukaria, R., Sinei, S. S., Gaur, L. K., & Brunham, R. C.
(2003). Immunogenetic correlates for Chlamydia trachomatis - Associated tubal
infertility. Obstetrics and Gynecology, 101(3), 438–444.
https://doi.org/10.1016/S0029-7844(02)03077-6 | |
| dc.relation | Cohen, C. R., Sinei, S. S., Bukusi, E. A., Bwayo, J. J., Holmes, K. K., & Brunham,
R. C. (2000). Human leukocyte antigen class II DQ alleles associated with
Chlamydia trachomatis tubal infertility. Obstetrics and Gynecology, 95(1), 72–
77. https://doi.org/10.1016/S0029-7844(99)00541-4 | |
| dc.relation | Conway, D. J., Holland, M. J., Campbell, A. E., Bailey, R. L., Krausa, P., Peeling, R.
W., Whittle, H. C., & Mabey, D. C. W. (1996). HLA class I and II polymorphisms
and trachomatous scarring in a Chlamydia trachomatis - Endemic population.
Journal of Infectious Diseases, 174(3), 643–646.
https://doi.org/10.1093/infdis/174.3.643 | |
| dc.relation | Costa-Lira, E., Jacinto, A., Silva, L., & Napoleão, P. (2017). trachomatis , and
Trichomonas vaginalis infections in Amazonian women with normal and
abnormal cytology. Genetics and Molecular Research, 16(2). | |
| dc.relation | Cribb, P., Scapini, J. P., & Serra, E. (2002). One-tube nested polymerase chain
reaction for detection of Chlamydia trachomatis. Memorias Do Instituto Oswaldo
Cruz, 97(6), 897–900. https://doi.org/10.1590/S0074-02762002000600027 | |
| dc.relation | De Jesús De Haro-Cruz, M., Deleón-Rodriguez, I., Escobedo-Guerra, M. R., López-
Hurtado, M., Arteaga-Troncoso, G., Ortiz-Ibarra, F. J., & Guerra-Infante, F. M.
(2011). Genotyping of Chlamydia trachomatis from endocervical specimens of
infertile Mexican women. Enfermedades Infecciosas y Microbiologia Clinica,
29(2), 102–108. https://doi.org/10.1016/j.eimc.2010.08.014 | |
| dc.relation | De la Maza, L., Zhong, G., & Brunham, R. C. (2017). Update on Chlamydia
trachomatis Vaccinology. Clinical and Vaccine Immunology, 24(4), 1–25. | |
| dc.relation | De Vries, H. J. C., Schim Van Der Loeff, M. F., & Bruisten, S. M. (2015). Highresolution
typing of Chlamydia trachomatis: Epidemiological and clinical uses.
Current Opinion in Infectious Diseases, 28(1), 61–71.
https://doi.org/10.1097/QCO.0000000000000129 | |
| dc.relation | Dean, D., Rothschild, J., Ruettger, A., Kandel, R. P., & Sachse, K. (2013). Zoonotic
Chlamydiaceae Species Associated with Trachoma , Nepal. 19(12). | |
| dc.relation | Debattista, Joseph et al. (2003). Immunopathogenesis of Chlamydia trachomatis
infections in women. Fertility and Sterility, 79(6), 1273–1287.
https://doi.org/10.1016/S0015-0282(03)00396-0 | |
| dc.relation | Del Río-Ospina, L., Camargo, M., Soto-De León, S. C., Sánchez, R., Moreno-Pérez,
D. A., Patarroyo, M. E., & Patarroyo, M. A. (2020). Identifying the HLA DRB1-
DQB1 molecules and predicting epitopes associated with high-risk HPV
infection clearance and redetection. Scientific Reports, 10(1), 1–11.
https://doi.org/10.1038/s41598-020-64268-x | |
| dc.relation | Díaz, A., & Díez, M. (2011). Infecciones de transmisión sexual: epidemiología y
control. Revista Española de Sanidad Penitenciaria, 13(2), 58–66. | |
| dc.relation | Domman, D, & Horn, M. (2015). Following the Footsteps of Chlamydial Gene Regulation Article Fast Track. 32(12), 3035–3046. https://doi.org/10.1093/molbev/msv193 | |
| dc.relation | Domman, Daryl, Collingro, A., Lagkouvardos, I., Gehre, L., Weinmaier, T., Rattei, T.,
Subtil, A., & Horn, M. (2014). Massive Expansion of Ubiquitination-Related
Gene Families within the Chlamydiae. 31(11), 2890–2904.
https://doi.org/10.1093/molbev/msu227 | |
| dc.relation | Erlich, H. (2012). HLA DNA typing: past, present, and future. January, 1–11.
https://doi.org/10.1111/j.1399-0039.2012.01881.x | |
| dc.relation | Estrada, S. et al. (2010). Infección por Chlamydia trachomatis asociado a factor
tubárico de subfertilidad: aspectos inmunogenéticos. Revista Waxapa, 43–59. | |
| dc.relation | Everett, K. D. E., & Andersen, A. A. (2000). The Ribosomal Intergenic Spacer and
Domain I of the 2 s rRNA Gene Are Phylogenetic Markers for Chlamydia spp .
461–473. | |
| dc.relation | Everett, K. D. E., Bush, R. M., & Andersenl, A. A. (1999). Emended description of
the order Chlamydiales , proposal of Parachlamydiaceae fam . nov . and
Simkaniaceae fam . nov ., each containing one monotypic genus , revised
taxonomy of the family Chlamydiaceae , including a new genus and five new
species , and s. 1 999, 415–440. | |
| dc.relation | F. Vromman et al. (2014). Quantitative Monitoring of the Chlamydia trachomatis
Developmental Cycle Using GFP-Expressing Bacteria , Microscopy and Flow
Cytometry. Public Library of Sciencie, 9(6).
https://doi.org/10.1371/journal.pone.0099197 | |
| dc.relation | Fan, T., Lu, H., Hu, H., Shi, L., McClarty, G. A., Nance, D. M., Greenberg, A. H., &
Zhong, G. (1998). Inhibition of apoptosis in chlamydia-infected cells: Blockade
of mitochondrial cytochrome c release and caspase activation. Journal of
Experimental Medicine, 187(4), 487–496.
https://doi.org/10.1084/jem.187.4.487 | |
| dc.relation | Fehlner-Gardiner, C., Roshick, C., Carlson, J. H., Hughes, S., Belland, R. J.,
Caldwell, H. D., & McClarty, G. (2002). Molecular basis defining human
Chlamydia trachomatis tissue tropism: A possible role for tryptophan synthase.
Journal of Biological Chemistry, 277(30), 26893–26903.
https://doi.org/10.1074/jbc.M203937200 | |
| dc.relation | Gaitán-Duarte, H. (2017). Sexually transmitted infections: A public health problem
that Colombia needs to face. Revista Colombiana de Obstetricia y Ginecologia,
68(3), 164–167. https://doi.org/10.18597/rcog.3080 | |
| dc.relation | Gaur, L. K., Peeling, R. W., Cheang, M., Kimani, J., Bwayo, J., Plummer, F., &
Brunham, R. C. (1999). Association of Chlamydia trachomatis heat-shock
protein 60 antibody and HLA class II DQ alleles. Journal of Infectious Diseases,
180(1), 234–237. https://doi.org/10.1086/314838 | |
| dc.relation | Geisler, W. M., Tang, J., Wang, C., Wilson, C. M., & Kaslow, R. A. (2004).
Epidemiological and genetic correlates of incident Chlamydia trachomatis
infection in North American adolescents. Journal of Infectious Diseases,
190(10), 1723–1729. https://doi.org/10.1086/425077 | |
| dc.relation | Gonzalez-Galarza, F. F., McCabe, A., Melo dos Santos, E. J., Jones, A. R., &
Middleton, D. (2020). A snapshot of human leukocyte antigen (HLA) diversity
using data from the Allele Frequency Net Database. Human Immunology,
October, 1–8. https://doi.org/10.1016/j.humimm.2020.10.004 | |
| dc.relation | Greub, G. (2010). International Committee on Systematics of Prokaryotes :
Subcommittee on the taxonomy of the Chlamydiae - Minutes of the inaugural
closed meeting , Minutes International Committee on Systematics of
Prokaryotes Subcommittee on the taxonomy of the Chlamydiae. Nternational
Journal of Systematic and Evolutionary Microbiology, 60, 2691–2693.
https://doi.org/10.1099/ijs.0.028225-0 | |
| dc.relation | Grillo-ardila C.F. et al. (2020). Rapid point of care test for detecting urogenital
Chlamydia trachomatis infection in nonpregnant women and men at reproductive age (Review). Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD011708.pub2.www.cochranelibrary.com | |
| dc.relation | Group, H. I. (2015). Nomenclature for Factors of the HLA System: hla.alleles.org.
http://hla.alleles.org/nomenclature/naming.html | |
| dc.relation | Gutiérrez, D. L., & Sánchez Mora, R. M. (2018). Alternative Treatments of Traditional
Medicine for Chlamydia trachomatis , Causal Agent of an Asympomatic
Infection. Nova, 16(30), 65–74.
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-
24702018000200065&lng=en&nrm=iso&tlng=es | |
| dc.relation | Hartley, J. C., Kaye, S., Stevenson, S., & Bennett, J. (2001). PCR Detection and
Molecular Identification of Chlamydiaceae Species. 39(9), 3072–3079.
https://doi.org/10.1128/JCM.39.9.3072 | |
| dc.relation | Hedrick, P. W. (2002). Pathogen resistance and genetic variation at MHC loci.
Evolution, 56(10), 1902–1908. https://doi.org/10.1111/j.0014-
3820.2002.tb00116.x | |
| dc.relation | Herrmann, B., Isaksson, J., Ryberg, M., Tångrot, J., Saleh, I., Versteeg, B.,
Gravningen, K., & Bruisten, S. (2015). Global multilocus sequence type analysis
of Chlamydia trachomatis strains from 16 countries. Journal of Clinical
Microbiology, 53(7), 2172–2179. https://doi.org/10.1128/JCM.00249-15 | |
| dc.relation | Homburger, J. R., Moreno-estrada, A., Gignoux, C. R., Nelson, D., Sanchez, E.,
Ortiz-tello, P., Pons-estel, B. A., Acevedo-vasquez, E., Miranda, P., Langefeld,
C. D., & Gravel, S. (2015). Genomic Insights into the Ancestry and Demographic
History of South America. 1–26. https://doi.org/10.1371/journal.pgen.1005602 | |
| dc.relation | Horn, M. (2008). Chlamydiae as Symbionts in Eukaryotes.
https://doi.org/10.1146/annurev.micro.62.081307.162818 | |
| dc.relation | Horn, M., Horn, M., Collingro, A., Schmitz-esser, S., Beier, C. L., Purkhold, U.,
Fartmann, B., Brandt, P., Nyakatura, G. J., Droege, M., Frishman, D., Rattei, T., Mewes, H., & Wagner, M. (2014). Illuminating the Evolutionary History of Chlamydiae. 728(2004). https://doi.org/10.1126/science.1096330 | |
| dc.relation | Hosomichi K et al. (2015). The impact of next-generation sequencing technologies
on HLA research. Journal of Human Genetics, 60(11), 665–673.
https://doi.org/10.1038/jhg.2015.102 | |
| dc.relation | Igietseme, J. U., Omosun, Y., Stuchlik, O., Reed, M. S., Partin, J., He, Q., Joseph,
K., Ellerson, D., Bollweg, B., George, Z., Eko, F. O., Bandea, C., Liu, H., Yang,
G., Shieh, W. J., Pohl, J., Karem, K., & Black, C. M. (2015). Role of epithelialmesenchyme
transition in chlamydia pathogenesis. PLoS ONE, 10(12), 1–26.
https://doi.org/10.1371/journal.pone.0145198 | |
| dc.relation | Ikehata, M., Numazaki, K., & Chiba, S. (2000). Analysis of Chlamydia trachomatis
serovars in endocervical specimens derived from pregnant Japanese women.
FEMS Immunology and Medical Microbiology, 27(1), 35–41.
https://doi.org/10.1016/S0928-8244(99)00158-3 | |
| dc.relation | Inic-Kanada, A., Stojanovic, M., Schlacher, S., Stein, E., Belij-Rammerstorfer, S.,
Marinkovic, E., Lukic, I., Montanaro, J., Schuerer, N., Bintner, N., Kovacevic-
Jovanovic, V., Krnjaja, O., Mayr, U. B., Lubitz, W., & Barisani-Asenbauer, T.
(2015). Delivery of a chlamydial adhesin N-PmpC subunit vaccine to the ocular
mucosa using particulate carriers. PLoS ONE, 10(12), 1–19.
https://doi.org/10.1371/journal.pone.0144380 | |
| dc.relation | Jelocnik, M., Bachmann, N. L., Seth-Smith, H., Thomson, N. R., Timms, P., &
Polkinghorne, A. M. (2016). Molecular characterisation of the Chlamydia
pecorum plasmid from porcine, ovine, bovine, and koala strains indicates
plasmid-strain co-evolution. PeerJ, 2016(2), 1–17.
https://doi.org/10.7717/peerj.1661 | |
| dc.relation | Jenkins, W. D., LeVault, K., & Sutcliffe, S. (2015). Chlamydia trachomatis infection:
Possible cofactor for oropharyngeal cancer development? Oral Oncology,
51(2), e8–e9. https://doi.org/10.1016/j.oraloncology.2014.11.015 | |
| dc.relation | Jespersen, C. M., Bjoern, P., Morten, N., & Paolo, M. (2017). BepiPred-2.0:
Improving sequence-based B-cell epitope prediction using conformational
epitopes. Nucleic Acids Research, 45(W1), W24–W29.
https://doi.org/10.1093/nar/gkx346 | |
| dc.relation | Jordá, G. B., Hanke, S. E., Ramos-, J. M., Mosmann, J., Lopéz, M. L., & Entrocassi,
A. C. (2018). Prevalencia y análisis filogenético de Chlamydia trachomatis en
una población de mujeres de. Revista Especializada Quimioterapia, 31(1), 21–
26. | |
| dc.relation | Karuna P. et al. (2019). Discordance in the epithelial cell-dendritic cell MHC class II
immunoproteome: implications for Chlamydia vaccine development. Journal
Infect Disease, 1–25. https://doi.org/10.1093/infdis/jiz522 | |
| dc.relation | Karunakaran, K. P., Rey-Ladino, J., Stoynov, N., Berg, K., Shen, C., Jiang, X.,
Gabel, B. R., Yu, H., Foster, L. J., & Brunham, R. C. (2008). Immunoproteomic
Discovery of Novel T Cell Antigens from the Obligate Intracellular Pathogen
Chlamydia . The Journal of Immunology, 180(4), 2459–2465.
https://doi.org/10.4049/jimmunol.180.4.2459 | |
| dc.relation | Kimani, J., Maclean, I. W., Bwayo, J. J., MacDonald, K., Oyugi, J., Maitha, G. M.,
Peeling, R. W., Cheang, M., Nagelkerke, N. J. D., Plummer, F. A., & Brunham,
R. C. (1996). Risk factors for Chlamydia trachomatis pelvic inflammatory
disease among sex workers in Nairobi, Kenya. Journal of Infectious Diseases,
173(6), 1437–1444. https://doi.org/10.1093/infdis/173.6.1437 | |
| dc.relation | Kinnunen, A. H., Surcel, H. M., Lehtinen, M., Karhukorpi, J., Tiitinen, A., Halttunen,
M., Bloigu, A., Morrison, R. P., Karttunen, R., & Paavonen, J. (2002). HLA DQ
alleles and interleukin-10 polymorphism associated with Chlamydia
trachomatis-related tubal factor infertility: A case-control study. Human
Reproduction, 17(8), 2073–2078. https://doi.org/10.1093/humrep/17.8.2073 | |
| dc.relation | Kinuthia, J., Drake, A., Mameto, D., B, R., Zeh, C., Osborn, L., Overbaugh, J.,
Mcclelland, R. S., & John-, G. (2016). Characteristics : A Cohort Study. PMC, 29(15), 2025–2033. https://doi.org/10.1097/QAD.0000000000000793.HIV | |
| dc.relation | Klein, J. (2000). The HLA system. The New England Journal of Medicine Review,
343(10), 702–709. | |
| dc.relation | Klint, M., Fuxelius, H. H., Goldkuhl, R. R., Skarin, H., Rutemark, C., Andersson, S.
G. E., Persson, K., & Herrmann, B. (2007). High-resolution genotyping of
Chlamydia trachomatis strains by multilocus sequence analysis. Journal of
Clinical Microbiology, 45(5), 1410–1414. https://doi.org/10.1128/JCM.02301-06 | |
| dc.relation | Koskela, P., Anttila, T., Bjørge, T., Brunsvig, A., Dillner, J., Hakama, M., Hakulinen,
T., Jellum, E., Lehtinen, M., Lenner, P., Luostarinen, T., Pukkala, E., Saikku, P.,
Thoresen, S., Youngman, L., & Paavonen, J. (2000). Chlamydia trachomatis
infection as a risk factor for invasive cervical cancer. International Journal of
Cancer, 85(1), 35–39. https://doi.org/10.1002/(SICI)1097-
0215(20000101)85:1<35::AID-IJC6>3.0.CO;2-A | |
| dc.relation | Lallemand, A., Bremer, V., Jansen, K., Nielsen, S., Münstermann, D., & Lucht, A.
(2016). Prevalence of Chlamydia trachomatis infection in women , heterosexual
men and MSM visiting HIV counselling institutions in North Rhine-Westphalia ,
Germany - should Chlamydia testing be scaled up ? BMC Infectious Diseases,
1–10. https://doi.org/10.1186/s12879-016-1915-2 | |
| dc.relation | Lee, E. T., & Go, O. T. (1997). Survival analysis in public health research. Annual
Review of Public Health, 18, 105–134.
https://doi.org/10.1146/annurev.publhealth.18.1.105 | |
| dc.relation | Leonard, C. A., & Borel, N. (2014). Chronic Chlamydial Diseases: From
Atherosclerosis to Urogenital Infections. Current Clinical Microbiology Reports,
1(3–4), 61–72. https://doi.org/10.1007/s40588-014-0005-8 | |
| dc.relation | Markle, W., Conti, T., & Kad, M. (2013). Sexually transmitted diseases. Primary Care
- Clinics in Office Practice, 40(3), 557–587.
https://doi.org/10.1016/j.pop.2013.05.001 | |
| dc.relation | Marrazzo, J., & Suchland, R. (2014). Recent advances in understanding and
managing Chlamydia trachomatis infections. F1000Prime Reports,
6(December), 1–7. https://doi.org/10.12703/P6-120 | |
| dc.relation | Marsh, S. G. E., Albert, E. D., Bodmer, W. F., Bontrop, R. E., Dupont, B., Erlich, H.
A., Fernández-Viña, M., Geraghty, D. E., Holdsworth, R., Hurley, C. K., Lau, M.,
Lee, K. W., MacH, B., Maiers, M., Mayr, W. R., Müller, C. R., Parham, P.,
Petersdorf, E. W., Sasazuki, T., … Trowsdale, J. (2010). Nomenclature for
factors of the HLA system, 2010. Tissue Antigens, 75(4), 291–455.
https://doi.org/10.1111/j.1399-0039.2010.01466.x | |
| dc.relation | Mascellino, M. T., Boccia, P., & Oliva, A. (2011). Immunopathogenesis in Chlamydia
trachomatis Infected Women . ISRN Obstetrics and Gynecology, 2011, 1–9.
https://doi.org/10.5402/2011/436936 | |
| dc.relation | Mestrovic, T., Ljubin-sternak, S., Microbiology, C., Unit, P., & Profozic, P. Z. (2018).
Chlamydial mechanisms of antimicrobial resistance. 3, 656–670. | |
| dc.relation | Meyer, T. (2016). Diagnostic Procedures to Detect Chlamydia trachomatis
Infections. Microorganisms, 4(3), 25.
https://doi.org/10.3390/microorganisms4030025 | |
| dc.relation | Morrison, R. P., Feilzer, K., & Tumas, D. B. (1995). Gene Knockout Mice Establish
a Primary Protective Role for Major Histocompatibility Complex Class IIRestricted
Responses in Chlamydia trachomatis Genital Tract Infection.
American Society for Microbiology, 63(12), 4661–4668. | |
| dc.relation | Mosaad, Y. M. (2015). Clinical Role of Human Leukocyte Antigen in Health and
Disease. Scandinavian Journal of Immunology, 82(4), 283–306.
https://doi.org/10.1111/sji.12329 | |
| dc.relation | Mylonas, I. (2012). Female genital Chlamydia trachomatis infection: Where are we
heading? Archives of Gynecology and Obstetrics, 285(5), 1271–1285.
https://doi.org/10.1007/s00404-012-2240-7 | |
| dc.relation | Ness, R. B., Brunham, R. C., Shen, C., & Bass, D. C. (2004). Associations among
Human Leukocyte Antigen (HLA) Class II DQ Variants, Bacterial Sexually
Transmitted Diseases, Endometritis, and Fertility among Women with Clinical
Pelvic Inflammatory Disease. Sexually Transmitted Diseases, 31(5), 301–304.
https://doi.org/10.1097/01.OLQ.0000123649.52033.75 | |
| dc.relation | Nguyen, N. D. N. T., Olsen, A. W., Lorenzen, E., Andersen, P., Hvid, M., Follmann,
F., & Dietrich, J. (2020). Parenteral vaccination protects against transcervical
infection with Chlamydia trachomatis and generate tissue-resident T cells postchallenge.
Npj Vaccines, 5(1), 1–12. https://doi.org/10.1038/s41541-020-0157-
x | |
| dc.relation | Nielsen, M., Lundegaard, C., Blicher, T., Peters, B., Sette, A., Justesen, S., Buus,
S., & Lund, O. (2008). Quantitative predictions of peptide binding to any HLADR
molecule of known sequence: NetMHCIIpan. PLoS Computational Biology,
4(7), 1–10. https://doi.org/10.1371/journal.pcbi.1000107 | |
| dc.relation | Nunes, A., & Gomes, J. P. (2014). Evolution, phylogeny, and molecular
epidemiology of Chlamydia. Infection, Genetics and Evolution, 23(February),
49–64. https://doi.org/10.1016/j.meegid.2014.01.029 | |
| dc.relation | O’connell, C. M., & Ferone, M. E. (2016). Chlamydia trachomatis genital infections.
Microbial Cell, 3(9), 390–403. https://doi.org/10.15698/mic2016.09.525 | |
| dc.relation | Occhionero, M. R., Lucia, M., Vaulet, G., Paniccia, L., Pedersen, D., Rossi, G.,
Costamagna, S. R., Fernández, D., Carrica, A., Mazzucchini, H., & Fermepin,
M. R. (2007). PREVALENCIA DE LA INFECCIÓN POR Chlamydia trachomatis
EN MUJERES DE LA CIUDAD DE BAHÍA BLANCA. PROVINCIA DE BUENOS
AIRES, ARGENTINA. Revista de La Asociación Médica de Bahía Blanca, 17(1),
10–14. | |
| dc.relation | Olsen, A. W., Follmann, F., Erneholm, K., Rosenkrands, I., & Andersen, P. (2015).
Protection Against Chlamydia trachomatis Infection and Upper Genital Tract
Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein. Journal of Infectious Diseases, 212(6), 978–989. https://doi.org/10.1093/infdis/jiv137 | |
| dc.relation | Olson, K. M., Tang, J., Brown, L. D., Press, C. G., & Geisler, W. M. (2019). HLADQB1*
06 is a risk marker for chlamydia reinfection in African American women.
Genes and Immunity, 20(1), 69–73. https://doi.org/10.1038/s41435-018-0014-3 | |
| dc.relation | Paavonen, J. (2012). Chlamydia trachomatis infections of the female genital tract:
State of the art. Annals of Medicine, 44(1), 18–28.
https://doi.org/10.3109/07853890.2010.546365 | |
| dc.relation | Paba, P., Bonifacio, D., Di Bonito, L., Ombres, D., Favalli, C., Syrjänen, K., & Ciotti,
M. (2008). Co-expression of HSV2 and Chlamydia trachomatis in HPV-positive
cervical cancer and cervical intraepithelial neoplasia lesions is associated with
aberrations in key intracellular pathways. Intervirology, 51(4), 230–234.
https://doi.org/10.1159/000156481 | |
| dc.relation | Paredes et al. (2015). Prevalence of infections by Chlamydia trachomatis and
Neisseria gonorrhoeae among high school students in the Sabana Central area
of Cundinamarca, Colombia. Biomedica, 35(3), 314–324.
https://doi.org/10.7705/biomedica.v35i3.2398 | |
| dc.relation | Pawłikowska-Warych, M., Śliwa-Dominiak, J., & Deptuła, W. (2015). Chlamydial
plasmids and bacteriophages. Acta Biochimica Polonica, 62(1), 1–6.
https://doi.org/10.18388/abp.2014_764 | |
| dc.relation | Pedersen, L. N., Pødenphant, L., & Møller, J. K. (2008). Highly discriminative
genotyping of Chlamydia trachomatis using omp1 and a set of variable number
tandem repeats. Clinical Microbiology and Infection, 14(7), 644–652.
https://doi.org/10.1111/j.1469-0691.2008.02011.x | |
| dc.relation | Pillonel, T., Bertelli, C., Salamin, N., & Greub, G. (2015). Taxogenomics of the order
Chlamydiales Printed in Great Britain. 1381–1393.
https://doi.org/10.1099/ijs.0.000090 | |
| dc.relation | Pinzón-Fernández, M. V., Caldas-Arias, L., Stiven Burgos, A., Ibarra-Gimbuel, D. S.,
& Valencia-Mesa, C. (2019). Mecanismos de patogenicidad y respuesta inmune
de la infección por Chlamydia trachomatis y su relación con cáncer cervical.
Ces Medicina, 33(1), 51–59. https://doi.org/10.21615/cesmedicina.33.1.6 | |
| dc.relation | Plummer, F. A., Simonsen, J. N., Cameron, D. W., Ndinya-achola, J. O., Kreiss, J.
K., Gakinya, M. N., Waiyaki, P., Cheang, M., Piot, P., Ronald, A. R., & Ngugi,
E. N. (1991). Cofactors in Male-Female Sexual Transmission of Human
Immunodeficiency Virus Type 1. 233–239. | |
| dc.relation | Quinónez-Calvache, E. M., Ríos-Chaparro, D. I., Ramírez, J. D., Soto-De León, S.
C., Camargo, M., Río-Ospina, L. Del, Sánchez, R., Patarroyo, M. E., &
Patarroyo, M. A. (2016). Chlamydia trachomatis Frequency in a Cohort of HPVinfected
colombian women. PLoS ONE, 11(1), 1–14.
https://doi.org/10.1371/journal.pone.0147504 | |
| dc.relation | Rawre, J., Juyal, D., & Dhawan, B. (2017). Molecular Typing of Chlamydia
trachomatis : An Overview. Indian Journal of Medical Microbiology, March, 16–
26. https://doi.org/10.4103/ijmm.IJMM | |
| dc.relation | Rowley, J., Hoorn, S. Vander, Korenromp, E., Low, N., Unemo, M., Abu-Raddad, L.
J., Chico, R. M., Smolak, A., Newman, L., Gottlieb, S., Thwin, S. S., Broutet, N.,
& Taylor, M. M. (2019). Chlamydia, gonorrhoea, trichomoniasis and syphilis.
Bulletin of the World Health Organization, 97(8), 548–562. | |
| dc.relation | Ruiz, R. P. (2011). Identificación de Chlamydia trachomatis en parejas infértiles.
Revista Mexicana de Medicina de La Reproducción, 4(2), 78–82. | |
| dc.relation | Russi, R. C., Bourdin, E., García, M. I., & Veaute, C. M. I. (2018). In silico prediction
of T- and B-cell epitopes in PmpD: First step towards to the design of a
Chlamydia trachomatis vaccine. Biomedical Journal, 41(2), 109–117.
https://doi.org/10.1016/j.bj.2018.04.007 | |
| dc.relation | Sachse, K., Bavoil, P. M., Kaltenboeck, B., Stephens, R. S., Kuo, C., Rosselló-móra,
R., & Horn, M. (2020). Chlamydia , to include all currently recognized species. Systematic and Applied Microbiology, 2015.
https://doi.org/10.1016/j.syapm.2014.12.004 | |
| dc.relation | Sanchez-mazas, A., & Meyer, D. (2014). The Relevance of HLA Sequencing in
Population Genetics Studies. 2014. https://doi.org/10.1155/2014/971818 | |
| dc.relation | Shankarkumar, U. et al. (2002). The Human Leucocyte Antigen (HLA) system.
Journal of Association of Physicians of India, 50(7), 916–926.
https://doi.org/10.1080/09723757.2004.11885875 | |
| dc.relation | Shao, R., Hu, J., & Billing, H. (2013). Toward Understanding Chlamydia Infection–
Induced Infertility Caused by TDysfunctional Oviducts. Journal of Infectious
Diseases, 1–2. https://doi.org/10.1093/infdis/jit216 | |
| dc.relation | Sherchand, Shardulendra P., Ibana, J. A., Zea, A. H., Quayle, A. J., & Aiyar, A.
(2016). The high-risk human papillomavirus e6 oncogene exacerbates the
negative effect of tryptophan starvation on the development of chlamydia
trachomatis. PLoS ONE, 11(9), 1–28.
https://doi.org/10.1371/journal.pone.0163174 | |
| dc.relation | Sherchand, Shardulendra Prasad, Ibana, J. A., Quayle, A. J., & Aiyar, A. (2016). Cell
Intrinsic Factors Modulate the Effects of IFN γ on the Development of Journal
of Bacteriology & Parasitology Cell Intrinsic Factors Modulate the Effects of IFNγ
on the Development of Chlamydia trachomatis. Journal of Bacteriology &
Parasitology, 7(October). https://doi.org/10.4172/2155-9597.1000282 | |
| dc.relation | Simonetti, A. C., Humberto de Lima Melo, J., Eleutério de Souza, P. R., Bruneska,
D., & Luiz de Lima Filho, J. (2009). Immunological’s host profile for HPV and
Chlamydia trachomatis, a cervical cancer cofactor. Microbes and Infection,
11(4), 435–442. https://doi.org/10.1016/j.micinf.2009.01.004 | |
| dc.relation | Singh, V., Sehgal, A., Satyanarayana, L., Gupta, M. M., Parashari, A., &
Chattopadhya, D. (1995). Clinical presentation of gynecologic infections among
Indian women. Obstetrics and Gynecology, 85(2), 215–219.
https://doi.org/10.1016/0029-7844(94)00367-M | |
| dc.relation | Soto-De León, S. C., Del Río-Ospina, L., Camargo, M., Sánchez, R., Moreno-Pérez,
D. A., Pérez-Prados, A., Patarroyo, M. E., & Patarroyo, M. A. (2014).
Persistence, clearance and reinfection regarding six high risk human
papillomavirus types in Colombian women: A follow-up study. BMC Infectious
Diseases, 14(1), 1–12. https://doi.org/10.1186/1471-2334-14-395 | |
| dc.relation | Stephens, R. S., Myers, G., Eppinger, M., & Bavoil, P. M. (2009). Divergence without
di ¡ erence : phylogenetics and taxonomy of Chlamydia resolved.
https://doi.org/10.1111/j.1574-695X.2008.00516.x | |
| dc.relation | Takashi S. et al. (2009). The HLA genomic loci map: Expression, interaction,
diversity and disease. Journal of Human Genetics, 54(1), 15–39.
https://doi.org/10.1038/jhg.2008.5 | |
| dc.relation | Tamayo A. et al. (2013). Factores asociados a la infección por Chlamydia
trachomatis en mujeres atendidas en dos hospitales provinciales . Matanzas
2010-2012 Factors associated to Chlamydia trachomatis infection in women
attended in two provincial hospitals . Matanzas 2010- 2013. Revista Médica
Electrónica, 36, 700–710. | |
| dc.relation | Tipu, H. N., & Shabbir, A. (2015). Evolution of DNA sequencing. Journal of the
College of Physicians and Surgeons Pakistan, 25(3), 210–215.
https://doi.org/03.2015/JCPSP.210215 | |
| dc.relation | Torres, M., & Moraes, M. (2001). Nomenclature for factors of the HLA system. Tissue
Antigens, 57(3), 236–283. https://doi.org/10.1034/j.1399-
0039.2001.057003236.x | |
| dc.relation | Unemo, M., Bradshaw, C. S., Hocking, J. S., Vries, H. J. C. De, Francis, S. C.,
Mabey, D., Marrazzo, J. M., Sonder, G. J. B., Schwebke, J. R., Hoornenborg,
E., Peeling, R. W., Philip, S. S., Low, N., & Fairley, C. K. (2017). The Lancet
Infectious Diseases Commission Sexually transmitted infections : challenges
ahead. The Lancet Infectious Diseases, 3099(17).
https://doi.org/10.1016/S1473-3099(17)30310-9 | |
| dc.relation | Vasilevsky, S., Stojanov, M., Greub, G., & Baud, D. (2016). Chlamydial polymorphic
membrane proteins: Regulation, function and potential vaccine candidates.
Virulence, 7(1), 11–22. https://doi.org/10.1080/21505594.2015.1111509 | |
| dc.relation | Vouga, M., Baud, D., & Greub, G. (2016). Critical Reviews in Microbiology Simkania
negevensis , an insight into the biology and clinical importance of a novel
member of the Chlamydiales order. Critical Reviews in Microbiology, 0(0), 000.
https://doi.org/10.3109/1040841X.2016.1165650 | |
| dc.relation | Wang, Fuyan et al. (2019). Inflammatory mechanism of Chlamydia trachomatisinfected
HeLa229 cells regulated by Atg5. Biochemical and Biophysical
Research Communications, 520(1), 205–210.
https://doi.org/10.1016/j.bbrc.2019.09.132 | |
| dc.relation | Wang, C., Tang, J., Geisler, W. M., Crowley-Nowick, P. A., Wilson, C. M., & Kaslow,
R. A. (2005). Human leukocyte antigen and cytokine gene variants as predictors
of recurrent Chlamydia trachomatis infection in high-risk adolescents. Journal
of Infectious Diseases, 191(7), 1084–1092. https://doi.org/10.1086/428592 | |
| dc.relation | Weidang, L., Ashlesh, M., Gopala, L., Senthilnath, C., Jieh-Juen, Y., James, C.,
Guangming, T., Thomas, F., Neal, G., & Bernard, P. (2013). A T Cell Epitope-
Based Vaccine Protects Against Chlamydial Infection in HLA-DR4 Transgenic
Mice. Vaccine, 31. https://doi.org/10.1016/j.vaccine.2013.09.036.A | |
| dc.relation | Weissenbacher, E. R. (2014). Immunology of the female genital tract. In Immunology
of the Female Genital Tract (Vol. 9783642149). https://doi.org/10.1007/978-3-
642-14906-1 | |
| dc.relation | WHO. (2011). Prevalence and incidence of selected sexually transmitted infections:
Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas
vaginalis: Methods an results used by WHO to generate 2005 estimates. World
Health Organization, 1–38. | |
| dc.relation | WHO. (2016). Draft global health sector strategies: Viral hepatitis, 2016-2021.
2(April), 1–44. | |
| dc.relation | Wyrick, P. B. (2010). Chlamydia trachomatis Persistence In Vitro: An Overview . The
Journal of Infectious Diseases, 201(S2), 88–95. https://doi.org/10.1086/652394 | |
| dc.relation | Xia, Y., & Xiong, L. K. (2014). Progress in genotyping of Chlamydia trachomatis.
Chinese Medical Journal, 127(22), 3980–3986.
https://doi.org/10.3760/cma.j.issn.0366-6999.20141415 | |
| dc.relation | Yang, Z., Tang, L., Zhou, Z., & Zhong, G. (2016). Neutralizing antichlamydial activity
of complement by chlamydia-secreted protease CPAF. Microbes and Infection,
18(11), 669–674. https://doi.org/10.1016/j.micinf.2016.07.002 | |
| dc.relation | Yu, H, Jiang, X., Shen, C., Karuna P, K., & Brunham, R. (2008). Novel Chlamydia
muridarum T cell Antigens Induce Protective Immunity against Lung and Genital
Tract Infection in Murine Models. Bone, 23(1), 1–7. | |
| dc.relation | Yu, Hong, Karunakaran, K. P., Jiang, X., Shen, C., Andersen, P., & Brunham, R. C.
(2012). Chlamydia muridarum T cell antigens and adjuvants that induce
protective immunity in mice. Infection and Immunity, 80(4), 1510–1518.
https://doi.org/10.1128/IAI.06338-11 | |
| dc.relation | Ziklo, N., Huston, W. M., Hocking, J. S., & Timms, P. (2016). Chlamydia trachomatis
Genital Tract Infections : When Host Immune Response and the Microbiome
Collide. Trends in Microbiology, xx. https://doi.org/10.1016/j.tim.2016.05.007 | |
| dc.rights | Reconocimiento 4.0 Internacional | |
| dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.title | Asociación de los alelos hla DRB1-DQB1 con la infección, persistencia, depuración y reinfección de Chlamydia trachomatis | |
| dc.type | Trabajo de grado - Maestría | |