dc.relation | Abbas, E. H., & Abdulla, A. S. (2003). First report of neck bending disease on date palm in Qatar. Plant Pathology, 52(6), 790. doi: 10.1111/j.1365-3059.2003.00899.x
Ahmad, P., Rasool, S., Gul, A., Sheikh, S. A., Akram, N. A., Ashraf, M., Kazi, A. M., & Gucel, S. (2016). Jasmonates: Multifunctional roles in stress tolerance. In Frontiers in Plant Science (Vol. 7, Issue JUNE2016). Frontiers Research Foundation. doi: 10.3389/fpls.2016.00813
Al-Obaidi, J. R., Hussin, S. N. I. S., Saidi, N. B., Rahmad, N., & Idris, A. S. (2017). Comparative proteomic analysis of Ganoderma species during in vitro interaction with oil palm root. Physiological and Molecular Plant Pathology, 99, 16–24. doi: 10.1016/J.PMPP.2017.02.001
Ali, M., Cheng, Z., Ahmad, H., & Hayat, S. (2018). Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ros employed by crops against verticillium dahlia wilts. Journal of Plant Interactions, 13(1), 353–363. doi: 10.1080/17429145.2018.1484188
Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339
Aoun, M. (2017). Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A review. In International Journal of Botany (Vol. 13, Issue 2, pp. 82–102). doi: 10.3923/ijb.2017.82.102
Barba, J., Orellana, F., Vallejo, G., & Manzano, R. (2010). Evaluación agronómica de híbridos interespecíficos de plama de aceite O x G (Elaeis oleífera x Elaeis guineensis) provenientes de diversos orígenes americanos y su tolerancia a la pudrición del cogollo. Palma (Ecuador), 11–15. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/6/6
Baruah, I., Baldodiya, G. M., Sahu, J., & Baruah, G. (2020). Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Current Genomics, 21(7), 491–503. doi: 10.2174/1389202921999200727213500
Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. doi: 10.1093/JXB/ERT375
Bayona-Rodríguez, C. J., Ochoa-Cadavid, I., & Romero, H. M. (2016). Impacts of the dry season on the gas exchange of oil palm (Elaeis guineensis) and interspecific hybrid (Elaeis oleífera x Elaeis guineensis) progenies under field conditions in eastern Colombia. Agronomía Colombiana, 34(3), 329–335. doi: 10.15446/AGRON.COLOMB.V34N3.55565
Bezerra-Neto, J. P., Araújo, F. C., Ferreira-Neto, J. R. C., Silva, R. L. O., Borges, A. N. C., Matos, M. K. S., Silva, J. B., Silva, M. D., Kido, E. A., & Benko-Iseppon, A. M. (2019). NBS-LRR genes-Plant health sentinels: Structure, roles, evolution and biotechnological applications. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress (pp. 63–120). Elsevier. doi: 10.1016/B978-0-12-816030-5.00004-5
Binder, B. M., Chang, C., & Schaller, G. E. (2018). Perception of Ethylene by Plants - Ethylene Receptors. In Annual Plant Reviews online (pp. 117–145). Chichester, UK: John Wiley & Sons, Ltd. doi: 10.1002/9781119312994.apr0477
Boller, T. (2018). Ethylene in pathogenesis and disease resistance. In The Plant Hormone Ethylene (pp. 293–314). doi: 10.1201/9781351075763
Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6(MAR). doi: 10.3389/fpls.2015.00170
Caudwell, R. W. (2001). Insect pollination of oil palm-time to evaluate the long-term viability and sustainability of Elaeidobius kamerunicus? In Planter (Vol. 77, Issue 901, pp. 181–190). Retrieved from https://www.cabdirect.org/cabdirect/abstract/20013107000
Cesari, S. (2018). Multiple strategies for pathogen perception by plant immune receptors. New Phytologist, 219(1), 17–24. doi: 10.1111/nph.14877
Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: Signaling and cross talk. In Molecular Aspects of Plant-Pathogen Interaction (pp. 159–184). Springer Singapore. doi: 10.1007/978-981-10-7371-7_7
Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf
Cochard, B., Adon, B., Rekima, S., Billotte, N., De Chenon, R. D., Koutou, A., Nouy, B., Omoré, A., Purba, A. R., Glazsmann, J. C., & Noyer, J. L. (2009). Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics and Genomes, 5(3), 493–504. doi: 10.1007/s11295-009-0203-3
Corley, R., & Tinker, P. (2008). The oil palm. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=NtCo1TdXuQkC&oi=fnd&pg=PR5&dq=introduction+of+oil+palm+in+america&ots=CDvHgJ2iKl&sig=CYTqjFIIBsFnsGVVnAfKhDBLiRs
De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1). doi: 10.1371/journal.pone.0191884
De Franqueville, H. (2003). Oil palm bud rot in Latin America. In Experimental Agriculture (Vol. 39, Issue 3, pp. 225–240). Cambridge University Press. doi: 10.1017/S0014479703001315
Devendrakumar, K. T., Li, X., & Zhang, Y. (2018). MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences 2018 75:16, 75(16), 2981–2989. doi: 10.1007/S00018-018-2839-3
Dey, S., & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science, 6(AUG), 28. doi: 10.3389/fpls.2015.00640
Dhillon, B., Hamelin, R. C., & Rollins, J. A. (2021). Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 22(1). doi: 10.1186/S12864-021-07644-9
Dian, N. L. H. M., Hamid, R. A., Kanagaratnam, S., Isa, W. R. A., Hassim, N. A. M., Ismail, N. H., Omar, Z., & Sahri, M. M. (2017). Palm oil and palm kernel oil: Versatile ingredients for food applications. Journal of Oil Palm Research, 29(4), 487–511. doi: 10.21894/jopr.2017.00014
Dievart, A., Gottin, C., Périn, C., Ranwez, V., & Chantret, N. (2020). Origin and Diversity of Plant Receptor-Like Kinases. Annual Review of Plant Biology, 71(1). doi: 10.1146/annurev-arplant-073019-025927
Durrant, W. E., & Dong, X. (2004). SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology, 42(1), 185–209. doi: 10.1146/annurev.phyto.42.040803.140421
Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo. 238. Retrieved from https://publicaciones.fedepalma.org/index.php/anuario/article/view/13235/13024
Fontanilla, C. A., Montoya, M. M., Ruiz, E., Sánchez, A. C., Arias, N., Guerreo, J. M., Castro, W., & Penagos, Y. (2014). Estimación de costos de manejo de la Pudrición del cogollo (PC) de la palma de aceite. Revista Palmas, 35(2), 23–37. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/10977
Forster, B. P., Sitepu, B., Setiawati, U., Kelanaputra, E. S., Nur, F., Rusfiandi, H., Rahmah, S., Ciomas, J., Anwar, Y., Bahri, S., & Caligari, P. D. S. (2017). Oil palm (Elaeis Guineensis). In Genetic Improvement of Tropical Crops (pp. 241–290). Springer International Publishing. doi: 10.1007/978-3-319-59819-2_8
Franqueville, H. De. (2001). Oil palm bud rot in Latin America: preliminary review of established facts and achievements. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=FR2019158941
Geeta, & Mishra, R. (2018). Fungal and bacterial biotrophy and necrotrophy. In Molecular Aspects of Plant-Pathogen Interaction (pp. 21–42). Springer Singapore. doi: 10.1007/978-981-10-7371-7_2
Genva, M., Obounou Akong, F., Andersson, M. X., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. In Phytochemistry Reviews (Vol. 18, Issue 1, pp. 343–358). Springer Netherlands. doi: 10.1007/s11101-018-9595-8
Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. doi: 10.1146/annurev.phyto.43.040204.135923
H Cui, K. T. J. P. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol, 66, 487–511. doi: 10.1146/annurev-arplant-050213-040012
Hafizi, R., Salleh, B., & Latiffah, Z. (2013). Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology, 44(3), 959–968. doi: 10.1590/S1517-83822013000300047
Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S., & Frazer, K. A. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10(3). doi: 10.1186/gb-2009-10-3-r32
Henders, S., Martin Persson, U., Kastner -, T., Meyfroidt, P., Carlson, K. M., Fagan, M. E., -, al, Richard Furumo, P., & Mitchell Aide, T. (2017). Characterizing commercial oil palm expansion in Latin America: land use change and trade Related content Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities Multiple pathways of commodity crop expansion in tropical forest landscapes Characterizing commercial oil palm expansion in Latin America: land use change and trade. Iopscience.Iop.Org. doi: 10.1088/1748-9326/aa5892
Henschel, R., Nista, P. M., Lieber, M., Haas, B. J., Wu, L. S., & Leduc, R. D. (2012). Trinity RNA-Seq assembler performance optimization. ACM International Conference Proceeding Series. doi: 10.1145/2335755.2335842
Hickman, R., Van Verk, M. C., Van Dijken, A. J. H., Mendes, M. P., Vroegop-Vos, I. A., Caarls, L., Steenbergen, M., Van der Nagel, I., Wesselink, G. J., Jironkin, A., Talbot, A., Rhodes, J., De Vries, M., Schuurink, R. C., Denby, K., Pieterse, C. M. J., & Van Wees, S. C. M. (2017). Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell, 29(9), 2086–2105. doi: 10.1105/tpc.16.00958
Hormaza, P., Fuquen, E. M., & Romero, H. M. (2012). Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. In Scientia Agricola (Vol. 69, Issue 4, pp. 275–280). doi: 10.1590/S0103-90162012000400007
Huang, W., Wang, Y., Li, X., & Zhang, Y. (2019). Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant. doi: 10.1016/J.MOLP.2019.12.008
Huang, X. F., Bi, C. Y., Shi, Y. Y., Hu, Y. Z., Zhou, L. X., Liang, C. X., Huang, B. F., Xu, M., Lin, S. Q., & Chen, X. Y. (2020). Discovery and analysis of NBS-LRR gene family in sweet potato genome. Acta Agronomica Sinica(China), 46(8), 1195–1207. doi: 10.3724/SP.J.1006.2020.94163
Ikeda, K., Park, P., & Nakayashiki, H. (2019). Cell biology in phytopathogenic fungi during host infection: commonalities and differences. In Journal of General Plant Pathology (Vol. 85, Issue 3, pp. 163–173). Springer Tokyo. doi: 10.1007/s10327-019-00846-w
Imran, Q., Biotechnology, B. Y.-J. of C. S. and, & 2020, undefined. (2020). Pathogen-induced Defense Strategies in Plants. Springer, 23(2), 97–105. doi: 10.1007/s12892-019-0352-0
Ithnin, M., & Kushairi, A. (2020). The Oil Palm Genome (M. Ithnin & A. Kushairi (eds.)). Cham: Springer International Publishing. doi: 10.1007/978-3-030-22549-0
J Bigeard, J. C. H. H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 8(4), 521–539. doi: 10.1016/j.molp.2014.12.022
Jawhar, M., Al-daoude, A., Shoaib, A., Mycopath, E. A.-S.-, & 2018, U. (2018). Differential gene behavior in barley plants challenged with biotrophic and necrotrophic pathogens. MYCOPATH, 15(1). Retrieved from http://111.68.103.26/journals/index.php/mycopath/article/view/1308
Jose, J., Ghantasala, S., & Choudhury, S. R. (2020). Arabidopsis transmembrane receptor-like kinases (RLKS): A bridge between extracellular signal and intracellular regulatory machinery. In International Journal of Molecular Sciences (Vol. 21, Issue 11, pp. 1–29). doi: 10.3390/ijms21114000
Kachroo, A., & Kachroo, P. (2009). Fatty acid-derived signals in plant dfense. Annual Review of Phytopathology, 47, 153–176. doi: 10.1146/ANNUREV-PHYTO-080508-081820
Kanwar, P., & Jha, G. (2018). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta 2018 249:2, 249(2), 305–318. doi: 10.1007/S00425-018-3018-3
Khatiwada, D., Palmén, C., Silveira, S., & Palm, C. (2018). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Taylor & Francis, 12(2), 135–147. doi: 10.1080/17597269.2018.1461520
Kourelis, J., Malik, S., Mattinson, O., Krauter, S., Kahlon, P. S., Paulus, J. K., & Hoorn, R. A. L. van der. (2020). Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nature Communications 2020 11:1, 11(1), 1–15. doi: 10.1038/s41467-020-18069-5
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T., & Schumacher, K. (2018). Advances and current challenges in calcium signaling. In New Phytologist (Vol. 218, Issue 2, pp. 414–431). Blackwell Publishing Ltd. doi: 10.1111/nph.14966
Lai, O., Tan, C., & Akoh, C. (2015a). Palm oil: production, processing, characterization, and uses. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=6uRxCgAAQBAJ&oi=fnd&pg=PP1&dq=oil+palm+uses&ots=Xy2AKT_47t&sig=FEbqshXU3fG4GCTRQQbJXlXkBP4
Lai, O., Tan, C., & Akoh, C. (2015b). Palm oil: production, processing, characterization, and uses. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=6uRxCgAAQBAJ&oi=fnd&pg=PP1&dq=introduction+of+oil+palm+in+malaysia&ots=XzWCGY-beo&sig=Z-k-9r_u1YVli0ejoItFdWptDxo
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923
Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic Acid Biosynthesis in Plants. Frontiers in Plant Science, 11, 338. doi: 10.3389/FPLS.2020.00338
Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN
Lim, G. H., Singhal, R., Kachroo, A., & Kachroo, P. (2017). Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. In Annual Review of Phytopathology (Vol. 55, pp. 505–536). Annu Rev Phytopathol. doi: 10.1146/annurev-phyto-080516-035406
Lui, S., Luo, C., Zhu, L., Sha, R., Qu, S., Cai, B., & Wang, S. (2017). Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). Journal of Plant Biology, 60(2), 215–230. doi: 10.1007/s12374-016-0577-3
MADR. (2020). Cadena de palma de aceite, indicadores e instrumentos. Lecturas de Economia, 1–25. Retrieved from https://sioc.minagricultura.gov.co/Palma/Documentos/2020-03-30 Cifras Sectoriales.pdf
Malike, F. A., Amiruddin, M. D., Yaakub, Z., Marjuni, M., Abdullah, N., Abu Bakar, N. A., Mustaffa, S., Mohamad, M. M., Hassan, M. Y., Abdullah, M. O., Ghulam Kadir, A. P., & Din, A. K. (2019). Oil palm (Elaeis spp.) breeding in Malaysia. In Advances in Plant Breeding Strategies: Industrial and Food Crops (Vol. 6, pp. 489–535). Springer International Publishing. doi: 10.1007/978-3-030-23265-8_13
Martínez, G. (2010). Pudrición del cogollo, Marchitez sorpresiva, Anillo rojo y Marchitez letal en la palma de aceite en América. In PALMAS (Vol. 31, Issue 1). Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/1471
Mattoo, A. K., & White, W. B. (2018). Regulation of Ethylene Biosynthesis. The Plant Hormone Ethylene, 21–42. doi: 10.1201/9781351075763-2/REGULATION-ETHYLENE-BIOSYNTHESIS-AUTAR-MATTOO-BRUCE-WHITE
Meerow, A. W., Krueger, R. R., Singh, R., Low, E. T. L., Ithnin, M., & Ooi, L. C. L. (2012). Coconut, date, and oil palm genomics. In Genomics of Tree Crops (Vol. 9781461409205, pp. 299–351). Springer New York. doi: 10.1007/978-1-4614-0920-5_10
Meng, X., & Zhang, S. (2013). MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51(1), 245–266. doi: 10.1146/annurev-phyto-082712-102314
Mithöfer, A., Ebel, J., & Felle, H. H. (2007). Cation Fluxes Cause Plasma Membrane Depolarization Involved in β-Glucan Elicitor-Signaling in Soybean Roots. Http://Dx.Doi.Org/10.1094/MPMI-18-0983, 18(9), 983–990. doi: 10.1094/MPMI-18-0983
Montoya, M. M., Díaz, C. A. F., Zúñiga, E., Escobar, G., Cadena, Y., León, N., & Velasco, C. (2017). Una experiencia de coordinación de acciones para enfrentar la Pudrición del cogollo: costos asociados a su manejo curativo. Revista Palmas, 38(2), 51–62. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/12124
Mousavi-Derazmahalleh, M., Chang, S., Thomas, G., Derbyshire, M., Bayer, P. E., Edwards, D., Nelson, M. N., Erskine, W., Lopez-Ruiz, F. J., Clements, J., & Hane, J. K. (2019). Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics, 20(1). doi: 10.1186/s12864-019-5774-2
MUJICA GRANADOS, C. (2010). EVOLUCIÓN DEL SECTOR PALMICULTOR CAROLINA MUJICA GRANADOS BUCARAMANGA 2010 CONTENIDO.
Müller, M., & Munné-Bosch, S. (2015). Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology, 169(1), 32–41. doi: 10.1104/pp.15.00677
Nambiappan, B., Ismail, A., Hashim, N., Ismail, N., Shahari, D. N., Idris, N. A. N., Omar, N., Salleh, K. M., Hassan, N. A. M., & Kushairi, A. (2018). Malaysia: 100 years of resilient palm oil economic performance. In Journal of Oil Palm Research (Vol. 30, Issue 1, pp. 13–25). doi: 10.21894/jopr.2018.0014
Nelson, J. W., Sklenar, J., Barnes, A. P., & Minnier, J. (2017). The START App: A web-based RNAseq analysis and visualization resource. Bioinformatics, 33(3), 447–449. doi: 10.1093/bioinformatics/btw624
Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers. The Plant Pathology Journal, 35(1), 19. doi: 10.5423/PPJ.OA.02.2018.0034
Pardey, Á. E. B. (2019). Impact of Defoliating Insects on Oil Palm Production in Colombia. In Revista Palmas (Vol. 40, Issue 4). Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/12948
Pattyn, J., Vaughan‐Hirsch, J., Phytologist, B. V. de P.-N., & 2021, undefined. (2021). The regulation of ethylene biosynthesis: A complex multilevel control circuitry. Wiley Online Library, 229(2), 770–782. doi: 10.1111/nph.16873
Petit, Y., Blaise, F., Plissonneau, C., Rouxel, T., Balesdent, M.-H., Blondeau, K., Noureddine, L., Gallay, I., Moigne, T. Le, Tilbeurgh, H. van, & Fudal, I. (2017). Structural and functional characterization of Leptosphaeria maculans effectors: the example of AvrLm4-7. P;231. Retrieved from https://hal.archives-ouvertes.fr/hal-01530816
Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8, 150. doi: 10.3389/fpls.2017.00150
Pilet-Nayel, M. L., Moury, B., Caffier, V., Montarry, J., Kerlan, M. C., Fournet, S., Durel, C. E., & Delourme, R. (2017). Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. In Frontiers in Plant Science (Vol. 8, p. 27). Frontiers Media S.A. doi: 10.3389/fpls.2017.01838
Ponnamma, K., Sajeebkhan, A., & Vijayan, A. (2006). Adverse factors affecting the population of pollinating weevil, Elaeidobius kamerunicus F. and fruit set on oil palm in India. Planter, 82, 555–557. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20063220849
Purnama, K. O., Setyaningsih, D., Hambali, E., & Taniwiryono, D. (2020). Processing, Characteristics, and Potential Application of Red Palm Oil-a review. International Journal of Oil Palm, 3(2), 40–55. doi: 10.35876/ijop.v3i2.47
R.N. Warwick, D., & E.M. Passos, E. (2009). Outbreak of stem bleeding in coconuts caused by Thielaviopsis paradoxa in Sergipe, Brazil. Tropical Plant Pathology, 34(3), 175–177. doi: 10.1590/s1982-56762009000300007
Rival, A., Beule, T., Barre, P., Hamon, S., Duval, Y., & Noirot, M. (1997). Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis jacq) tissue cultures and seed-derived plants. Plant Cell Reports, 16(12), 884–887. doi: 10.1007/s002990050339
Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317–343. doi: 10.1146/annurev-phyto-073009-114447
Ruiz, E., Tovar, J. P., Ospina, C., Rojas, L., Hernández, D., Rosero, G., Hernández, M., Rubiano, M., Suesca, F., Verdugo, J., & Mosquera, M. (2020). Costos de control de la Marchitez letal en plantaciones colombianas localizadas en la región del Bajo Upía. Palmas, 41(3), 38–52. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/13230
Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. In Fungal Genetics and Biology (Vol. 110, pp. 1–9). Academic Press Inc. doi: 10.1016/j.fgb.2017.12.003
Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B., & Chen, J. Q. (2019). Revisiting the Origin of Plant NBS-LRR Genes. In Trends in Plant Science (Vol. 24, Issue 1, pp. 9–12). Elsevier Ltd. doi: 10.1016/j.tplants.2018.10.015
Shen, Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., Xing, G., & Zheng, W. (2017). The early response during the interaction of fungal phytopathogen and host plant. In Open Biology (Vol. 7, Issue 5). Royal Society of London. doi: 10.1098/rsob.170057
Silva, C. da, Macambira, L., … É. M.-R. B., & 2016, undefined. (n.d.). Spatial distribution red ring (Bursaphelenchus cocophilus) and resinose (Thielaviopsis paradoxa) in coconut plantations. Cabdirect.Org. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20173164943
Spanu, P. D., & Panstruga, R. (2017). Editorial: Biotrophic plant-microbe interactions. In Frontiers in Plant Science (Vol. 8). Frontiers Research Foundation. doi: 10.3389/fpls.2017.00192
Suleman, P., Al-Musallam, A., & Menezes, C. A. (2001). Incidence and severity of black scorch on date palms in Kuwait. Kuwait Journal of Science and Engineering, 28(1), 160–169. Retrieved from https://www.researchgate.net/publication/294761747_Incidence_and_severity_of_black_scorch_on_date_palms_in_Kuwait
Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. In Crop Protection (Vol. 101, pp. 58–67). Elsevier Ltd. doi: 10.1016/j.cropro.2017.07.010
Tameling, W. I. L., & Joosten, M. H. a. J. (2007). The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 71(4–6), 126–134. doi: 10.1016/j.pmpp.2007.12.006
Tan, Y.-C., Wong, M.-Y., & Ho, C.-L. (2015). Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32. Plant Physiology and Biochemistry : PPB, 96, 296–300. doi: 10.1016/j.plaphy.2015.08.014
Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell, 29(4), 618–637. doi: 10.1105/TPC.16.00891
Teo, T. (2015). Effectiveness of the oil palm pollinating weevil, Elaeidobius kamerunicus, in Malaysia. Retrieved from http://eprints.utar.edu.my/1987/1/Effectiveness_of_the_oil_palm_pollinating_weevil,_Elaeidobius_kamerunicus,_in_Malaysia_-_T.M._Teo.pdf
Terauchi, R., Fujisaki, K., Shimizu, M., Oikawa, K., Takeda, T., Takagi, H., Abe, A., Okuyama, Y., Yoshida, K., & Saitoh, H. (2019). Using genomics tools to understand plant resistance against pathogens: A case study of Magnaporthe-rice interactions. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress (pp. 181–188). Elsevier. doi: 10.1016/B978-0-12-816030-5.00008-2
Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Am Phytopath Society, 106(4), 320–329. doi: 10.1094/PHYTO-09-15-0243-RVW
USDA. (2020). Palm Oil Explorer. Palm Oil 2020: Ranked by Production. Retrieved from https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000
Van Der Hoorn, R. A. L., & Kamoun, S. (2008). From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell, 20(8), 2009–2017. doi: 10.1105/tpc.108.060194
Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47(1), 177–206. doi: 10.1146/annurev.phyto.050908.135202
Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune signaling: Advancing on two frontiers. In Journal of Integrative Plant Biology (Vol. 62, Issue 1, pp. 2–24). Blackwell Publishing Ltd. doi: 10.1111/jipb.12898
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. In European Journal of Agronomy (Vol. 83, pp. 57–77). Elsevier B.V. doi: 10.1016/j.eja.2016.11.002
Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., & Wang, C. (2019). The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. In Frontiers in Plant Science (Vol. 10, p. 1349). Frontiers Media S.A. doi: 10.3389/fpls.2019.01349
Yousefi, M., Mohd Rafie, A. S., Abd Aziz, S., Azrad, S., & ABD Razak, A. binti. (2020). Introduction of current pollination techniques and factors affecting pollination effectiveness by Elaeidobius kamerunicus in oil palm plantations on regional and global scale: A review. South African Journal of Botany, 132, 171–179. doi: 10.1016/J.SAJB.2020.04.017
Zahan, K., & Kano, M. (2018). Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies, 11(8), 2132. doi: 10.3390/en11082132
Zdyb, A., Salgado, M. G., Demchenko, K. N., Brenner, W. G., Płaszczyca, M., Stumpe, M., Herrfurth, C., Feussner, I., & Pawlowski, K. (2018). Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS ONE, 13(1), e0190884. doi: 10.1371/journal.pone.0190884
Zhang, M., Su, J., Zhang, Y., Xu, J., & Zhang, S. (2018). Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. In Current Opinion in Plant Biology (Vol. 45, pp. 1–10). Elsevier Ltd. doi: 10.1016/j.pbi.2018.04.012
Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29–36. doi: 10.1016/J.PBI.2019.02.004
Zhao, J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany, 66(7), 1721–1736. Retrieved from http://dx.doi.org/10.1093/jxb/eru540
Zhou, Y., Xiong, Q., Yin, C. C., Ma, B., Chen, S. Y., & Zhang, J. S. (2020). Ethylene Biosynthesis, Signaling, and Crosstalk with Other Hormones in Rice. Small Methods, 4(8). doi: 10.1002/SMTD.201900278
Abbas, E. H., & Abdulla, A. S. (2003). First report of neck bending disease on date palm in Qatar. Plant Pathology, 52(6), 790. doi: 10.1111/j.1365-3059.2003.00899.x
Abdullah, S. K., Asensio, L., Monfort, E., Gomez-Vidal, S., Salinas, J., Lorca, L. V. L., & Jansson, H. B. (2009). Incidence of the two date palm pathogens, thielaviopsis paradoxa and T. Punctulata in soil from date palm plantations in Elx, south-east Spain. Journal of Plant Protection Research, 49(3), 276–279. doi: 10.2478/v10045-009-0043-z
Al-Onazi, M., Al-Dahain, S., El-Ansary, A., & Marraiki, N. (2011). Isolation and characterization of Thielaviopsis paradoxa L-alanine dehydrogenase. Asian Journal of Applied Sciences, 4(7), 702–711. doi: 10.3923/AJAPS.2011.702.711
Al-Rokibah Y., Abdalla A. (1998). Effect of water salinity on Thielaviopsis paradoxa and growth of date palm seedlings. Journal of King Saud University, Agricultural Sciences. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19981009764
Arafat, K. H., Mohamad, A. M., & Elsharabasy, S. (2012). Biological Control of Date Palm Root Rots Disease Using Egyptian Isolates of Streptomycetes. Research Journal of Agriculture and Biological Sciences, 8(2), 224–230.
Ayala, L., & Gómez, P. L. (2000). Patogenicidad de aislamientos de Thielaviopsis paradoxa principal agente causal de la pudrición de cogollo. Palmas, 21(Edición Especial-tomo I), 121–122. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/772
Broadley, R., Wassman, R., & Sinclair, E. (1993). Pineapple pests and disorders. Undefined.
Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf
Costa Carvalho, R., Souza, P., & S Carvalho Filho, J. L. (2011). 139-739-1-ED. 7. Retrieved from www.scientiaplena.org.br043101-1
Dade, H. A. (1928). Ceratostomella paradoxa, the perfect stage of Thielaviopsis paradoxa (de Seynes) von Höhnel. Transactions of the British Mycological Society, 13(3–4), 184-IN7. doi: 10.1016/s0007-1536(28)80017-9
El-Deeb, H. M., Lashin, S. M., & Arab, Y. A. (2007). Distribution and pathogenesis of date palm fungi in Egypt. Acta Horticulturae, 736, 421–429. doi: 10.17660/ActaHortic.2007.736.39
Elliott, M. L. (2009). Thielaviopsis Trunk Rot of Palm 1. Disease Management, 1–5. Retrieved from http://edis.ifas.ufl.edu.
Farrag, E. S. H., & Abo-Elyousr, K. A. (2011). Occurrence of some fungal diseases on date palm trees in upper Egypt and its control. Plant Pathology Journal, 10(4), 154–160. doi: 10.3923/PPJ.2011.154.160
Garofalo, J. F., & McMillan, R. T. (2004). Thielaviopsis diseases of palms. Proceedings of the Florida State Horticultural Society, 117, 324–325. Retrieved from https://pdfs.semanticscholar.org/57e9/49aecc2f67ef1a5ee7af0b7301260246bf0d.pdf
Giri, P., Taj, G., & Kumar, A. (2013). Effect of quadratic residue diffuser (QRD) microwave energy on root-lesion nematode, Prathlenchus penetrans. African Journal of Biotechnology, 12(18), 2471–2477. doi: 10.4314/ajb.v12i18
Hewajulige, I. G. N., & Wijesundera, R. L. C. (2014). Thielaviopsis paradoxa, Thielaviopsis basicola (Black Rot, Black Root Rot). In Postharvest Decay: Control Strategies (pp. 287–308). doi: 10.1016/B978-0-12-411552-1.00009-0
Holtz, B. A., & Weinhold, A. R. (1994). Thielaviopsis basicola in San Joaquin Valley soils and the relationship between inoculum density and disease severity of cotton seedlings. Plant Disease, 78(10), 986–990. doi: 10.1094/PD-78-0986
Hood, M. E., & Shew, H. D. (1997). Initial cellular interactions between Thielaviopsis basicola and tobacco root hairs. Phytopathology, 87(3), 228–235. doi: 10.1094/PHYTO.1997.87.3.228
Karampour, F., & Pejman, H. (2007). Study on possible influence of Pathogenic fungi on date bunch fading disorder in Iran. Acta Horticulturae, 736, 431–439. doi: 10.17660/ActaHortic.2007.736.40
Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J., & Turner, S. W. (2010). Real-time DNA sequencing from single polymerase molecules. Methods in Enzymology, 472, 431–455. doi: 10.1126/science.1162986
Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN
Liu, G., Kennedy, R., Greenshields, D. L., Peng, G., Forseille, L., Selvaraj, G., & Wei, Y. (2007). Detached and Attached Arabidopsis Leaf Assays Reveal Distinctive Defense Responses Against Hemibiotrophic Colletotrichum spp. Molecular Plant-Microbe Interactions MPMI, 20(10), 1308–1319. doi: 10.1094/MPMI
Mendoza-Rodríguez, M., Mendoza-Rodríguez, M., Jiménez, E., Maier, F., Shäfer, W., Leiva-Mora, M., Acosta-Suárez, M., & Alvarado-Capó, Y. (2005). Empleo de la tinción anilina azul-KOH en el estudio de la interacción banano-Mycosphaerella fijiensis Morelet. Biotecnología Vegetal, 5(1). Retrieved from https://revista.ibp.co.cu/index.php/BV/article/view/441
Mycobank. (n.d.). Retrieved from https://www.mycobank.org/
Parra, D., Morillo, F., Guerra, J., Sánchez, P., & Pineda, J. (2003). Presencia de Thielaviopsis paradoxa De Seynes Höhn en el tubo digestivo de Rhynchophorus palmarum Linneo (Coleoptera: Curculionidae). Entomotropica, 18(1), 49–55. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=640008
Paterson, R. R. M., Sariah, M., & Lima, N. (2013). How will climate change affect oil palm fungal diseases? Crop Protection, 46, 113–120. doi: 10.1016/j.cropro.2012.12.023
Paulin-Mahady, A. E., Harrington, T. C., & McNew, D. (2002). Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia, 94(1), 62–72. doi: 10.1080/15572536.2003.11833249
Ploetz RC. (2003). Diseases of tropical fruit crops. In Diseases of tropical fruit crops. doi: 10.1079/9780851993904.0000
Polizzi, G., Castello, I., Aiello, D., & Vitale, A. (2007). First report of stem bleeding and trunk rot of kentia palm caused by Thielaviopsis paradoxa in Italy. In Plant Disease (Vol. 91, Issue 8, p. 1057). doi: 10.1094/PDIS-91-8
Polizzi, G., Castello, I., Vitale, A., Catara, V., & Tamburino, V. (2006). First report of Thielaviopsis trunk rot of date palm in Italy. Plant Disease, 90(7), 972. doi: 10.1094/PD-90-0972C
Punja, Z. K. (2004). Virulence of Chalara elegans on bean leaves, and host-tissue responses to infection. Canadian Journal of Plant Pathology, 26(1), 52–62. doi: 10.1080/07060660409507112
R.N. Warwick, D., & E.M. Passos, E. (2009). Outbreak of stem bleeding in coconuts caused by Thielaviopsis paradoxa in Sergipe, Brazil. Tropical Plant Pathology, 34(3), 175–177. doi: 10.1590/s1982-56762009000300007
Rodríguez, J., Vélez, D., Sarria, G. A., Torres, G. A., Noreña, C., Navia, M., Romero, H. M., Varón, F., & Martínez, G. (2009). Identificación Morfológica, Molecular Y Patogénica De Los Microorganismos Asociados A La Pudrición Del Cogollo De La Palma De Aceite En Colombia*. Fitopatología Colombiana, 33(2), 49–56.
Sánchez, V., Rebolledo, O., Picaso, R. M., Cárdenas, E., Córdova, J., González, O., & Samuels, G. J. (2007). In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia, 163(1), 49–58. doi: 10.1007/s11046-006-0085-y
Soytong, K., & Jitkasemsuk, S. (2001). First Report of Thielaviopsis paradoxa Causing Fruit Rot on Sala ( Salacca edulis ) in Thailand. Plant Disease, 85(2), 230–230. doi: 10.1094/pdis.2001.85.2.230c
Suleman, P., Al-Musallam, A., & Menezes, C. A. (2001). Incidence and severity of black scorch on date palms in Kuwait. Kuwait Journal of Science and Engineering, 28(1), 160–169. Retrieved from https://www.researchgate.net/publication/294761747_Incidence_and_severity_of_black_scorch_on_date_palms_in_Kuwait
Suwandi, Akino, S., & Kondo, N. (2012). Common spear rot of oil palm in Indonesia. Plant Disease, 96(4), 537–543. doi: 10.1094/PDIS-08-10-0569
Tang, Q. H., Niu, X. Q., Yu, F. Y., Zhu, H., Song, W. W., & Qin, W. Q. (2014). First report of Pindo palm heart rot caused by Ceratocystis paradoxa in China. Plant Disease, 98(9), 1282. doi: 10.1094/PDIS-04-14-0395-PDN
Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Am Phytopath Society, 106(4), 320–329. doi: 10.1094/PHYTO-09-15-0243-RVW
Yu, F. Y., Niu, X. Q., Tang, Q. H., Zhu, H., Song, W. W., Qin, W. Q., & Zhang, S. X. (2016). First report of trunk rot caused by Ceratocystis paradoxa on triangle palm (Dypsis decaryi) in Hainan, China. Plant Disease, 100(8). doi: 10.1094/PDIS-12-15-1496-PDN
YY Molan, RS Al-Obeed, MM Harhash, S. E.-H. (2004). Molan: Decline of date-palm offshoots with Chalara... - Google Académico. Journal of the King Saud University. Retrieved from https://scholar.google.com/scholar_lookup?title=Decline of date palm offshoots infected with Chalara paradoxa in Riyadh region&journal=Journal of the King Saud University
Zaid A., Wet PF., Djerbi M., O. A. (2002). Chapter XII Diseases and Pests of Date Palm. In A. Zaid & E. Arias-Jimenez (Ed.), FAO Date palm cultivation (pp. 227–281). FAO Plant Production and Protection. Retrieved from http://www.fao.org/3/Y4360E/y4360e0g.htm
Ali, M., Cheng, Z., Ahmad, H., & Hayat, S. (2018). Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ros employed by crops against verticillium dahlia wilts. Journal of Plant Interactions, 13(1), 353–363. doi: 10.1080/17429145.2018.1484188
Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 29–37.
Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339
Aoun, M. (2017). Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A review. In International Journal of Botany (Vol. 13, Issue 2, pp. 82–102). doi: 10.3923/ijb.2017.82.102
Astorkia, M., Hernandez, M., Bocs, S., de Armentia, E. L., Herran, A., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2019). Association mapping between candidate gene SNP and production and oil quality traits in interspecific oil palm hybrids. Plants, 8(10). doi: 10.3390/plants8100377
Astorkia, M., Hernández, M., Bocs, S., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2020). Detection of significant SNP associated with production and oil quality traits in interspecific oil palm hybrids using RARSeq. Plant Science, 291. doi: 10.1016/j.plantsci.2019.110366
Ayala, L., & Gómez, P. L. (2000). Patogenicidad de aislamientos de Thielaviopsis paradoxa principal agente causal de la pudrición de cogollo. Palmas, 21(Edición Especial-tomo I), 121–122. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/772
Bahari, M. N. A., Sakeh, N. M., Abdullah, S. N. A., Ramli, R. R., & Kadkhodaei, S. (2018). Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biology, 18(1), 377. doi: 10.1186/s12870-018-1594-9
Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. doi: 10.1093/JXB/ERT375
Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. doi: 10.1128/EC.00192-12
Blows, F. M., Driver, K. E., Schmidt, M. K., Broeks, A., van Leeuwen, F. E., Wesseling, J., Cheang, M. C., Gelmon, K., Nielsen, T. O., Blomqvist, C., Heikkilä, P., Heikkinen, T., Nevanlinna, H., Akslen, L. a, Bégin, L. R., Foulkes, W. D., Couch, F. J., Wang, X., Cafourek, V., … Huntsman, D. (2010). Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Medicine, 7(5), e1000279. doi: 10.1371/journal.pmed.1000279
Brown, N. A., Schrevens, S., Van Dijck, P., & Goldman, G. H. (2018). Fungal G-protein-coupled receptors: Mediators of pathogenesis and targets for disease control. In Nature Microbiology (Vol. 3, Issue 4, pp. 402–414). Nature Publishing Group. doi: 10.1038/s41564-018-0127-5
Butchko, R. A. E., Brown, D. W., Busman, M., Tudzynski, B., & Wiemann, P. (2012). Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genetics and Biology, 49(8), 602–612. doi: 10.1016/j.fgb.2012.06.003
Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6(MAR). doi: 10.3389/fpls.2015.00170
Cai, H., Yang, S., Yan, Y., Xiao, Z., Cheng, J., Wu, J., Qiu, A., Lai, Y., Mou, S., Guan, D., Huang, R., & He, S. (2015). CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers hightemperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 66(11), 3163–3174. doi: 10.1093/jxb/erv125
Chanclud, E., & Morel, J. B. (2016). Plant hormones: a fungal point of view. In Molecular plant pathology (Vol. 17, Issue 8, pp. 1289–1297). Blackwell Publishing Ltd. doi: 10.1111/mpp.12393
Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: Signaling and cross talk. In Molecular Aspects of Plant-Pathogen Interaction (pp. 159–184). Springer Singapore. doi: 10.1007/978-981-10-7371-7_7
Chen, L.-H., Tsai, H.-C., Yu, P.-L., & Chung, K.-R. (2017). A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLOS ONE, 12(1), e0169103. doi: 10.1371/journal.pone.0169103
Chen, W., Lee, M.-K., Jefcoate, C., Kim, S.-C., Chen, F., & Yu, J.-H. (2014). Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biology and Evolution, 6(7), 1620–1634. doi: 10.1093/gbe/evu132
Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf
Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1). doi: 10.1038/s41598-017-17248-7
Clemente, M., Corigliano, M. G., Pariani, S. A., Sánchez-López, E. F., Sander, V. A., & Ramos-Duarte, V. A. (2019). Plant serine protease inhibitors: Biotechnology application in agriculture and molecular farming. In International Journal of Molecular Sciences (Vol. 20, Issue 6, p. 1345). MDPI AG. doi: 10.3390/ijms20061345
Conesa, A., & Stefan, G. (2009). Blast2GO Tutorial. June.
Costa-Silva, J., Domingues, D., & Lopes, F. M. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. In PLoS ONE (Vol. 12, Issue 12). Public Library of Science. doi: 10.1371/journal.pone.0190152
Del Sorbo, G., Schoonbeek, H. J., & De Waard, M. A. (2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. In Fungal Genetics and Biology (Vol. 30, Issue 1, pp. 1–15). doi: 10.1006/fgbi.2000.1206
Devendrakumar, K. T., Li, X., & Zhang, Y. (2018). MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences 2018 75:16, 75(16), 2981–2989. doi: 10.1007/S00018-018-2839-3
Dey, S., & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science, 6(AUG), 28. doi: 10.3389/fpls.2015.00640
Dhillon, B., Hamelin, R. C., & Rollins, J. A. (2021). Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 22(1). doi: 10.1186/S12864-021-07644-9
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. doi: 10.1093/bioinformatics/bts635
Dobin, A., & Gingeras, T. R. (2015). Mapping RNA-seq Reads with STAR. Current Protocols in Bioinformatics. doi: 10.1002/0471250953.bi1114s51
Dobin, A., & Gingeras, T. R. (2016). Optimizing RNA-seq mapping with STAR. In Methods in Molecular Biology. doi: 10.1007/978-1-4939-3572-7_13
Dröge-Laser, W., Snoek, B. L., Snel, B., & Weiste, C. (2018). The Arabidopsis bZIP transcription factor family — an update. In Current Opinion in Plant Biology (Vol. 45, pp. 36–49). Elsevier Ltd. doi: 10.1016/j.pbi.2018.05.001
Duitama, J., Quintero, J. C., Cruz, D. F., Quintero, C., Hubmann, G., Foulquié-Moreno, M. R., Verstrepen, K. J., Thevelein, J. M., & Tohme, J. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 42(6). doi: 10.1093/NAR/GKT1381
Gao, F.-Y., Li, L., Wang, J.-Y., Wang, Y.-L., & Sun, G.-C. (2017). The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi. Yi Chuan = Hereditas, 39(10), 908–917. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29070486
Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469–477. doi: 10.1038/nmeth.1613
Geeta, & Mishra, R. (2018). Fungal and bacterial biotrophy and necrotrophy. In Molecular Aspects of Plant-Pathogen Interaction (pp. 21–42). Springer Singapore. doi: 10.1007/978-981-10-7371-7_2
Genva, M., Obounou Akong, F., Andersson, M. X., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. In Phytochemistry Reviews (Vol. 18, Issue 1, pp. 343–358). Springer Netherlands. doi: 10.1007/s11101-018-9595-8
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. a, Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. doi: 10.1038/nbt.1883
Harimoto, Y., Tanaka, T., Kodama, M., Yamamoto, M., Otani, H., & Tsuge, T. (2008). Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity. Journal of General Plant Pathology, 74(3), 222–229. doi: 10.1007/s10327-008-0089-1
Henschel, R., Nista, P. M., Lieber, M., Haas, B. J., Wu, L. S., & Leduc, R. D. (2012). Trinity RNA-Seq assembler performance optimization. ACM International Conference Proceeding Series. doi: 10.1145/2335755.2335842
Ho, C.-L., & Tan, Y.-C. (2015). Molecular defense response of oil palm to Ganoderma infection. Phytochemistry, 114, 168–177. doi: 10.1016/j.phytochem.2014.10.016
Ho, C. L., Tan, Y. C., Yeoh, K. A., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2016). De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics, 17(1), 1–19. doi: 10.1186/s12864-016-2368-0
Ho, C. L., Tan, Y. C., Yeoh, K. A., Lee, W. K., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2019). Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees - Structure and Function, 33(3), 943–950. doi: 10.1007/S00468-019-01830-9
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9(9), 868–877. doi: 10.1101/gr.9.9.868
Ikeda, K., Park, P., & Nakayashiki, H. (2019). Cell biology in phytopathogenic fungi during host infection: commonalities and differences. In Journal of General Plant Pathology (Vol. 85, Issue 3, pp. 163–173). Springer Tokyo. doi: 10.1007/s10327-019-00846-w
Jiang, C., Zhang, X., Liu, H., & Xu, J. R. (2018). Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathogens, 14(3). doi: 10.1371/journal.ppat.1006875
Kim, Y., Park, S. Y., Kim, D., Choi, J., Lee, Y. H., Lee, J. H., & Choi, W. (2013). Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics, 101(6), 354–361. doi: 10.1016/j.ygeno.2013.04.003
Kochman, K. (2014). Superfamily of G-protein coupled receptors (GPCRs) - Extraordinary and outstanding success of evolution. In Postepy Higieny i Medycyny Doswiadczalnej (Vol. 68, pp. 1225–1237). Polska Akademia Nauk. doi: 10.5604/17322693.1127326
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T., & Schumacher, K. (2018). Advances and current challenges in calcium signaling. In New Phytologist (Vol. 218, Issue 2, pp. 414–431). Blackwell Publishing Ltd. doi: 10.1111/nph.14966
Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V., & Pareek, N. (2018). Chitinases—Potential candidates for enhanced plant resistance towards fungal pathogens. In Agriculture (Switzerland) (Vol. 8, Issue 7). doi: 10.3390/agriculture8070088
Kumar, V., Joshi, S. G., Bell, A. A., & Rathore, K. S. (2013). Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Research, 22(2), 359–368. doi: 10.1007/s11248-012-9652-9
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923
Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 1–16. doi: 10.1186/1471-2105-12-323
Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN
Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178–2189. doi: 10.1101/gr.1224503
Licatalosi, D. D., & Darnell, R. B. (2010). RNA processing and its regulation: global insights into biological networks. Nature Reviews. Genetics, 11(1), 75–87. doi: 10.1038/nrg2673
Liu, D., Jiao, S., Cheng, G., Li, X., Pei, Z., Pei, Y., Yin, H., & Du, Y. (2018). Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules, 111, 1083–1090. doi: 10.1016/j.ijbiomac.2018.01.113
Lui, S., Luo, C., Zhu, L., Sha, R., Qu, S., Cai, B., & Wang, S. (2017). Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). Journal of Plant Biology, 60(2), 215–230. doi: 10.1007/s12374-016-0577-3
Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19(10), 1127–1137. doi: 10.1094/MPMI-19-1127
Mi, H., & Thomas, P. (2009). PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods in Molecular Biology (Clifton, N.J.), 563, 123–140. doi: 10.1007/978-1-60761-175-2_7
Milani, N. A., Lawrence, D. P., Elizabeth Arnold, A., & Van Etten, H. D. (2012). Origin of pisatin demethylase (PDA) in the genus Fusarium. Fungal Genetics and Biology, 49(11), 933–942. doi: 10.1016/j.fgb.2012.08.007
Mithöfer, A., Ebel, J., & Felle, H. H. (2007). Cation Fluxes Cause Plasma Membrane Depolarization Involved in β-Glucan Elicitor-Signaling in Soybean Roots. Http://Dx.Doi.Org/10.1094/MPMI-18-0983, 18(9), 983–990. doi: 10.1094/MPMI-18-0983
Mousavi-Derazmahalleh, M., Chang, S., Thomas, G., Derbyshire, M., Bayer, P. E., Edwards, D., Nelson, M. N., Erskine, W., Lopez-Ruiz, F. J., Clements, J., & Hane, J. K. (2019). Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics, 20(1). doi: 10.1186/s12864-019-5774-2
Nelson, J. W., Sklenar, J., Barnes, A. P., & Minnier, J. (2017). The START App: A web-based RNAseq analysis and visualization resource. Bioinformatics, 33(3), 447–449. doi: 10.1093/bioinformatics/btw624
Noman, A., Liu, Z., Aqeel, M., Zainab, M., Khan, M. I., Hussain, A., Ashraf, M. F., Li, X., Weng, Y., & He, S. (2017). Basic leucine zipper domain transcription factors: the vanguards in plant immunity. In Biotechnology Letters (Vol. 39, Issue 12, pp. 1779–1791). Springer Netherlands. doi: 10.1007/s10529-017-2431-1
Nusaibah, S. A., Siti Nor Akmar, A., Idris, A. S., Sariah, M., & Mohamad Pauzi, Z. (2016). Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiology and Biochemistry : PPB, 109, 156–165. doi: 10.1016/j.plaphy.2016.09.014
O’Keeffe, K. R., & Jones, C. D. (2019). Challenges and solutions for analysing dual RNA-seq data for non-model host–pathogen systems. Methods in Ecology and Evolution, 10(3), 401–414. doi: 10.1111/2041-210X.13135
Pandey, Dinesh, Rajendran, S. R. C. K., Gaur, M., Sajeesh, P. K., & Kumar, A. (2016). Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 35(4), 1159–1174. doi: 10.1007/s00344-016-9600-7
Parisi, K., Shafee, T. M. A., Quimbar, P., van der Weerden, N. L., Bleackley, M. R., & Anderson, M. A. (2019). The evolution, function and mechanisms of action for plant defensins. Seminars in Cell and Developmental Biology, 88, 107–118.
Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., & Quackenbush, J. (2003). TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5), 651–652. doi: 10.1093/bioinformatics/btg034
Petit-Houdenot, Y., & Fudal, I. (2017). Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. Frontiers in Plant Science, 8, 1072. doi: 10.3389/FPLS.2017.01072
Pfaffl, M. W. (2004). Quantification strategies in real-time PCR.
Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8, 150. doi: 10.3389/fpls.2017.00150
Pontual, E., Breitenbach, L. C., & Coelho, B. (2013). Protease inhibitors from plants: Biotechnological insights with emphasis on their effects on microbial pathogens. Retrieved from https://www.researchgate.net/publication/275772079
Qiu, Y.-Q. (2013). KEGG Pathway Database. In Encyclopedia of Systems Biology (pp. 1068–1069). Springer New York. doi: 10.1007/978-1-4419-9863-7_472
Quoc, N. B., & Bao Chau, N. N. (2016). The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae. Current Protein & Peptide Science, 18(10). doi: 10.2174/1389203717666160813164955
Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., & Mahdieh, N. (2016). Next generation sequencing: implications in personalized medicine and pharmacogenomics. Molecular BioSystems, 12(6), 1818–1830. doi: 10.1039/c6mb00115g
Rafiqi, M., Bernoux, M., Ellis, J. G., & Dodds, P. N. (2009). In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Seminars in Cell & Developmental Biology, 20(9), 1017–1024. doi: 10.1016/j.semcdb.2009.04.010
Richa, K., Tiwari, I. M., Devanna, B. N., Botella, J. R., Sharma, V., & Sharma, T. R. (2017). Novel chitinase gene LOC_Os11g47510 from indica rice tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Frontiers in Plant Science, 8. doi: 10.3389/fpls.2017.00596
Rodríguez, J., Vélez, D., Sarria, G. A., Torres, G. A., Noreña, C., Navia, M., Romero, H. M., Varón, F., & Martínez, G. (2009). IDENTIFICACIÓN MORFOLÓGICA, MOLECULAR Y PATOGÉNICA DE LOS MICROORGANISMOS ASOCIADOS A LA PUDRICIÓN DEL COGOLLO DE LA PALMA DE ACEITE EN COLOMBIA*. Fitopatología Colombiana, 33(2), 49–56.
Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1–9. doi: 10.1016/j.fgb.2017.12.003
Sephton-Clark, P. C. S., & Voelz, K. (2018). Spore Germination of Pathogenic Filamentous Fungi. In Advances in Applied Microbiology (Vol. 102, pp. 117–157). Academic Press Inc. doi: 10.1016/bs.aambs.2017.10.002
Seyednasrollah, F., Laiho, A., & Elo, L. L. (2015). Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in Bioinformatics, 16(1), 59–70. doi: 10.1093/bib/bbt086
Shen, Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., Xing, G., & Zheng, W. (2017). The early response during the interaction of fungal phytopathogen and host plant. In Open Biology (Vol. 7, Issue 5). Royal Society of London. doi: 10.1098/rsob.170057
Sher Khan, R., Iqbal, A., Malak, R., Shehryar, K., Attia, S., Ahmed, T., Ali Khan, M., Arif, M., & Mii, M. (2019). Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech, 9(5). doi: 10.1007/S13205-019-1725-5
Shi, H., Wang, X., Ye, T., Chen, F., Deng, J., Yang, P., Zhang, Y., & Chan, Z. (2014). The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. Plant Physiology, 165(3), 1367–1379. doi: 10.1104/pp.114.242404
Skamnioti, P., Furlong, R. F., & Gurr, S. J. (2008). Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization. New Phytologist, 180(3), 711–721. doi: 10.1111/j.1469-8137.2008.02598.x
Stotz, H. U., Thomson, J. G., & Wang, Y. (2009). Plant defensins: defense, development and application. In Plant signaling & behavior (Vol. 4, Issue 11, pp. 1010–1012). Taylor & Francis. doi: 10.4161/psb.4.11.9755
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011a). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6(7). doi: 10.1371/journal.pone.0021800
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011b). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLOS ONE, 6(7), e21800. doi: 10.1371/JOURNAL.PONE.0021800
Takao, K., Akagi, Y., Tsuge, T., Harimoto, Y., Yamamoto, M., & Kodama, M. (2016). The global regulator LaeA controls biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. Journal of General Plant Pathology, 82(3), 121–131. doi: 10.1007/s10327-016-0656-9
Tan, Y.-C., Ang, C.-L., Wong, M.-Y., & Ho, C.-L. (2016). Oil Palm Defensin: A Thermal Stable Peptide that Restricts the Mycelial Growth of Ganoderma boninense. Protein & Peptide Letters, 23(11), 994–1002. doi: 10.2174/0929866523666161006103855
Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell, 29(4), 618–637. doi: 10.1105/TPC.16.00891
Tarazona, S., García, F., Ferrer, A., Dopazo, J., & Conesa, A. (2012). NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet.Journal, 17(B), 18. doi: 10.14806/ej.17.b.265
Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. doi: 10.1093/BIOINFORMATICS/BTZ275
Tugizimana, F., Steenkamp, P. A., Piater, L. A., & Dubery, I. A. (2014). Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS ONE, 9(1), e87846. doi: 10.1371/journal.pone.0087846
Urban, M., Bhargava, T., & Hamer, J. E. (1999). An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. In The EMBO Journal (Vol. 18, Issue 3).
Visentin, I., Montis, V., Döll, K., Alabouvette, C., Tamietti, G., Karlovsky, P., & Cardinale, F. (2012). Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen fusarium verticillioides. Eukaryotic Cell, 11(3), 252–259. doi: 10.1128/EC.05159-11
Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune signaling: Advancing on two frontiers. In Journal of Integrative Plant Biology (Vol. 62, Issue 1, pp. 2–24). Blackwell Publishing Ltd. doi: 10.1111/jipb.12898
Wu, D., Oide, S., Zhang, N., Choi, M. Y., & Turgeon, B. G. (2012). ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathogens, 8(2), e1002542. doi: 10.1371/journal.ppat.1002542
Wu, Q., & VanEtten, H. D. (2004). Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Molecular Plant-Microbe Interactions, 17(7), 798–804. doi: 10.1094/MPMI.2004.17.7.798
Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., & Wang, C. (2019). The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. In Frontiers in Plant Science (Vol. 10, p. 1349). Frontiers Media S.A. doi: 10.3389/fpls.2019.01349
Yeoh, K. A., Othman, A., Meon, S., Abdullah, F., & Ho, C. L. (2012). Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection. Journal of Plant Physiology, 169(15), 1565–1570. doi: 10.1016/j.jplph.2012.07.006
Zdyb, A., Salgado, M. G., Demchenko, K. N., Brenner, W. G., Płaszczyca, M., Stumpe, M., Herrfurth, C., Feussner, I., & Pawlowski, K. (2018). Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS ONE, 13(1), e0190884. doi: 10.1371/journal.pone.0190884
Zhang, X., Abrahan, C., Colquhoun, T. A., & Liu, C. J. (2017). A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in arabidopsis. Plant Cell, 29(5), 1157–1174. doi: 10.1105/tpc.16.00855
Zhong, C.-L., Zhang, C., & Liu, J.-Z. (2019). Heterotrimeric G protein signaling in plant immunity. Journal of Experimental Botany, 70(4), 1109–1118. doi: 10.1093/jxb/ery426
Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339
Astorkia, M., Hernandez, M., Bocs, S., de Armentia, E. L., Herran, A., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2019). Association mapping between candidate gene SNP and production and oil quality traits in interspecific oil palm hybrids. Plants, 8(10). doi: 10.3390/plants8100377
Astorkia, M., Hernández, M., Bocs, S., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2020). Detection of significant SNP associated with production and oil quality traits in interspecific oil palm hybrids using RARSeq. Plant Science, 291. doi: 10.1016/j.plantsci.2019.110366
Chen, L.-H., Tsai, H.-C., Yu, P.-L., & Chung, K.-R. (2017). A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLOS ONE, 12(1), e0169103. doi: 10.1371/journal.pone.0169103
Chen, W., Lee, M.-K., Jefcoate, C., Kim, S.-C., Chen, F., & Yu, J.-H. (2014). Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biology and Evolution, 6(7), 1620–1634. doi: 10.1093/gbe/evu132
Kim, Y., Park, S. Y., Kim, D., Choi, J., Lee, Y. H., Lee, J. H., & Choi, W. (2013). Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics, 101(6), 354–361. doi: 10.1016/j.ygeno.2013.04.003
Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19(10), 1127–1137. doi: 10.1094/MPMI-19-1127
Pandey, D., Rajendran, S. R. C. K., Gaur, M., Sajeesh, P. K., & Kumar, A. (2016). Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 35(4), 1159–1174. doi: 10.1007/s00344-016-9600-7 | |