dc.contributor | Ramirez Patiño, Juan Fernando | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (GIBIR) | |
dc.creator | Isaza López, Jesica Andrea | |
dc.date.accessioned | 2020-06-03T16:51:14Z | |
dc.date.accessioned | 2022-09-21T15:19:45Z | |
dc.date.available | 2020-06-03T16:51:14Z | |
dc.date.available | 2022-09-21T15:19:45Z | |
dc.date.created | 2020-06-03T16:51:14Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77605 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3378537 | |
dc.description.abstract | Identification of the mechanical behavior of the skin is important in the clinical, cosmetic, ergonomic, and others fields. The wide range of properties reported in the literature limits the identification of constitutive equations that should be applied in complex numerical models or for the identification of disease progress or treatment efficacy. Being a multilayer material, the behavior of the skin, depends on the thickness of its layers and the properties of each of them.
Initially, the most appropriate technique for the measurement of the layers is identified, between biopsy, OCT, US, MRI and CLSM. The measurement of the main layers (cutis and hypodermis) is reliably measured by MRI for 32 patients between 18 and 54 years old. The percentage of the cutis corresponding to the epidermis (6%) is established by comparison with histological images. MRI images are taken under indentation conditions to measure the deformation of the layers. Additionally, an indentation system was developed to obtain the force vs. displacement curves for 24 patients. Finally, computational models (monolayer and multilayer) are developed with reconstructed MRI geometry, the properties of the skin are optimized by comparing experimental and computational curves. Neo Hookean and Ogden properties were found using iFEM, which define the multilayer tissue.
In conclusion, a regression analysis allows to predict the mechanical behavior of the multilayer tissue (skin) from the thickness and mechanical properties of the layers. Additioonaly, the constitive equation coefficients for Ogden model can be predicted by some population and experimental parameters, which allow the equation to be used in subsequent numerical models. | |
dc.description.abstract | La identificación del comportamiento mecánico de la piel es importante en el campo clínico, cosmético, ergonómico, entre otros. El amplio rango de propiedades reportadas en la literatura limita la identificación de ecuaciones constitutivas que deben aplicarse en modelos numéricos complejos o como base para la identificación de progreso de enfermedades o eficacia de tratamientos. Al tratarse de un material multicapa, el comportamiento del conjunto (piel), depende del espesor de sus capas y las propiedades de cada una de ellas., Inicialmente se identifica la técnica más adecuada para la medición de las capas, entre biopsia, OCT, US, MRI y CLSM. Se reliaza la medición de las capas principales (cutis e hipodermis) mediante MRI de 32 pacientes entre 18 y 54 años y se establece el porcentaje de la cutis que corresponde a la epidermis (6%), mediante comparación con imágenes histológicas. También se toman imágenes de MRI en condiciones de indentación para medir la deformación de las capas. Adicionalmente, se desarrolló un sistema de indentación que permite obtener las curvas de fuerza vs. desplazamiento para 24 de los pacientes. Finalmente, se desarrollan modelos computacionales (monocapa y multicapa) con las geometrías reconstruidas de MRI y se optimizan las propiedades del conjunto mediante comparación de curvas experimentales con las computacionales. Se encontraron mediante iFEM propiedades Neo Hookean y Ogden, que definen aproximadamente al conjunto multicapa., En conclusión, un análisis de regresión permite predecir el comportamiento mecánico del conjunto multicapa (piel) a partir del espesor de las capas que lo componen y las respectivas propiedades mecánicas de las mismas. A su vez, pueden predecirse los coeficientes de la ecuación constitutiva de Ogden mediante ciertos parámetros poblacionales y experimentales, que permiten usar la ecuación en posteriores modelos numéricos. | |
dc.language | spa | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | |
dc.publisher | Departamento de Materiales y Minerales | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | J.-M. Schwartz, M. Denninger, D. Rancourt, C. Moisan, and D. Laurendeau, “Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation,” Med. Image Anal., vol. 9, no. 2, pp. 103–112, Jun. 2005. | |
dc.relation | P. A. Forbes, D. S. Cronin, and Y. C. Deng, “Multi-scale human body model to predict side impact thoracic trauma,” Int. J. Crashworthiness, vol. 11, no. 3, pp. 203–216, 2006. | |
dc.relation | M. Kaneko, C. Toya, and M. Okajima, “Active Strobe Imager for Visualizing Dynamic Behavior of Tumors,” in 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 3009–3014. | |
dc.relation | K. Rome, “Mechanical properties of the heel pad: current theory and review of the literature,” Foot, vol. 8, no. 4, pp. 179–185, Dec. 1998. | |
dc.relation | A. Sayed, G. Layne, J. Abraham, and O. Mukdadi, “Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo,” Ultrasonics, vol. 53, no. 5, pp. 979–991, Jul. 2013. | |
dc.relation | W. M. Saltzman, Biomedical engineering: bridging medicine and technology. Cambridge University Press, 2009. | |
dc.relation | F. M. Hendriks, D. Brokken, J. T. W. M. van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, and J. B. a. M. Horsten, “A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin,” Ski. Res. Technol., vol. 9, no. 3, pp. 274–283, 2003. | |
dc.relation | H. Schmidt et al., “Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus,” Clin. Biomech., vol. 21, no. 4, pp. 337–344, May 2006 | |
dc.relation | C. Pailler-Mattei, S. Bec, and H. Zahouani, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Med. Eng. Phys., vol. 30, no. 5, pp. 599–606, Jun. 2008.. | |
dc.relation | A. Samani and D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast tissue samples,” Phys. Med. Biol., vol. 49, no. 18, pp. 4395–4405, Sep. 2004. | |
dc.relation | A. Samani and D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast T. Kaster, I. Sack, and A. Samani, “Measurement of the hyperelastic properties of ex vivo brain tissue slices,” J. Biomech., vol. 44, no. 6, pp. 1158–1163, Apr. 2011. | |
dc.relation | M. Kauer, “Inverse finite element characterization of soft tissues with aspiration experiments,” Federal Institute of Technology, Zürich, 2001. | |
dc.relation | M. Farshad, M. Barbezat, P. Flüeler, F. Schmidlin, P. Graber, and P. Niederer, “Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma,” J. Biomech., vol. 32, no. 4, pp. 417–425, Apr. 1999 | |
dc.relation | A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis,” J. Biomech., vol. 39, no. 9, pp. 1603–1610, 2006. | |
dc.relation | R. B. Groves, S. A. Coulman, J. C. Birchall, and S. L. Evans, “Quantifying the mechanical properties of human skin to optimise future microneedle device design,” Comput. Methods Biomech. Biomed. Engin., vol. 15, no. 1, pp. 73–82, 2012 | |
dc.relation | D. L. Bader and P. Bowker, “Mechanical characteristics of skin and underlying tissues in vivo,” Biomaterials, vol. 4, no. 4, pp. 305–308, Oct. 1983. | |
dc.relation | D. Josell, D. van Heerden, D. Shechtman, and D. Read, “Mechanical properties of multilayer materials,” Nanostructured Mater., vol. 12, no. 1–4, pp. 405–408, Jan. 1999 | |
dc.relation | F. M. Hendriks, “Mechanical behaviour of human epidermal and dermal layers in vivo,” Technische Universiteit Eindhoven, 2005.. | |
dc.relation | Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat., vol. 24, no. 3–4, pp. 183–189, Jan. 2002. | |
dc.relation | J. C. Barbenel and J. H. Evans, “The Time-Dependent Mechanical Properties of Skin,” J. Invest. Dermatol., vol. 69, no. 3, pp. 318–320, Sep. 1977. | |
dc.relation | J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol., vol. 83, no. 6, pp. 410–413, 2003. | |
dc.relation | A. B. Cua, K.-P. Wilhelm, and H. I. Maibach, “Elastic properties of human skin: relation to age, sex, and anatomical region,” Arch. Dermatol. Res., vol. 282, no. 5, pp. 283–288, Aug. 1990 | |
dc.relation | L. S. Chan, “Human skin basement membrane in health and in autoimmune diseases.,” Front. Biosci., vol. 2, pp. d343-52, Jul. 1997.. | |
dc.relation | R. Drake, A. W. Vogl, and A. W. M. Mitchell, Gray’s Anatomy for Students. Elsevier Health Sciences, 2009. | |
dc.relation | F. M. Hendriks, D. Brokken, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens, “The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments,” Med. Eng. Phys., vol. 28, no. 3, pp. 259–266, Apr. 2006. | |
dc.relation | . Shuster, M. M. Black, and E. McVitie, “The influence of age and sex on skin thickness, skin collagen and density,” Br. J. Dermatol., vol. 93, no. 6, pp. 639–643, Dec. 1975 | |
dc.relation | ST. Tadokoro et al., “Mechanisms of Skin Tanning in Different Racial/Ethnic Groups in Response to Ultraviolet Radiation,” J. Invest. Dermatol., vol. 124, no. 6, pp. 1326–1332, Jun. 2005. | |
dc.relation | J. J. O’Hagan and A. Samani, “Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.,” Phys. Med. Biol., vol. 54, no. 8, pp. 2557–2569, Apr. 2009. | |
dc.relation | M. J. J. Kerns, M. A. Darst, T. G. Olsen, M. Fenster, P. Hall, and S. Grevey, “Shrinkage of cutaneous specimens: formalin or other factors involved?,” J. Cutan. Pathol., vol. 35, no. 12, pp. 1093–1096, Dec. 2008. | |
dc.relation | K.-P. Wilhelm, Bioengineering of the Skin : Skin Imaging and Analysis. New York: Informa Healthcare, 2006. | |
dc.relation | I. Ahnlide and M. Bjellerup, “Accuracy of Clinical Skin Tumour Diagnosis in a Dermatological Setting,” Acta Derm. Venereol., vol. 93, no. 3, pp. 305–308, May 2013. | |
dc.relation | H. J. Lee, K. R. Lee, J. Y. Park, M. S. Yoon, and S. E. Lee, “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin,” J. Dermatolog. Treat., vol. 26, no. 1, pp. 73–77, 2015. | |
dc.relation | P. Agache and S. Diridollou, “Subcutis Metrology,” in Agache’s Measuring the Skin, Cham: Springer International Publishing, 2017, pp. 669–682. | |
dc.relation | A. Mandava, P. R. Ravuri, and R. Konathan, “High-resolution ultrasound imaging of cutaneous lesions.,” Indian J. Radiol. Imaging, vol. 23, no. 3, pp. 269–77, Jul. 2013. | |
dc.relation | H. Alexander and D. L. Miller, “Determining Skin Thickness with Pulsed Ultra Sound,” J. Invest. Dermatol., vol. 72, no. 1, pp. 17–19, 1979. | |
dc.relation | J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device.,” Med. Eng. Phys., vol. 33, no. 10, pp. 1245–53, Dec. 2011 | |
dc.relation | S. Diridollou et al., “In vivo model of the mechanical properties of the human skin under suction,” Ski. Res. Technol., vol. 6, no. 4, pp. 214–221, 2000. | |
dc.relation | J. Welzel, “Optical coherence tomography in dermatology : a review,” Ski. Res. Technol., vol. 7, pp. 1–9, 2001 | |
dc.relation | Y. Pan, E. Lankenou, J. Welzel, R. Birngruber, and R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 4, pp. 1029–1034, 1996. | |
dc.relation | T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site.,” J. Dermatol. Sci., vol. 44, no. 3, pp. 145–52, Dec. 2006. | |
dc.relation | S. Richard et al., “Characterization of the Skin In Vivo by High Resolution Magnetic Resonance Imaging: Water Behavior and Age-Related Effects,” J. Invest. Dermatol., vol. 100, no. 5, pp. 705–709, May 1993. | |
dc.relation | D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, “Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography,” Phys. Med. Biol., vol. 45, no. 6, pp. 1591–1610, 2000. | |
dc.relation | P. Corcuff, G. Gonnord, G. E. Piérard, and J. L. Lévěque, “In vivo confocal microscopy of human skin: A new design for cosmetology and dermatology,” Scanning, vol. 18, no. 5, pp. 351–355, Dec. 2006. | |
dc.relation | S. Maas and J. Weiss, FEBio User’s Manual, Version 1. Utah: Musculoskeletal Research Laboratories Department of Bioengineering, and Scientific Computing and Imaging Institute University of Utah, 2007. | |
dc.relation | M. Moreno, C. Plazaola, G. González, M. Zambrano, and C. Spadafora, “Revisión de Modelos Hiperelásticos utilizados en Tejidos,” KnE Eng., vol. 3, no. 1, p. 100, 2018. | |
dc.relation | B. B. Aaron and J. M. Gosline, “Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers,” Biopolymers, vol. 20, no. 6, pp. 1247–1260, Jun. 1981 | |
dc.relation | T. Nemoto, R. Kubota, Y. Murasawa, and Z. Isogai, “Viscoelastic Properties of the Human Dermis and Other Connective Tissues and Its Relevance to Tissue Aging and Aging–Related Disease,” in Viscoelasticity-From Theory to Biological Applications, 2012, pp. 157–170. | |
dc.relation | G. Boyer, H. Zahouani, A. Le Bot, L. Laquièze, and L. Laquieze, “In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation.,” in Conference of the IEEE EMBS, 2007, no. 2, pp. 4584–4587. | |
dc.relation | C. Then, B. Stassen, K. Depta, and G. Silber, “New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo,” J. Mech. Behav. Biomed. Mater., vol. 71, pp. 68–79, Jul. 2017. | |
dc.relation | J. Kim and M. A. Srinivasan, “Characterization of Viscoelastic Soft Tissue Properties from In Vivo Animal Experiments and Inverse FE Parameter Estimation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, | |
dc.relation | R. Sanders, “Torsional elasticity of human skin in vivo,” Pflügers Arch., vol. 342, no. 3, pp. 255–260, Sep. 1973. | |
dc.relation | A. Ní Annaidh et al., “Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin,” Ann. Biomed. Eng., vol. 40, no. 8, pp. 1666–1678, 2012. | |
dc.relation | M. Hrapko et al., “The influence of test conditions on characterization of the mechanical properties of brain tissue.,” J. Biomech. Eng., vol. 130, no. 3, pp. 31003–31010, Jun. 2008 | |
dc.relation | E. M. Arruda and M. C. Boyce, “A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials,” J. Mech. Phys. Solids, vol. 41, no. 2, pp. 389–412, Feb. 1993. | |
dc.relation | R. Grahame and P. J. L. Holt, “The Influence of Ageing on the in vivo Elasticity of Human Skin,” Gerontology, vol. 15, no. 2–3, pp. 121–139, Jul. 1969. | |
dc.relation | M. A. F. Kendall, Y.-F. Chong, and A. Cock, “The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery,” Biomaterials, vol. 28, no. 33, pp. 4968–4977, Nov. 2007 | |
dc.relation | A. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett., vol. 89, no. 18, p. 181902, Oct. 2006. | |
dc.relation | J. de Rigal, C. Escoffier, B. Querleux, B. Faivre, P. Agache, and J.-L. Leveque, “Assessment of Aging of the Human Skin by In Vivo Ultrasonic Imaging.,” J. Invest. Dermatol., vol. 93, no. 5, pp. 621–625, Nov. 1989. | |
dc.relation | L. W. Marks and T. N. Gardner, “The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence,” J. Biomed. Eng., vol. 15, no. 6, pp. 474–476, Nov. 1993. | |
dc.relation | M. Viceconti, C. Zannoni, D. Testi, and A. Cappello, “CT data sets surface extraction for biomechanical modeling of long bones,” Comput. Methods Programs Biomed., vol. 59, pp. 159–166, Jun. 1999. | |
dc.relation | Minitab, “Regresión múltiple,” in Informe Técnico sobre el Asistente de MINITAB, 2017, p. 16. | |
dc.relation | R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today, vol. 14, no. 3, pp. 96–105, 2011. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Comportamiento mecánico de la piel en función del espesor de las capas que la componen | |
dc.type | Otros | |