dc.contributorBarrera Cubillos, Gloria Patricia
dc.contributorPatarroyo Gutierrez, Manuel Alfonso
dc.contributorControl biológico de insectos plaga
dc.creatorLovera Sotelo, Yuli Andrea
dc.date.accessioned2020-07-20T17:05:19Z
dc.date.available2020-07-20T17:05:19Z
dc.date.created2020-07-20T17:05:19Z
dc.date.issued2020-05-22
dc.identifierLovera, A. (2020). Estudio del efecto de quitinasas recombinantes como potenciadoras de la actividad insecticida de un aislamiento de Beauveria bassiana para el control de Diatraea sacharalis. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77800
dc.description.abstractLas quitinasas son enzimas hidrolíticas provenientes de diferentes fuentes biológicas. En virus y hongos entomopatógenos, las quitinasas han sido reportadas como importantes factores de virulencia que cortan la estructura de la quitina presente en las dos principales barreras de protección de los insectos: la cutícula y la matriz peritrófica del intestino medio. Con el fin de estudiar el efecto de quitinasas recombinantes en la actividad insecticida de Beauveria bassiana sobre larvas de Diatraea saccharalis, en este trabajo se clonaron y expresaron en E. coli los marcos abiertos de lectura que codifican para las quitinasas Chit37 y Chit2A provenientes de los aislamientos colombianos Bv062 de B. bassiana y VG008 del granulovirus de Spodoptera frugiperda, respectivamente. La quitinasa fúngica recombinante (rChit37) purificada a partir de la fracción soluble del cultivo de células BL21-DE3, presentó actividad quitinolítica dual de tipo quitobiosidasa y endoquitinasa (EC 3.2.2.14) bajo condiciones óptimas de 45°C y pH 5.0. La rChit37 purificada potenció la actividad insecticida de B. bassiana sobre larvas de segundo instar de D. saccharalis; cuando se adicionó a una concentración de 300 µg/mL en una suspensión de 1x106 conidios/mL, se evidenció una reducción de 46% y 68% en los tiempos letales (TL50 y TL90) y un incremento de la eficacia en 61%. La proteína viral recombinante (rChit2A) presentó un dominio de unión a quitina en su secuencia, sin embargo, no se observó dominio catalítico, lo que se corroboró con la ausencia de actividad enzimática. Los hallazgos de este trabajo proveen una prueba concepto inicial para el estudio de quitinasas recombinantes en el desarrollo de futuras estrategias de potenciación de hongos entomopatógenos con potencial en el control biológico.
dc.description.abstractChitinases are hydrolytic enzymes from different biological sources. In viruses and entomopathogenic fungi, chitinases have been reported as important virulence factors that cleave the chitin structure present in the two main protective barriers of insects: the cuticle and the peritrophic matrix of the midgut. In the present work, the open reading frames encoding chitinases Chit37 and Chit2A in the Colombian isolates Bv062 and VG008 of B. bassiana and the granulovirus of Spodoptera frugiperda, respectively, were cloned and expressed in E. coli to study the effect of recombinant chitinases on the insecticidal activity of Beauveria bassiana on larvae of Diatraea saccharalis. The recombinant fungal chitinase (rChit37) purified from the soluble fraction of the BL21-DE3 cell culture, displayed dual chitinolytic activity of the quitobiosidase and endochitinase types (EC 3.2.2.14) under optimal conditions of 45°C and pH 5.0. The purified rChit37 enhanced the insecticidal activity of B. bassiana on second instar larvae of D. saccharalis; a reduction of 46% and 68% in lethal times (TL50 and TL90) and an increase in efficacy by 61% was observed when added at a 300 μg/mL concentration in a suspension of 1x106 conidia/mL. The recombinant viral protein (rChit2A) showed a chitin binding domain in its sequence, however, no catalytic domain was observed, which was in agreement with the lack of enzymatic activity. The findings of this work provide an initial proof of concept for the study of recombinant chitinases in the development of future strategies of entomopathogenic fungal enhancement for biological control.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAcevedo, J. P. M., Samuels, R. I., Machado, I. R., & Dolinski, C. (2007). Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology, 96(2), 187–192. https://doi.org/10.1016/j.jip.2007.04.003
dc.relationAdams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150(7), 2029–2035. https://doi.org/10.1099/mic.0.26980-0
dc.relationAday, O. de la C., Barroso, F., & Izquierdo, L. N. (2003). Estimación de pérdidas causadas por Diatraea saccharalis (Fab.), en la provincia de Villa Clara, Cuba. Centro Agricola, 30(1), 37–40.
dc.relationAli, S., Ren, S., & Huang, Z. (2014). Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect. Journal of Basic Microbiology, 54, 1148–1159. https://doi.org/10.1002/jobm.201300813
dc.relationAltschul, S., Gish, W., Miller, W., & Lipman, D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.
dc.relationAlves, S. B., Rossi, L. S., Lopes, R. B., Tamai, M. A., & Pereira, R. M. (2002). Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). Journal of Invertebrate Pathology, 81(2), 70–77. https://doi.org/10.1016/S0022-2011(02)00147-7
dc.relationAndersen, S. O. (2009). Cuticle. In R. Vincent. H & C. Ring. T (Eds.), Enciylopedia of insects (Second edi, pp. 245–246). Academic Press. https://doi.org/10.1016/B978-0-12-374144-8.00073-4
dc.relationArcas, J., Dıaz, B., & Lecuona, R. (1999). Bioinsecticidal activity of conidia and dry mycelium preparations of two isolates of Beauveria bassiana against the sugarcane borer Diatraea saccharalis. Journal of Biotechnology, 67, 151–158.
dc.relationArdila, J. (2015). AMTEC liderando el control biologico del barrenador del tallo. Arroz, 63(515), 18–25.
dc.relationAronson, N. N., Halloran, B. A., Alexyev, M. F., Amable, L., Madura, J. D., Pasupulati, L., … Van Roey, P. (2003). Family 18 chitinase–oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochemical Journal, 376(1), 87–95. https://doi.org/10.1042/bj20030273
dc.relationBerini, F., Caccia, S., Franzetti, E., Congiu, T., Marinelli, F., & Tettamanti, G. (2016). Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, 72, 980–989. https://doi.org/10.1002/ps.4078
dc.relationBerini, F., Katz, C., Gruzdev, N., Casartelli, M., Tettamanti, G., & Marinelli, F. (2018). Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2018.01.002
dc.relationBerini, F., Presti, I., Beltrametti, F., Pedroli, M., Vårum, K. M., Pollegioni, L., … Marinelli, F. (2017). Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microbial Cell Factories, 16(1), 1–15. https://doi.org/10.1186/s12934-017-0634-8
dc.relationBerkmen, M. (2012). Production of disulfide-bonded proteins in Escherichia coli. Protein Expression and Purification, 82(1), 240–251. https://doi.org/10.1016/j.pep.2011.10.009
dc.relationBidochka, M J, Tong, K. I., & Khachatourians, G. G. (1993). Partial purification and characterization of two extracellular N-acetyl-D-glucosaminidases produced by the entomopathogenic fungus Beauveria bassiana. Canadian Journal of Microbiology, 39(1), 40–45. https://doi.org/10.1139/m93-006
dc.relationBidochka, Michael J., & Khachatourians, G. G. (1991). The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology, 58(1), 106–117. https://doi.org/10.1016/0022-2011(91)90168-P
dc.relationBoer, H., Simolin, H., Cottaz, S., Söderlund, H., & Koivula, A. (2007). Heterologous expression and site-directed mutagenesis studies of two Trichoderma harzianum chitinases, Chit33 and Chit42, in Escherichia coli. Protein Expression and Purification, 51(2), 216–226. https://doi.org/10.1016/j.pep.2006.07.020
dc.relationBoldo, J. T., Junges, A., do Amaral, K. B., Staats, C. C., Vainstein, M. H., & Schrank, A. (2009). Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Current Genetics, 55(5), 551–560. https://doi.org/10.1007/s00294-009-0267-5
dc.relationBoomsma, J. J., Jensen, A. B., Meyling, N. V., & Eilenberg, J. (2014). Evolutionary Interaction Networks of Insect Pathogenic Fungi. Annual Review of Entomology, 59(1), 467–485. https://doi.org/10.1146/annurev-ento-011613-162054
dc.relationBusby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural analysis of Chi1 chitinase from Yen-Tc: The multisubunit insecticidal ABC toxin complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018
dc.relationBustillo, A. (2013). Insectos Plaga y Organismos Benéficos del Cultivo de la Caña de Azúcar en Colombia. Cali, Colombia: Cenicaña. Retrieved from www.cenicana.org
dc.relationButt, T. M., Coates, C. J., Dubovskiy, I. M., & Ratcliffe, N. A. (2016). Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. Advances in Genetics, 94, 307–364. https://doi.org/10.1016/bs.adgen.2016.01.006
dc.relationCañedo, V., & Ames, T. (2004). Manual de laboratorio para el manejo de hongos entomopatogenos. Lima, Perú: Centro internacional de la papa.
dc.relationCapinera, J. L. (2001). Sugarcane Borer , Diatraea saccharalis (Fabricius) (Insecta : Lepidoptera : Pyralidae) (No. EENY217). Florida.
dc.relationCardona, L.F & Soto, A. (2015). Susceptibilidad de Diatraea saccharalis (f) (lePidoPtera: Crambidae) a diferentes hongos entomopatógenos en Caña Panelera. Boletín Científico Centro De Museos. Museo De Historia Natural. Universidad De Caldas, 19(2), 95–103. Retrieved from http://www.scielo.org.co/pdf/bccm/v19n2/v19n2a06.pdf
dc.relationCastro, B., Riley, T., Leonard, R., & Baldwin, J. (2004). Borers Galore : Emerging Pests in Louisiana Corn , Grain Sorghum and Rice. Louisiana Agriculture, 47(1), 4–7.
dc.relationCastro, R., Álvarez, A., Machado, E., Mendoza, M., Gomez, R., & García, P. (2011). Caracterización de una quitinasa extracelular producida por Serratia sp. BIOMI-363706 usando quitina coloidal como sustrato. Revista de La Sociedad Química Del Perú, 77, 101–108. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2011000200002&nrm=iso
dc.relationCorrea, F., Silva, C. L. T., Pelosi, A. P., Almeida, A. C. S., Heinrichs, E. A., Barrigossi, J. A. F., & Jesus, F. G. (2017). Resistance in 27 rice cultivars to sugarcane borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 111(1), 422–427. https://doi.org/10.1093/jee/tox291
dc.relationCotes, A. M., & Villamizar, L. (2003). Efecto de las condiciones de cultivo sobre parámetros del modo de acción de Metarhizium anisopliae. Revista Colombiana de Entomología, 29(2), 121–126.
dc.relationCuartas, P., Barrera, G., Belaich, M., Barreto, E., Ghiringhelli, P., & Villamizar, L. (2015). The Complete Sequence of the First Spodoptera frugiperda Betabaculovirus Genome: A Natural Multiple Recombinant Virus. Viruses, 7, 394–421. https://doi.org/10.3390/v7010394
dc.relationCuartas, P., Barrera, G., Gómez, J., Barreto, E., & Villamizar, L. (n.d.). Synergistic effect of nucleopolyhedrovirus and granulovirus mixtures for controlling Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Pest Management Science.
dc.relationCuevas, A. (2010). El barrenador del tallo: otro insecto favorecido por factores climáticos. Boletin informativo de la federación nacional de arroz FEDEARROZ (Vol. N° 239). Bogotá.
dc.relationDaimon, T., Katsuma, S., Kang, W. K., & Shimada, T. (2007). Functional characterization of chitinase from Cydia pomonella granulovirus. Archives of Virology, 152(9), 1655–1664. https://doi.org/10.1007/s00705-007-1000-7
dc.relationDaimon, Takaaki, Katsuma, S., Kang, W. K., & Shimada, T. (2006). Comparative studies of Bombyx mori nucleopolyhedrovirus chitinase and its host ortholog, BmChi-h. Biochemical and Biophysical Research Communications, 345(2), 825–833. https://doi.org/10.1016/j.bbrc.2006.04.112
dc.relationDanişmazoğlu, M., Demir, İ., Sezen, K., Muratoğlu, H., & Nalçacioğlu, R. (2015). Cloning and expression of chitinase A, B, and C (chiA, chiB, chiC) genes from Serratia marcescens originating from Helicoverpa armigera and determining their activities. Turkish Journal of Biology, 39(1), 78–87. https://doi.org/10.3906/biy-1404-31
dc.relationde Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., … Hulo, N. (2006). ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research, 34(WEB. SERV. ISS.), 362–365. https://doi.org/10.1093/nar/gkl124
dc.relationDiaz, B., & Lecuona, R. (1995). Evaluación de cepas nativas del hongo entomopatógeno Beauveria bassiana Bals . ( Vuill .) ( Deuteromicotina ) como base para la selección de bioinsecticidas contra el barrenador Diatraea saccharalis ( F .). Agriscientia, XII, 33–38.
dc.relationDubovskiy, I. M., Whitten, M. M. A., Yaroslavtseva, O. N., Greig, C., Kryukov, V. Y., Grizanova, E. V., … Butt, T. M. (2013). Can Insects Develop Resistance to Insect Pathogenic Fungi? PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060248
dc.relationDuo-Chuan, L. (2006). Review of fungal chitinases. Mycopathologia, 161(6), 345–360. https://doi.org/10.1007/s11046-006-0024-y
dc.relationEdgar, R. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research, 32(5).
dc.relationEspinel-correal, C., Le, X., Villamizar, L., Gómez, J., Zeddam, J. L., Cotes, A. M., & Lopez, M. (2010). Genetic and Biological Analysis of Colombian Phthorimaea operculella Granulovirus Isolated from Tecia solanivora ( Lepidoptera : Gelechiidae ) ᰔ, 76(22), 7617–7625. https://doi.org/10.1128/AEM.00999-10
dc.relationEstrada, M. E., Romero, M., & Rivero, M. J. (2004). Presencia natural de Beauveria bassiana (Bals.) Vuill. en el cultivo de la caña de azúcar (Saccharum sp. híbrido ) en Cuba (Balsamo) Vuillemin in the sugar cane. Revista Iberoamericana de Micología, 21, 42–43.
dc.relationFan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., … Pei, Y. (2007). Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology, 73(1), 295–302. https://doi.org/10.1128/AEM.01974-06
dc.relationFan, Y., Zhang, Y., Yang, X., Pei, X., Guo, S., & Pei, Y. (2007). Expression of a Beauveria bassiana chitinase (Bbchit1) in Escherichia coli and Pichia pastoris. Protein Expression and Purification, 56, 93–99. https://doi.org/10.1016/j.pep.2007.06.012
dc.relationFang, W., Leng, B., Xiao, Y., Jin, K., M, Fan, Y., … Pei, Y. (2005). Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application To Improve Fungal Strain Virulence. Applied and Environmental Microbiology, 71(1), 363–370. https://doi.org/10.1128/AEM.71.1.363
dc.relationFaria, M., Lopes, R. B., Souza, D. A., & Wraight, S. P. (2015). Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. Journal of Invertebrate Pathology, 125, 68–72. https://doi.org/10.1016/j.jip.2014.12.012
dc.relationFederici, B. A. (1999). A Perspective on Pathogens as Biological Control Agents for Insect Pests. In T. Bellows & T. Fisher (Eds.), Handbook of Biological control Principles and applications of Biological control (pp. 517–548). San Diego: Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-012257305-7/50065-5
dc.relationFeng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Science and Technology, 4(1), 3–34. https://doi.org/10.1080/09583159409355309
dc.relationFeng, P., Shang, Y., Cen, K., & Wang, C. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proceedings of the National Academy of Sciences, 112(36), 11365–11370. https://doi.org/10.1073/pnas.1503200112
dc.relationFerrer-Millares, N., Saccardo, P., Corchero, J. L., Xu, Z., & Garcia-Fruitós, E. (2015). General Introduction: Recombinant Protein Production and Purifi cation of Insoluble Proteins. In E. García-fruitós (Ed.), Insoluble proteins. Methods and protocols (pp. 1–26). New York: Springer. https://doi.org/10.1007/978-1-4939-2205-5
dc.relationFrancischini, F. J. B., De Campos, J. B., Alves-Pereira, A., Gomes Viana, J. P., Grinter, C. C., Clough, S. J., & Zucchi, M. I. (2017). Morphological and molecular characterization of Brazilian populations of Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) and the evolutionary relationship among species of Diatraea Guilding. PLoS ONE, 12(11). https://doi.org/10.1371/journal.pone.0186266
dc.relationFrederiksen, R. F., Paspaliari, D. K., Larsen, T., Storgaard, B. G., Larsen, M. H., Ingmer, H., … Leisner, J. J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology (United Kingdom), 159(PART 5), 833–847. https://doi.org/10.1099/mic.0.051839-0
dc.relationGarcía-fruitós, E., González-montalbán, N., Morell, M., Vera, A., Ferraz, R. M., Arís, A., … Villaverde, A. (2005). Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microbial Cell Factories, 4(27), 1–6. https://doi.org/10.1186/1475-2859-4-27
dc.relationGarcía, J., Sotelo, P., Monroy, D., Barrera, G., Gómez-Valderrama, J., Espinel, C., … Villamizar, L. F. (2018). Identification and characterization of a Beauveria bassiana (Bals.) Vuill. isolate having a high potential for the control of the Diatraea sp. sugarcane stem borer. BiotecnolApl, 35(1), 1201–1207.
dc.relationGasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. ., Appel, R. ., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
dc.relationGómez, L. A., & Vargas, G. A. (2014). Los barrenadores de la caña de azúcar Diatraea spp., en el valle del rio Cauca: investigación con énfasis en control biológico. (No. 734). Santiago de Cali.
dc.relationGoñi, O. (2011). Aislamiento, caracterización y funcionalidad de quitinasas y 1,3-β-glucanasas inducidas diferencialmente en frutos de “Annona cherimola” Mill. Por bajas temperaturas y elevadas concentraciones de CO2. Universidad Complutense de Madrid.
dc.relationGuevara, E., López, A., Jimenez, L., & Sotelo, R. (2013). Perspectivas actuales del uso de proteínas recombinantes y su importancia en la investigación científica e industrial. Revista de Ciencias Biológicas y de La Salud, 15(3), 8–17.
dc.relationGutternigg, M., Kretschmer-Lubich, D., Paschinger, K., Rendić, D., Hader, J., Geier, P., … Wilson, I. B. H. (2007). Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. Journal of Biological Chemistry, 282(38), 27825–27840. https://doi.org/10.1074/jbc.M704235200
dc.relationHamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J., & Javed, S. (2013). Chitinases : An update. Journal of Pharmacy and BioAllied Sciences, 5(1), 21–29. https://doi.org/10.4103/0975-7406.106559
dc.relationHan, B., Zhou, K., Li, Z., Sun, B., Ni, Q., Meng, X., … Zhou, Z. (2016). Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb). Journal of Eukaryotic Microbiology, 63(1), 37–45. https://doi.org/10.1111/jeu.12246
dc.relationHartl, L., Zach, S., & Seidl-seiboth, V. (2012). Fungal chitinases : diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93(2), 533–543. https://doi.org/10.1007/s00253-011-3723-3
dc.relationHaseeb, M., & Srivastava, R. (2014). Potencial of Entomopathogenic fungi in Bio-Management insect pest. In N. Sharma (Ed.), Biological Controls for Preventing Food Deterioration: Estrategies for Pre - and postharvest manangement. (pp. 163–182). John Wiley y Sons, Ltd.
dc.relationHawtin, R. E., Zarkowska, T., Arnold, K., Thomas, C. J., Gooday, G. W., King, L. A., … Possee, R. D. (1997). Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology, 238(2), 243–253. https://doi.org/10.1006/viro.1997.8816
dc.relationHenrissat, B., Vegetales, M., & Grenoble, F. (1991). A classification of glycosyl hydrolases based sequence similarities amino acid. Biochemical Journal, 280, 309–316. https://doi.org/10.1007/s007920050009
dc.relationHernández-Velázquez, V. M., Lina-García, L. P., Obregón-Barboza, V., Trejo-Loyo, A. G., & Peña-Chora, G. (2012). Pathogens associated with sugarcane borers, diatraea spp. (Lepidoptera: Crambidae): A review. International Journal of Zoology, 2012. https://doi.org/10.1155/2012/303589
dc.relationHerrera-Estrella, A., & Chet, I. (1999). Chitinases in biological control. In P. Jolles & R. . Muzarelli (Eds.), Chitin and chitinases (pp. 171–184). Boston: Birkhauser. https://doi.org/10.1007/978-3-0348-8757-1_12
dc.relationHodgson, J. J. (2011). Functions of the viral chitinase ( CHIA ) in the processing , subcellular trafficking and cellular retention of proV-CATH from Autographa californica multiple nucleopolyhedrovirus by. university of Guelph.
dc.relationHolder, D.J., & Keyhani, N. O. (2005). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology, 71(9), 5260–5266. https://doi.org/10.1128/AEM.71.9.5260
dc.relationHolder, Diane J., Kirkland, B. H., Lewis, M. W., & Keyhani, N. O. (2007). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology, 153(10), 3448–3457. https://doi.org/10.1099/mic.0.2007/008524-0
dc.relationHong-Bing, S., & Kuo-Chen, C. (2010). Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. Journal of Biomolecular Structure & Dynamics, 28, 175–186.
dc.relationHoog, G. . (1972). The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Studies in Micology, 1, 1–41.
dc.relationICA. Resolución 00698 de 2011, Pub. L. No. 000698 (2011). Colombia: ICA.
dc.relationICA. (2011b). Silenciosa batalla contra el barrenador de la caña Diatraea saccharalis. Retrieved September 14, 2016, from http://www.ica.gov.co/Noticias/Agricola/2011/Silenciosa-batalla-contra-el-barrenador-de-la-cana.aspx
dc.relationIhrmark, K., Asmail, N., Ubhayasekera, W., Melin, P., & Stenlid, J. (2010). Comparative Molecular Evolution of Trichoderma Chitinases in Response to Mycoparasitic Interactions. Evolutionary Bioinformatics, 6, 1–26.
dc.relationIke, M., Nagamatsu, K., Shioya, A., Nogawa, M., Ogasawara, W., Okada, H., & Morikawa, Y. (2006). Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Applied Microbiology and Biotechnology, 71(3), 294–303. https://doi.org/10.1007/s00253-005-0171-y
dc.relationInvitrogen. User Manual pEXP-5-NT/TOPO and pEXP-5-CT/TOPO (2006).
dc.relationJang, M. K., Kong, B. G., Jeong, Y. Il, Lee, C. H., & Nah, J. W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science, Part A: Polymer Chemistry, 42(14), 3423–3432. https://doi.org/10.1002/pola.20176
dc.relationJaques, A. K., Fukamizo, T., Hall, D., Barton, R. C., Escott, G. M., Parkinson, T., … Adams, D. J. (2003). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology, 149(10), 2931–2939. https://doi.org/10.1099/mic.0.26476-0
dc.relationJones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., … Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics. https://doi.org/doi:10.1093/bioinformatics/btu031
dc.relationJoyce, A. L., White, W. H., Nuessly, G. S., Solis, M. A., Scheffer, S. J., Lewis, M. L., & Medina, R. F. (2014). Geographic Population Structure of the Sugarcane Borer , Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the Southern United States. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0110036
dc.relationKall, L., Krogh, A., & EL, S. (2007). Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Research, Jul(35), W429-32.
dc.relationKang, W., Tristem, M., Maeda, S., Crook, N. E., & O’Reilly, D. R. (1998). Identification and characterization of the Cydia Pamonella granulovirus cathepsin and chitanase genes. Journal of General Virology, 79(1998), 2283–2292.
dc.relationKim, J., Roh, J., Choi, J., Wang, Y., Shim, H., & Je, Y. (2010). Correlation of the aphicidal activity of Beauveria bassiana SFB-205 supernatant with enzymes. Fungal Biology, 114(1), 120–128. https://doi.org/10.1016/j.mycres.2009.10.011
dc.relationKrogh, A., Larsson, È., Heijne, G. Von, & Sonnhammer, E. L. L. (2001). Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. Journal of Molecular Biologylogy, 305, 567–580. https://doi.org/10.1006/jmbi.2000.4315
dc.relationKuttiyawong, K., Nakapong, S., & Pichyangkura, R. (2008). The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants. Carbohydrate Research, 343(16), 2754–2762. https://doi.org/10.1016/j.carres.2008.05.020
dc.relationLacey, L. A., Frutos, R., Kaya, H. K., & Vail, P. (2001). Insect Pathogens as Biological Control Agents: Do They Have a Future? Biological Control, 21, 230–248. https://doi.org/10.1006/bcon.2001.0938
dc.relationLacey, L., & Solter, L. (2012). Initial handling and diagnosis of diseased invertebrates. In L. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (Second, pp. 1–14). Washington: Academic press.
dc.relationLaemmli. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
dc.relationLai, Y., Chen, H., Wei, G., Wang, G., Li, F., & Wang, S. (2017). In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito. Science China Life Sciences, 60(8), 839–851. https://doi.org/10.1007/s11427-017-9101-3
dc.relationLara, A. (2011). Producción de proteínas recombinantes en Escherichia coli. Revista Mexicana de Ingenieria Química, 10(2), 209–223.
dc.relationLaribi-habchi, H., Biche, M., Drouiche, N., & Boudjemaa, N. (2014). Eficacy of crude and purified chitinases (Sschi50) extracted from offal Red escorpion fish in biological control of chickpea weevil (Callosobruchus maculatus L.). Journal of Food Processing and Preservation, 1745–4549. https://doi.org/10.1111/jfpp.12354
dc.relationLaribi-habchi, H., Bouanane-darenfed, A., & Drouiche, N. (2015). Purification , characterization , and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria. International Journal of Biological Macromolecules, 72, 1117–1128. https://doi.org/10.1016/j.ijbiomac.2014.10.035
dc.relationLeucona, R., & Alves, S. (1988). Efficiency of Beauveria bassiana (Bals.) Vuill., B. brongniartii (Sacc) Petch. and granulose virus on Diatraea saccharalis (F.,1794) at different temperatures. Journal of Applied Entomology, 105, 223–228.
dc.relationLi, H., & Greene, L. H. (2010). Sequence and Structural Analysis of the Chitinase Insertion Domain Reveals Two Conserved Motifs Involved in Chitin-Binding. Plos One, 5(1), 1–11. https://doi.org/10.1371/journal.pone.0008654
dc.relationLiceras, L., Valladares, L., Reyna, R., & Escuadra, H. (2007). Biología de Diatraea saccharalis Fabr. (Lepidopetra:Pyralidae) alimentado con dos tipos de Zea mays ( L .). Pueblo Continente, 18(1), 85–93.
dc.relationLiu, D., Cai, J., Xie, C. chu, Liu, C., & Chen, Y. hua. (2010). Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme and Microbial Technology, 46(3–4), 252–256. https://doi.org/10.1016/j.enzmictec.2009.10.007
dc.relationLiu, H., Zhao, X., Guo, M., Liu, H., & Zheng, Z. (2015). Growth and metabolism of Beauveria bassiana spores and mycelia. BioMedCentral Microbiology, 15, 267. https://doi.org/10.1186/s12866-015-0592-4
dc.relationLiu, S., Shao, S., Li, L., Cheng, Z., Tian, L., Gao, P., & Wang, L. (2015). Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis. Carbohydrate Research, 418, 50–56. https://doi.org/10.1016/j.carres.2015.10.002
dc.relationLiu, X., Ma, X., Lei, C., Xiao, Y., Zhang, Z., & Sun, X. (2011). Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis. Arch Virol, 156, 1707–1715. https://doi.org/10.1007/s00705-011-1039-3
dc.relationLovera, A., Belaich, M., Mejía, C., Villamizar, L., Patarroyo, M., & Barrera, G. (2018). Characterization of chitinases of Beauveria bassiana ( Bv ) induced in semisolid-state fermentation. In International Congress of Invertebrate Pathology and Microbial Control and the 51st Annual Meeting of the Society for Invertebrate Pathology (p. Agosto). Gold Coast.
dc.relationLv, J., Wilson, L. T., Beuzelin, J. M., & Reagan, T. E. (2010). Rice tillering and yield as affected by artificial and sugarcane borer (Lepidoptera: Crambidae) culm injury. Environ Entomol, 39(2), 528–534. https://doi.org/10.1603/EN09275
dc.relationMaina, U. M., Galadima, I. B., Gambo, F. M., & Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6(1), 27–32.
dc.relationMamarabadi, M., Jensen, B., & Lübeck, M. (2008). Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Current Genetics, 54(2), 57–70. https://doi.org/10.1007/s00294-008-0199-5
dc.relationManjeet, K., Purushotham, P., Neeraja, C., & Podile, A. R. (2013). Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiological Research, 168(7), 461–468. https://doi.org/10.1016/j.micres.2013.01.006
dc.relationMarín, P., Posada, F., Gonzalez, M. teresa, & Bustillo, A. E. (2000). Calidad biológica de formulaciones de Beauveria bassiana usadas en el control de la broca del café. Revista Colombiana de Entomología, 26(1–2), 17–23.
dc.relationMartinez, E. A., Boer, H., Koivula, A., Samain, E., Driguez, H., Armand, S., & Cottaz, S. (2012). Engineering chitinases for the synthesis of chitin oligosaccharides: Catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 89–96.
dc.relationMejia, C. (2018). Potenciación de conidios de Beauveria bassiana como principio activo de un bioplaguicida para el control de larvas de Diataraea spp. Universidad Nacional de Colombia.
dc.relationMeng, H., Wang, Z., Meng, X., Xie, L., & Huang, B. (2015a). Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea. Genetics and Molecular Biology, 38(3), 381–389.
dc.relationMeng, H., Wang, Z., Meng, X., Xie, L., & Huang, B. (2015b). Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea, 389, 381–389.
dc.relationMerzendorfer, H. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206(24), 4393–4412. https://doi.org/10.1242/jeb.00709
dc.relationMolecular European Biology Laboratory. (2016). Protein expression and purification core facility. Retrieved from https://www.embl.de/pepcore/pepcore_services/cloning/choice_expression_systems/comparison_expression_systems/
dc.relationMondal, S., Baksi, S., Koris, A., & Vatai, G. (2016). Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Natural Science and Engineering, 18(2), 85–99. https://doi.org/10.1016/j.psra.2016.10.001
dc.relationNava, I. (2009). Demostracion de la actividad de quitina desacetilasa en Bacillus thuringiensis. Instituto Politecnico Nacional.
dc.relationNi, H., Zeng, S., Qin, X., Sun, X., Zhang, S., Zhao, X., … Li, L. (2015). Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. International Journal of Biological Sciences, 11(3), 304–315. https://doi.org/10.7150/ijbs.10632
dc.relationOkongo, R. N., Puri, A. K., Wang, Z., Singh, S., & Permaul, K. (2018). Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2018.11.007
dc.relationOrtiz, A., & Keyhani, N. O. (2016). Molecular Genetics of Beauveria bassiana Infection of Insects. Advances in Genetics, 94, 165–249. https://doi.org/10.1016/bs.adgen.2015.11.003
dc.relationOsorio, G. (2007). Buenas prácticas agrícolas -BPA- y buenas prácticas de manufactura -BPM- en la producción de caña y panela. Medellín: CTP Print Ltda. https://doi.org/10.1017/CBO9781107415324.004
dc.relationPatil, R. S., Ghormade, V., & Deshpande, M. V. (2000). Chitinolytic enzymes: An exploration. Enzyme and Microbial Technology, 26(7), 473–483. https://doi.org/10.1016/S0141-0229(00)00134-4
dc.relationPaul Vuillemin, M. (1912). Beauveria, nouveau genre de Verticilliacées. Bulletin de La Societe Botanique de France, 59(1), 34–40. https://doi.org/10.1080/00378941.1912.10832379
dc.relationPedrini, N., Ortiz-urquiza, A., Huarte-bonnet, C., Zhang, S., Dispirito, A. A., & State, O. (2013). Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana : hydrocarbon oxidation within the context of a host-pathogen interaction. Frontiers in Microbiology, 4(February), 1–18. https://doi.org/10.3389/fmicb.2013.00024
dc.relationPetersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. Retrieved from http://dx.doi.org/10.1038/nmeth.1701
dc.relationPierleoni, A., Martelli, P. L., Fariselli, P., & Casadio, R. (2007). BaCelLo: a Balanced subCellular Localization predictor. Protocol Exchange. Retrieved from http://dx.doi.org/10.1038/nprot.2007.165
dc.relationPrakash, M. (2008). Insect biochemistry. In Encyclopedia of entomology Vol 1. (pp. 36–37). New Delhi: Discovery publishing house PVT. Ltd.
dc.relationRaikhel, N. ., & Lee, H.-I. (1993). Structure and function of Chitin-Binding Proteins. Annual Reviews Plant. Physiol. Plant. Mol. Biol, 44, 591–615.
dc.relationRao, R., Fiandra, L., Giordana, B., De Eguileor, M., Congiu, T., Burlini, N., … Pennacchio, F. (2004). AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochemistry and Molecular Biology, 34(11), 1205–1213. https://doi.org/10.1016/j.ibmb.2004.08.002
dc.relationRegev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., … Planck, M. (1996). Synergistic Activity of a Bacillus thuringiensis ꝺ-Endotoxin and a Bacterial Endochitinase against Spodoptera littoralis Larvae. Applied and Enviromental Microbiology, 62(10), 3581–3586.
dc.relationRehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1- sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1), 84–98. https://doi.org/10.3852/mycologia.97.1.84
dc.relationReichard, U., Hung, C. Y., Thomas, P. W., & Cole, G. T. (2000). Disruption of the gene which encodes a serodiagnostic antigen and chitinase of the human fungal pathogen Coccidioides immitis. Infection and Immunity, 68(10), 5830–5838. https://doi.org/10.1128/IAI.68.10.5830-5838.2000
dc.relationRice, M. (2012). Southwestern corn borer. (CROP FOCUS). https://doi.org/10.4039/Ent122935-9
dc.relationRocha, Z. (2009). Estudio de la producción de quitinasas, proteasas e hidrofobinas de Lecanicillium lecaniien cultivos líquido y sólido utilizando diversas fuentes de carbono. Universidad Autonoma Metropolitana.
dc.relationRohrmann, G. (2013). Baculovirus Molecular Biology (3rd ed.). Bethesda (MD): National Center for Biotechnology Information (US). https://doi.org/NBK114593
dc.relationSalvador, R., & Ferrelli, M. L. (2014). Analysis of a chitinase from EpapGV , a fast killing betabaculovirus. Virus Genes, 48, 406–409. https://doi.org/10.1007/s11262-013-1019-7
dc.relationSantos, A. (2014). Potenciación ecofisiológica de conidios de Nomuraea rileyi mediante el uso de factores abióticos de estrés. Tesis de Maestría. Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá. Universidad Nacional de Colombia.
dc.relationSasaki, C., Yokoyama, A., Itoh, Y., Hashimoto, M., Watanabe, T., & Fukamizo, T. (2002). Comparative Study of the Reaction Mechanism of Eamily 18 Chitinases from Plants and Microbes 1. Comparative and General Pharmacology, 564, 557–564.
dc.relationSeidl, V. (2008). Chitinases of filamentous fungi : a large group of diverse proteins with multiple physiological functions. Fungal Biology Review, 22, 36–42. https://doi.org/10.1016/j.fbr.2008.03.002
dc.relationSeidl, V., Huemer, B., Seiboth, B., & Kubicek, C. P. (2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS Journal, 272(22), 5923–5939. https://doi.org/10.1111/j.1742-4658.2005.04994.x
dc.relationSerra, G., & Trumper, E. (2006). Estimación de incidencia de daños provocados por larvas de Diatraea saccharalis ( Lepidoptera : Crambidae ) en tallos de maíz mediante evaluación de signos externos de infestación. Agriscientia, XXIII(1), 1–7.
dc.relationShternshis, M., Ovchinnikova, L., Duzhak, A., & Tomilova, O. (2002). The Efficiency of Viral and Bacterial Entomopathogens Formulated with Chitinase for Biocontrol of Lepidopteran Cabbage Pests. Archives of Phytopathology. Plant Protection., 35, 161–169. https://doi.org/10.1080/03235400214209
dc.relationShternshis, M. V. (2004). Ecologically safe control of insect pest : The past , the present and the future. In R. T. Lartey & A. Caesar (Eds.), Emerging Concepts in Plant Health Management (Vol. 661). Kerala, India: Research Signpost. https://doi.org/10.13140/2.1.3354.4648
dc.relationSingh, A. K., Singh, A., & Joshi, P. (2016). Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. International Journal of Pest Management, 62(3), 222–227. https://doi.org/10.1080/09670874.2016.1167267
dc.relationSirimontree, P., Fukamizo, T., & Suginta, W. (2016). Azide anions inhibit GH-18 endochitinase and GH-20 Exo β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi. Journal of Biochemistry, 159(2), 191–200. https://doi.org/10.1093/jb/mvv087
dc.relationSlámová, K., Bojarová, P., Petrásková, L., & Křen, V. (2010). Β-N-Acetylhexosaminidase: What’s in a name...? Biotechnology Advances, 28(6), 682–693. https://doi.org/10.1016/j.biotechadv.2010.04.004
dc.relationSolis, M. A., & Metz, M. A. (2016). An illustrated guide to the identification of the known species of diatraea guilding (Lepidoptera, Crambidae, Crambinae) based on genitalia. ZooKeys, (565), 73–121. https://doi.org/10.3897/zookeys.565.6797
dc.relationSt. Leger, R. J., Cooper, R. M., & Charnley, A. K. (1991). Characterization of chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 58(3), 415–426. https://doi.org/10.1016/0022-2011(91)90188-V
dc.relationSt Leger, R. J., Joshi, L., Bidochka, M. J., Rizzo, N. W., Roberts, D. W., & York, N. (1996). Characterization and Ultrastructural Localization of Chitinases from Metarhizium anisopliae , M . flavoviride , and Beauveria bassiana during Fungal Invasion of Host ( Manduca sexta ) Cuticle. Applied and Environmental Microbiology, 62(3), 907–912.
dc.relationSt Leger, R. J., & Screen, S. (2001). Prospects for strain improvement of fungal pathogens of insects and weeds. In N. Butt, T. M., Jackson, C., Magan (Ed.), Fungi as biocontrol agents: progress, problems and potential (pp. 219–238). New York: CABI Publishing. https://doi.org/10.1079/9780851993560.0219
dc.relationStock, J., Sarkari, P., Kreibich, S., Brefort, T., Feldbrügge, M., & Schipper, K. (2012). Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. Journal of Biotechnology, 161(2), 80–91. https://doi.org/10.1016/j.jbiotec.2012.03.004
dc.relationSuresh Kumar, T. ., Gopalakrishna, K., & Prassad. (1993). Formación de multiples bandas en SDS-PAGE.
dc.relationSvedese, V. M., Lima, E. Á. de L. A., & Porto, A. L. F. (2013). Horizontal transmission and effect of the temperature in pathogenicity of Beauveria bassiana against Diatraea saccharalis (Lepidoptera: Crambidae). Brazilian Archives of Biology and Technology, 56(3), 413–419. https://doi.org/10.1590/S1516-89132013000300009
dc.relationTakaya, N., Yamazaki, D., Horiuchi, H., Ohta, A., & Takagi, M. (1998). oligosporus : molecular cloning and characterization. Mycrobiology, 144, 2647–2654.
dc.relationTanada, Y., & Kaya, H. K. (1993). Insect pathology. San Diego: Academic Press.
dc.relationTarazona, G. A. (2011). Manejo fitosanitario del cultivo de la caña panelera. Bogotá D.C: Produmedios.
dc.relationTerwisscha van Scheltinga, A. C., Kalk, K. H., Beintema, J. J., & Dijkstra, B. W. (1994). Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure, 2(12), 1181–1189. https://doi.org/10.1016/S0969-2126(94)00120-0
dc.relationThomas, C. J., Gooday, G. W., King, L. A., & Possee, R. D. (2000). Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. Journal of General Virology, 81(5), 1403–1411. https://doi.org/10.1099/0022-1317-81-5-1403
dc.relationThrone, J. E., Weaver, D. K., Chew, V., & Baker, J. E. (1995). Probit Analysis of Correlated Data : Multiple Observations Over Time at One Concentration. Journal of Economic Entomology, 88(5), 1510–1512.
dc.relationTjoelker, L. W., Gosting, L., Frey, S., Hunter, C. L., Trong, H. Le, Brammer, H., … Gray, P. W. (2000). Structural and Functional Definition of the Structural and Functional Definition of the Human Chitinase Chitin-binding Domain. The Journal of Biological Chemistry, 275(1), 514–520. https://doi.org/10.1074/jbc.275.1.514
dc.relationTronsmo, A., & Harman, G. E. (1993). Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Analytical Biochemistry. https://doi.org/10.1006/abio.1993.1010
dc.relationVaaje-kolstad, G., Horn, S. J., Aalten, D. M. F. Van, Synstad, B., & Vincent, G. H. (2005). The non-catalytic chitin-binding protein CBP21 from serratia Marcescens is essential for chitin degradation. Journal of Biological Chemistry, 1–17. https://doi.org/10.1074/jbc.M504468200
dc.relationValero, C. A., Wiegers, H., Zwaan, B. J., Koenraadt, C. J. M., & van Kan, J. A. L. (2016). Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 133(January), 41–49. https://doi.org/10.1016/j.jip.2015.11.011
dc.relationVallejo, L. F., & Rinas, U. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3(11), 1–12. https://doi.org/10.1186/1475-2859-3-11
dc.relationVan den Burg, H. A., Westerink, N., Francoijs, K. J., Roth, R., Woestenenk, E., Boeren, S., … Vervoort, J. (2003). Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. Journal of Biological Chemistry, 278(30), 27340–27346. https://doi.org/10.1074/jbc.M212196200
dc.relationVargas, G. A., & Gómez, L. (2005). Evaluación del daño causado por Diatraea spp . en caña de azúcar y su manejo en el valle del río Cauca. Serie Divulgativa, (9), 8.
dc.relationVargas, G. A., & Posada, C. (2013). Análisis económico del control biológico de Diatraea spp. (No. 727). Cali, Colombia.
dc.relationVargas, G., Gómez, L., & Michaud, J. . (2015). Sugar cane stem borers of the Colombian Cauca River Valley : current pest status , biology , and control. Florida Entomologist, 98(2), 728–735.
dc.relationVeliz, E. A., Martínez-hidalgo, P., & Hirsch, A. M. (2017). UCLA Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3(3), 689–705. https://doi.org/10.3934/microbiol.2017.3.689
dc.relationVentura, S., & Villaverde, A. (2006). Protein quality in bacterial inclusion bodies. TRENDS in Biotechnology, 24(4). https://doi.org/10.1016/j.tibtech.2006.02.007
dc.relationVilela, M., Nunes dos Santos, A., Ferreira, M., da Costa, R., da Silva, D., Ferreira, D., … Martins, S. (2017). Influence of Diatraea saccharalis (Lepidoptera: Crambidae) infestation on sweet sorghum productivity and juice quality. African Journal of Agricultural Research, 12(39), 2877–2885. https://doi.org/10.5897/AJAR2017.12431
dc.relationWanchoo, A., Lewis, M. W., & Keyhani, N. O. (2009). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology, 155(9), 3121–3133. https://doi.org/10.1099/mic.0.029157-0
dc.relationXiao, G., Ying, S.-H., Zheng, P., Wang, Z.-L., Zhang, S., Xie, X.-Q., … Feng, M.-G. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483. https://doi.org/10.1038/srep00483
dc.relationYang, S., Fu, X., Yan, Q., Guo, Y., Liu, Z., & Jiang, Z. (2016). Cloning , expression , purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chemistry, 192, 1041–1048.
dc.relationYang, S., Song, S., Yan, Q., Fu, X., Jiang, Z., & Yang, X. (2014). Biochemical characterization of the first fungal glycoside hydrolyase family 3 β-N-acetylglucosaminidase from Rhizomucor miehei. Journal of Agricultural and Food Chemistry, 62(22), 5181–5190. https://doi.org/10.1021/jf500912b
dc.relationYasem de Romero, M. G., Salvatore, A. R., López, G., & Willink, E. (2008). Presencia natural de hongos hyphomycetes en larvas invernantes de Diatraea saccharalis F . en caña de azúcar en Tucumán , Argentina. Revista Industrial y Agrícola de Tucumán, 85(2), 39–42.
dc.relationZappelini, L. O., Almeida, J. E. M., Batista Filho, A., & Giometti, F. H. C. (2010). Seleção de isolados fungo entomopatogênicos Metarhizium anisopliae (metsch.) sorok. visando o controle da boca da cana-de-açúcar Diatraea saccharalis (Fabr., 1794). Arq. Inst. Biol., 77(1), 75–82.
dc.relationZar, J. (1999). Biostatistical analysis. (P. Hall, Ed.) (cuarta Ed.). New Jersey.
dc.relationZhang, S., Xia, Y. X., Kim, B., & Keyhani, N. O. (2011). Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Molecular Microbiology, 80(3), 811–826. https://doi.org/10.1111/j.1365-2958.2011.07613.x
dc.relationZhang, Y.-J., Feng, M.-G., Fan, Y.-H., Luo, Z.-B., Yang, X.-Y., Wu, D., & Pei, Y. (2008). A cuticle-degrading protease (CDEP-1) of Beauveria bassiana enhances virulence. Biocontrol Science and Technology, 18(6), 551–563. https://doi.org/10.1080/09583150802082239
dc.relationZhang, Y., Zhang, J., Jiang, X., Wang, G., Luo, Z., Fan, Y., … Pei, Y. (2010). Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus beauveria bassiana. Applied and Environmental Microbiology, 76(7), 2262–2270. https://doi.org/10.1128/AEM.02246-09
dc.relationZhao, H., Lovett, B., Fang, W., Microbiolog, C. D. E., Hubbard, M., Hynes, R. K., … Federici, B. A. (2016). Genetically Engineering Entomopathogenic Fungi. Handbook of Biological Control Principles and Applications of Biological Control, 94(October), 137–163. https://doi.org/http://dx.doi.org/10.1016/B978-012257305-7/50065-5
dc.relationZimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6), 553–596. https://doi.org/10.1080/09583150701309006
dc.relationZúñiga-oviedo, M. A., Soto-Giraldo, A., & Cruz-Ceron, G. (2016). Actividad biológica de hongos y bacterias entomopatógenas sobre Diatraea saccharalis Fabricius (Lepidoptera: crambidae). Boletin Científico Museo de Historia Natural, 20(2), 82–92.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio del efecto de quitinasas recombinantes como potenciadoras de la actividad insecticida de un aislamiento de Beauveria bassiana para el control de Diatraea saccharalis
dc.typeOtro


Este ítem pertenece a la siguiente institución