dc.contributorOrjuela Londoño, Alvaro
dc.contributorRodriguez Niño, Gerardo
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorRodriguez Paez, Cristian Camilo
dc.date.accessioned2020-02-20T20:58:11Z
dc.date.available2020-02-20T20:58:11Z
dc.date.created2020-02-20T20:58:11Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75669
dc.description.abstractIn this work was studied the modeling of the adsorption of effluent gases from the methane oxidative coupling process (OCM) on CaX zeolite for the separation of ethylene. To describe the adsorption process, a mathematical model was implemented within the Aspen Adsorption software based on Mass, Energy and Momentum balances, and the Linear Driving Force adsorption rate model. The transport parameters were adjusted from dynamic experimental data in order to validate the proposed mathematical model, to be used in the design of a pressure swing adsorption system (PSA) on an industrial scale. The PSA system can be an alternative to cryogenic distillation for the separation of methane because the methane is not adsorbed on CaX zeolite, and also the zeolite CaX presents selectivity for ethane and ethylene. The ethylene purification process was carried out with cryogenic distillation columns. However, the substitution of the demethanizer unit with a PSA system resulted in an energy saving of 30% and a reduction in utility costs of 18% compared to the traditional cryogenic distillation process.
dc.description.abstractEn este trabajo se estudió el modelamiento de la adsorción de gases efluentes del proceso de acoplamiento oxidativo de metano (OCM) sobre zeolita CaX para la separación de etileno. Para describir el proceso de adsorción un modelo matemático fue implementado dentro del software Aspen Adsorption basado en los balances de Masa, Energía y Momentum, y el modelo de velocidad de adsorción de fuerza impulsora lineal. Los parámetros de transporte fueron ajustados a partir de datos experimentales dinámicos con el fin de validar el modelo matemático propuesto, para ser utilizado en el diseño de un sistema de adsorción por oscilación de presión (PSA) a escala industrial. El sistema de PSA puede ser una alternativa a la destilación criogénica para la separación de metano debido a que la zeolita CaX no adsorbe metano, y además presenta selectividad por el etano y etileno. El proceso de purificación de etileno se llevó a cabo con columnas de destilación criogénica. Sin embargo, al sustituir la unidad demetanizadora por un sistema PSA se presentó un ahorro de energía del 30% y una reducción de costos de utilidad del 18% en comparación con el proceso de destilación criogénica tradicional
dc.languageeng
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] P. Reeder, “Analysis: Naphtha’s challenge in the age of petrochemical feedstock boom,” S&P Global, 2018. [Online]. Available: https://www.spglobal.com/platts/en/market-insights/latest-news/petrochemicals/031518-analysis-naphthas-challenge-in-the-age-of-petrochemical-feedstock-boom. [Accessed: 22-Sep-2018]. [2] J. S. Plotkin, “Beyond the Ethylene Steam Cracker - American Chemical Society.” [Online]. Available: https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/beyond-the-ethylene-steam-cracker.html. [Accessed: 28-Feb-2019]. [3] D. Salerno Paredes, “Optimal Synthesis of Downstream Processes using the Oxidative Coupling of Methane Reaction,” Technische Universitat Berlin, 2013. [4] Repsol, “Ethylene,” chemical, 2018. [Online]. Available: https://www.repsol.com/en/products-and-services/chemicals/product-range/ethylene/index.cshtml. [5] H.-R. Godini et al., “Concurrent Reactor Engineering , Separation Enhancement and Process Intensification; Comprehensive Unicat Approach for Oxidative Coupling of Methane (OCM),” Tech. Trans., vol. 109, pp. 63–74, 2012. [6] none, “Materials for Separation Technologies. Energy and Emission Reduction Opportunities,” May 2005. [7] I. Amghizar, L. A. Vandewalle, K. M. Van Geem, and G. B. Marin, “New Trends in Olefin Production,” Engineering, 2017. [8] Marshall Frank, “US Ethylene Plant Development; Announcement, Plans, and New Technology.” [Online]. Available: https://blog.ihrdc.com/marshall-frank/recent-developments-in-ethylene/. [Accessed: 27-Jan-2019]. [9] D. Salerno, H. Arellano-Garcia, and G. Wozny, “Ethylene separation by feed-splitting from light gases,” Energy, vol. 36, no. 7, pp. 4518–4523, 2011. [10] G. E. Keller and M. M. Bhasin, “Synthesis of ethylene via oxidative coupling of methane. I. Determination of active catalysts,” Journal of Catalysis, vol. 73, no. 1. pp. 9–19, 1982. [11] Z. Stansch, L. Mleczko, and M. Baerns, “Comprehensive Kinetics of Oxidative Coupling of Methane over the La 2 O 3 /CaO Catalyst,” Ind. Eng. Chem. Res., vol. 36, no. 7, pp. 2568–2579, 1997. [12] A. Penteado, E. Esche, D. Salerno, H. R. Godini, and G. Wozny, “Design and Assessment of a Membrane and Absorption Based Carbon Dioxide Removal Process for Oxidative Coupling of Methane,” Ind. Eng. Chem. Res., vol. 55, no. 27, pp. 7473–7483, 2016. [13] “BP Statistical Review of World Energy 2015,” 2015. [14] R. W. Triebe, F. H. Tezel, and K. C. Khulbe, “Adsorption of methane , ethane and ethylene on molecular sieve zeolites,” vol. 10, no. 1, pp. 81–84, 1996. [15] L. Garcia, “Síntesis, Aglomeración y Caracterización de un Tamiz Molecular a partir de Zeolita 5A a Escala Piloto para la Separación de los Gases Provenientes del Proceso de Acoplamiento Oxidativo de Metano (OCM),” Universidad Nacional de Colombia, 2017. [16] M. Salmasi, M. Doroudian Rad, S. Fatemi, and S. Hosseinpour, “An Experimental Design Study for CH4, C2H6 and C2H4 Adsorption and C2s/CH4 Selectivity on 10X Zeolite,” J. Chem. Pet. Eng., vol. 45, no. 1, pp. 71–82, 2011. [17] J. Jee, M. Kim, and C. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary , Ternary , and Five-Component Mixtures,” Ind. Eng. Chem. Res., vol. 40, pp. 868–878, 2001. [18] D. M. Ruthven and S. Farooq, “Air separation by pressure swing adsorption,” Gas Sep. Purif., 1990.[19] P. da Silva Bárcia, “Separation of Light Naphtha fot the Octane Upgrading of Gasoline: Adsorption and Membrane Technologies and New Adsorbents,” University of Porto, 2010. [20] J. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3rd ed. John Wiley & Sons, Inc., 2011. [21] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, “On a Theory of the van der Waals Adsorption of Gases,” J. Am. Chem. Soc., 1940. [22] M. D. LeVan, G. Carta, and C. M. Yon, Section 16: Adsorption and Ion Exchange. 2007. [23] D. D. Do, Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, 1998. [24] H. G. Karge and J. Weitkamp, Adsorption and Diffusion. Springer-Verlag Berlin Heidelberg, 2008. [25] F. Keil, Diffusion und Chemische Reaktionen in der Gas/Feststoff-Katalyse. Springer-Verlag Berlin Heidelberg, 1999. [26] E. Glueckauf, “Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography,” Trans. Faraday Soc., 1955. [27] H.-J. Bart, “Adsorption,” in Ullmann’s Encyclopedia of Industrial Chemistry., Kaiserslautern: Wiley-VCH, 2012, p. 72. [28] AspenTech, “Aspen Adsim™ 12.1 Adsorption Reference Guide.” AspenTech, p. 324, 2003. [29] S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Tehcnology. New York: Marcel Dekker, Inc., 2003. [30] A. R. García-Soto, G. Rodríguez-Niño, and C. A. Trujillo, “Zeolite LTA synthesis: Optimising synthesis conditions by using the modified sequential simplex method,” Ing. e Investig., vol. 33, no. 3, pp. 22–27, 2013. [31] S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology. CRC Press, 2013.[32] W. Lutz, “Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–20, 2014. [33] A. Julbe and M. Drobek, “Zeolite X: Type,” in Encyclopedia of Membranes, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–2. [34] S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis. Wiley-VCH, 2010. [35] S. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini, and M. T. Ravanchi, “Performance of Cax Zeolite for separation of C2H6, C2H4, and CH4by adsorption process; capacity, selectivity, and dynamic adsorption measurements,” Sep. Sci. Technol., vol. 46, no. 2, pp. 349–355, 2011. [36] D. M. Ruthven, S. Farooq, and K. S. Knaebel, Pressure Swing Adsorption. VCH Publishers, 1994. [37] A. Gabelman, “Adsorption Basics: Part 1 | AIChE,” 2017. [Online]. Available: https://www.aiche.org/resources/publications/cep/2017/july/adsorption-basics-part-1. [Accessed: 26-Sep-2018]. [38] W. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering. McGraw-Hill Education, 2004. [39] P. M. Mathias and F. Corp, “Reactions and Separations,” no. December, pp. 30–37, 2009. [40] P. Li. N N, Recent Developments in Separation Science Volume 2. Chapman and Hall/CRC, 2018. [41] J. E. Bachman et al., “Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn 2 ( m -dobdc),” Energy Environ. Sci., vol. 11, no. 9, pp. 2423–2431, Sep. 2018. [42] J. A. Delgado, V. I. Agueda, M. A. Uguina, J. L. Sotelo, and P. Brea, “Hydrogen recovery from off-gases with nitrogen-rich impurity by pressure swing adsorption using CaX and 5A zeolites,” Adsorption, vol. 21, no. 1–2, pp. 107–123, Feb. 2015. [43] I. T. Program, “Materials for Separation Technologies: Energy and Emission Reduction Opportunities,” 2005. [44] A. Rivera Guerrero, “Desarrollo y aplicación de un modelo computacional del arranque y operacion de un proceso de adsorcion por cambios oscilatorios de presion para la deshidratación de etanol azeotropico,” National University of Colombia, 2014. [45] M. Mehdipour and S. Fatemi, “Modeling of a PSA-TSA process for separation of CH4 from C2 products of OCM reaction,” Sep. Sci. Technol., vol. 47, no. 8, pp. 1199–1212, 2012. [46] D. M. (Douglas M. Ruthven, Principles of adsorption and adsorption processes. Wiley, 1984. [47] N. Wakao and J. M. Smith, “Diffusion in catalyst pellets,” Chem. Eng. Sci., 1962. [48] O. Levenspiel, Engineering Flow and Heat Exchange. Boston, MA: Springer US, 2014. [49] S. Sircar and J. R. Hufton, “Why does the linear driving force model for adsorption kinetics work?,” Adsorption, vol. 6, no. 2, pp. 137–147, 2000. [50] A. Gorbach, M. Stegmaier, and G. Eigenberger, “Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics,” Adsorption, vol. 10, no. 1, pp. 29–46, Jan. 2004. [51] AspenTech, Aspen Adsim 12.1. Cambridge: Aspen Technology, Inc., 2003. [52] K. R. Wood, Y. A. (Yih A. Liu, and Y. Yu, Design, simulation and optimization of adsorptive and chromatographic separations : a hands-on approach. . [53] “Pressure swing adsorption for the purification of hydrogen cláudia rubina spínola franco dissertação de mestrado apresentada à faculdade de engenharia da universidade do porto em engenharia química,” 2014. [54] D. Ko, R. Siriwardane, and L. T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO 2 Sequestration,” Ind. Eng. Chem. Res., vol. 42, no. 2, pp. 339–348, Jan. 2003. [55] “Anesthetic Structure Database.” [Online]. Available: http://molfield.org/. [Accessed: 08-Jul-2019]. [56] N. Wakao and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers,” Chem. Eng. Sci., vol. 33, no. 10, pp. 1375–1384, Jan. 1978. [57] “Transport phenomena, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, John Wiley and Sons, Inc., New York(1960). 780 pages.$11.50,” AIChE J., 1961. [58] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The properties of gases and liquids, 4th ed. 1987. [59] L. García et al., “Adsorption separation of oxidative coupling of methane effluent gases. Mini-plant scale experiments and modeling,” J. Nat. Gas Sci. Eng., 2019. [60] A. I. Sarker, A. Aroonwilas, and A. Veawab, “Equilibrium and Kinetic Behaviour of CO2 Adsorption onto Zeolites, Carbon Molecular Sieve and Activated Carbons,” Energy Procedia, vol. 114, pp. 2450–2459, Jul. 2017. [61] W. J. Thomas and B. D. (Barry D. . Crittenden, Adsorption technology and design. Butterworth-Heinemann, 1998. [62] *,† Marco J. G. Linders, † Martijn B. L. van der Weijst, ‡ Jacques J. G. M. van Bokhoven, † and Freek Kapteijn, and J. A. Moulijn†, “Design of an Industrial Adsorption Process with Activated Carbon for the Removal of Hexafluoropropylene from Wet Air,” 2001. [63] M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a commercial scale pressure swing adsorber for hydrogen purification,” Pet. Coal, vol. 56, no. 5, pp. 552–561, 2014. [64] W. D. Seider, D. R. Lewin, J. D. Seader, S. (Chemical engineer) Widagdo, R. (Rafiqul) Gani, and K. M. Ng, Product and process design principles : synthesis, analysis and evaluation. . [65] H. J. Sandler and E. T. Luckiewicz, Practical process engineering : a working approach to plant design. McGraw-Hill B. Co, 1987. [66] S. Jain, A. S. Moharir, P. Li, and G. Wozny, “Heuristic design of pressure swing adsorption: A preliminary study,” Sep. Purif. Technol., 2003. [67] L. M. Z. F. K. Volova, “Equilibrium of coexisting liquid and gas phases in the binary system methane - ethylene (in Russian),” vol. 14, no. 268, 1940. [68] R. (Chemical engineer) Smith, Chemical process design and integration.Wiley, 2005. [69] J. A. Delgado, M. A. Uguina, J. L. Sotelo, and B. Ruíz, “Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets,” Sep. Purif. Technol., vol. 50, no. 2, pp. 192–203, Jun. 2006. [70] S. Cavenati, C. A. Grande, and A. E. Rodrigues, “Separation of methane and nitrogen by adsorption on carbon molecular sieve,” Sep. Sci. Technol., vol. 40, no. 13, pp. 2721–2743, Oct. 2005. [71] Alibaba, “Zeolite Cax Zeolite Molecular Sieve - Buy Zeolite Cax,Zeolite Cax,Zeolite Cax Product on Alibaba.com.” [Online]. Available: https://www.alibaba.com/product-detail/Zeolite-CaX-Zeolite-molecular-sieve_60012325363.html?spm=a2700.7724838.2017115.1.4aad1c67yjEcpk. [Accessed: 22-Jun-2019]. [72] D. Garred, “APPENDIX 1 EQUIPMENT COST ESTIMATES,” 2012. [73] J. R. Couper, Chemical process equipment : selection and design. Elsevier/Butterworth-Heinemann, 2012. [74] R. Turton, J. A. Shaeiwitz, D. Bhattacharyya, and W. B. Whiting, Analysis, synthesis, and design of chemical processes. . [75] D. Ulrich and P. T. Vasudevan, “How to Estimate Utility Costs - Chemical Engineering | Page 1,” 2016. [Online]. Available: https://www.chemengonline.com/how-to-estimate-utility-costs/. [Accessed: 23-Jun-2019]. [76] Purity gas Canada, “Costs of nitrogen gas - how much should you be paying? | Purity Gas.” [Online]. Available: https://puritygas.ca/nitrogen-gas-costs/. [Accessed: 23-Jun-2019]. [77] ICIS, “OUTLOOK ’19: New capacity may lengthen US ethylene, keep upstream costs volatile - ICIS Explore,” 2019. [Online]. Available: https://www.icis.com/explore/resources/news/2019/01/02/10300667/outlook-19-new-capacity-may-lengthen-us-ethylene-keep-upstream-costs-volatile/. [Accessed: 16-Jun-2019].
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleGas Adsorption Modelling of the Oxidative Coupling of Methane (OCM) Process on Zeolite X Molecular Sieves
dc.typeOtro


Este ítem pertenece a la siguiente institución