dc.relation | [1] P. Reeder, “Analysis: Naphtha’s challenge in the age of petrochemical feedstock boom,” S&P Global, 2018. [Online]. Available: https://www.spglobal.com/platts/en/market-insights/latest-news/petrochemicals/031518-analysis-naphthas-challenge-in-the-age-of-petrochemical-feedstock-boom. [Accessed: 22-Sep-2018].
[2] J. S. Plotkin, “Beyond the Ethylene Steam Cracker - American Chemical Society.” [Online]. Available: https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/beyond-the-ethylene-steam-cracker.html. [Accessed: 28-Feb-2019].
[3] D. Salerno Paredes, “Optimal Synthesis of Downstream Processes using the Oxidative Coupling of Methane Reaction,” Technische Universitat Berlin, 2013.
[4] Repsol, “Ethylene,” chemical, 2018. [Online]. Available: https://www.repsol.com/en/products-and-services/chemicals/product-range/ethylene/index.cshtml.
[5] H.-R. Godini et al., “Concurrent Reactor Engineering , Separation Enhancement and Process Intensification; Comprehensive Unicat Approach for Oxidative Coupling of Methane (OCM),” Tech. Trans., vol. 109, pp. 63–74, 2012.
[6] none, “Materials for Separation Technologies. Energy and Emission Reduction Opportunities,” May 2005.
[7] I. Amghizar, L. A. Vandewalle, K. M. Van Geem, and G. B. Marin, “New Trends in Olefin Production,” Engineering, 2017.
[8] Marshall Frank, “US Ethylene Plant Development; Announcement, Plans, and New Technology.” [Online]. Available: https://blog.ihrdc.com/marshall-frank/recent-developments-in-ethylene/. [Accessed: 27-Jan-2019].
[9] D. Salerno, H. Arellano-Garcia, and G. Wozny, “Ethylene separation by feed-splitting from light gases,” Energy, vol. 36, no. 7, pp. 4518–4523, 2011.
[10] G. E. Keller and M. M. Bhasin, “Synthesis of ethylene via oxidative coupling of methane. I. Determination of active catalysts,” Journal of Catalysis, vol. 73, no. 1. pp. 9–19, 1982.
[11] Z. Stansch, L. Mleczko, and M. Baerns, “Comprehensive Kinetics of Oxidative Coupling of Methane over the La 2 O 3 /CaO Catalyst,” Ind. Eng. Chem. Res., vol. 36, no. 7, pp. 2568–2579, 1997.
[12] A. Penteado, E. Esche, D. Salerno, H. R. Godini, and G. Wozny, “Design and Assessment of a Membrane and Absorption Based Carbon Dioxide Removal Process for Oxidative Coupling of Methane,” Ind. Eng. Chem. Res., vol. 55, no. 27, pp. 7473–7483, 2016.
[13] “BP Statistical Review of World Energy 2015,” 2015.
[14] R. W. Triebe, F. H. Tezel, and K. C. Khulbe, “Adsorption of methane , ethane and ethylene on molecular sieve zeolites,” vol. 10, no. 1, pp. 81–84, 1996.
[15] L. Garcia, “Síntesis, Aglomeración y Caracterización de un Tamiz Molecular a partir de Zeolita 5A a Escala Piloto para la Separación de los Gases Provenientes del Proceso de Acoplamiento Oxidativo de Metano (OCM),” Universidad Nacional de Colombia, 2017.
[16] M. Salmasi, M. Doroudian Rad, S. Fatemi, and S. Hosseinpour, “An Experimental Design Study for CH4, C2H6 and C2H4 Adsorption and C2s/CH4 Selectivity on 10X Zeolite,” J. Chem. Pet. Eng., vol. 45, no. 1, pp. 71–82, 2011.
[17] J. Jee, M. Kim, and C. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary , Ternary , and Five-Component Mixtures,” Ind. Eng. Chem. Res., vol. 40, pp. 868–878, 2001.
[18] D. M. Ruthven and S. Farooq, “Air separation by pressure swing adsorption,” Gas Sep. Purif., 1990.[19] P. da Silva Bárcia, “Separation of Light Naphtha fot the Octane Upgrading of Gasoline: Adsorption and Membrane Technologies and New Adsorbents,” University of Porto, 2010.
[20] J. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3rd ed. John Wiley & Sons, Inc., 2011.
[21] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, “On a Theory of the van der Waals Adsorption of Gases,” J. Am. Chem. Soc., 1940.
[22] M. D. LeVan, G. Carta, and C. M. Yon, Section 16: Adsorption and Ion Exchange. 2007.
[23] D. D. Do, Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, 1998.
[24] H. G. Karge and J. Weitkamp, Adsorption and Diffusion. Springer-Verlag Berlin Heidelberg, 2008.
[25] F. Keil, Diffusion und Chemische Reaktionen in der Gas/Feststoff-Katalyse. Springer-Verlag Berlin Heidelberg, 1999.
[26] E. Glueckauf, “Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography,” Trans. Faraday Soc., 1955.
[27] H.-J. Bart, “Adsorption,” in Ullmann’s Encyclopedia of Industrial Chemistry., Kaiserslautern: Wiley-VCH, 2012, p. 72.
[28] AspenTech, “Aspen Adsim™ 12.1 Adsorption Reference Guide.” AspenTech, p. 324, 2003.
[29] S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Tehcnology. New York: Marcel Dekker, Inc., 2003.
[30] A. R. García-Soto, G. Rodríguez-Niño, and C. A. Trujillo, “Zeolite LTA synthesis: Optimising synthesis conditions by using the modified sequential simplex method,” Ing. e Investig., vol. 33, no. 3, pp. 22–27, 2013.
[31] S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology. CRC Press, 2013.[32] W. Lutz, “Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–20, 2014.
[33] A. Julbe and M. Drobek, “Zeolite X: Type,” in Encyclopedia of Membranes, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–2.
[34] S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis. Wiley-VCH, 2010.
[35] S. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini, and M. T. Ravanchi, “Performance of Cax Zeolite for separation of C2H6, C2H4, and CH4by adsorption process; capacity, selectivity, and dynamic adsorption measurements,” Sep. Sci. Technol., vol. 46, no. 2, pp. 349–355, 2011.
[36] D. M. Ruthven, S. Farooq, and K. S. Knaebel, Pressure Swing Adsorption. VCH Publishers, 1994.
[37] A. Gabelman, “Adsorption Basics: Part 1 | AIChE,” 2017. [Online]. Available: https://www.aiche.org/resources/publications/cep/2017/july/adsorption-basics-part-1. [Accessed: 26-Sep-2018].
[38] W. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering. McGraw-Hill Education, 2004.
[39] P. M. Mathias and F. Corp, “Reactions and Separations,” no. December, pp. 30–37, 2009.
[40] P. Li. N N, Recent Developments in Separation Science Volume 2. Chapman and Hall/CRC, 2018.
[41] J. E. Bachman et al., “Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn 2 ( m -dobdc),” Energy Environ. Sci., vol. 11, no. 9, pp. 2423–2431, Sep. 2018.
[42] J. A. Delgado, V. I. Agueda, M. A. Uguina, J. L. Sotelo, and P. Brea, “Hydrogen recovery from off-gases with nitrogen-rich impurity by pressure swing adsorption using CaX and 5A zeolites,” Adsorption, vol. 21, no. 1–2, pp. 107–123, Feb. 2015.
[43] I. T. Program, “Materials for Separation Technologies: Energy and Emission Reduction Opportunities,” 2005.
[44] A. Rivera Guerrero, “Desarrollo y aplicación de un modelo computacional del arranque y operacion de un proceso de adsorcion por cambios oscilatorios de presion para la deshidratación de etanol azeotropico,” National University of Colombia, 2014.
[45] M. Mehdipour and S. Fatemi, “Modeling of a PSA-TSA process for separation of CH4 from C2 products of OCM reaction,” Sep. Sci. Technol., vol. 47, no. 8, pp. 1199–1212, 2012.
[46] D. M. (Douglas M. Ruthven, Principles of adsorption and adsorption processes. Wiley, 1984.
[47] N. Wakao and J. M. Smith, “Diffusion in catalyst pellets,” Chem. Eng. Sci., 1962.
[48] O. Levenspiel, Engineering Flow and Heat Exchange. Boston, MA: Springer US, 2014.
[49] S. Sircar and J. R. Hufton, “Why does the linear driving force model for adsorption kinetics work?,” Adsorption, vol. 6, no. 2, pp. 137–147, 2000.
[50] A. Gorbach, M. Stegmaier, and G. Eigenberger, “Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics,” Adsorption, vol. 10, no. 1, pp. 29–46, Jan. 2004.
[51] AspenTech, Aspen Adsim 12.1. Cambridge: Aspen Technology, Inc., 2003.
[52] K. R. Wood, Y. A. (Yih A. Liu, and Y. Yu, Design, simulation and optimization of adsorptive and chromatographic separations : a hands-on approach. .
[53] “Pressure swing adsorption for the purification of hydrogen cláudia rubina spínola franco dissertação de mestrado apresentada à faculdade de engenharia da universidade do porto em engenharia química,” 2014.
[54] D. Ko, R. Siriwardane, and L. T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO 2 Sequestration,” Ind. Eng. Chem. Res., vol. 42, no. 2, pp. 339–348, Jan. 2003.
[55] “Anesthetic Structure Database.” [Online]. Available: http://molfield.org/. [Accessed: 08-Jul-2019].
[56] N. Wakao and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers,” Chem. Eng. Sci., vol. 33, no. 10, pp. 1375–1384, Jan. 1978.
[57] “Transport phenomena, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, John Wiley and Sons, Inc., New York(1960). 780 pages.$11.50,” AIChE J., 1961.
[58] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The properties of gases and liquids, 4th ed. 1987.
[59] L. García et al., “Adsorption separation of oxidative coupling of methane effluent gases. Mini-plant scale experiments and modeling,” J. Nat. Gas Sci. Eng., 2019.
[60] A. I. Sarker, A. Aroonwilas, and A. Veawab, “Equilibrium and Kinetic Behaviour of CO2 Adsorption onto Zeolites, Carbon Molecular Sieve and Activated Carbons,” Energy Procedia, vol. 114, pp. 2450–2459, Jul. 2017.
[61] W. J. Thomas and B. D. (Barry D. . Crittenden, Adsorption technology and design. Butterworth-Heinemann, 1998.
[62] *,† Marco J. G. Linders, † Martijn B. L. van der Weijst, ‡ Jacques J. G. M. van Bokhoven, † and Freek Kapteijn, and J. A. Moulijn†, “Design of an Industrial Adsorption Process with Activated Carbon for the Removal of Hexafluoropropylene from Wet Air,” 2001.
[63] M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a commercial scale pressure swing adsorber for hydrogen purification,” Pet. Coal, vol. 56, no. 5, pp. 552–561, 2014.
[64] W. D. Seider, D. R. Lewin, J. D. Seader, S. (Chemical engineer) Widagdo, R. (Rafiqul) Gani, and K. M. Ng, Product and process design principles : synthesis, analysis and evaluation. .
[65] H. J. Sandler and E. T. Luckiewicz, Practical process engineering : a working approach to plant design. McGraw-Hill B. Co, 1987.
[66] S. Jain, A. S. Moharir, P. Li, and G. Wozny, “Heuristic design of pressure swing adsorption: A preliminary study,” Sep. Purif. Technol., 2003.
[67] L. M. Z. F. K. Volova, “Equilibrium of coexisting liquid and gas phases in the binary system methane - ethylene (in Russian),” vol. 14, no. 268, 1940.
[68] R. (Chemical engineer) Smith, Chemical process design and integration.Wiley, 2005.
[69] J. A. Delgado, M. A. Uguina, J. L. Sotelo, and B. Ruíz, “Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets,” Sep. Purif. Technol., vol. 50, no. 2, pp. 192–203, Jun. 2006.
[70] S. Cavenati, C. A. Grande, and A. E. Rodrigues, “Separation of methane and nitrogen by adsorption on carbon molecular sieve,” Sep. Sci. Technol., vol. 40, no. 13, pp. 2721–2743, Oct. 2005.
[71] Alibaba, “Zeolite Cax Zeolite Molecular Sieve - Buy Zeolite Cax,Zeolite Cax,Zeolite Cax Product on Alibaba.com.” [Online]. Available: https://www.alibaba.com/product-detail/Zeolite-CaX-Zeolite-molecular-sieve_60012325363.html?spm=a2700.7724838.2017115.1.4aad1c67yjEcpk. [Accessed: 22-Jun-2019].
[72] D. Garred, “APPENDIX 1 EQUIPMENT COST ESTIMATES,” 2012.
[73] J. R. Couper, Chemical process equipment : selection and design. Elsevier/Butterworth-Heinemann, 2012.
[74] R. Turton, J. A. Shaeiwitz, D. Bhattacharyya, and W. B. Whiting, Analysis, synthesis, and design of chemical processes. .
[75] D. Ulrich and P. T. Vasudevan, “How to Estimate Utility Costs - Chemical Engineering | Page 1,” 2016. [Online]. Available: https://www.chemengonline.com/how-to-estimate-utility-costs/. [Accessed: 23-Jun-2019].
[76] Purity gas Canada, “Costs of nitrogen gas - how much should you be paying? | Purity Gas.” [Online]. Available: https://puritygas.ca/nitrogen-gas-costs/. [Accessed: 23-Jun-2019].
[77] ICIS, “OUTLOOK ’19: New capacity may lengthen US ethylene, keep upstream costs volatile - ICIS Explore,” 2019. [Online]. Available: https://www.icis.com/explore/resources/news/2019/01/02/10300667/outlook-19-new-capacity-may-lengthen-us-ethylene-keep-upstream-costs-volatile/. [Accessed: 16-Jun-2019]. | |