dc.contributor | Niño Vásquez, Luis Fernando | |
dc.contributor | Aristizábal Gutiérrez, Fabio Ancízar | |
dc.contributor | LABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISI | |
dc.creator | Hernández Tarapués, Fabián Alberto | |
dc.date.accessioned | 2021-01-15T15:47:04Z | |
dc.date.available | 2021-01-15T15:47:04Z | |
dc.date.created | 2021-01-15T15:47:04Z | |
dc.date.issued | 2020-10-30 | |
dc.identifier | Hernández F, Niño LF, Aristizábal F 2020, Modelo farmacogenético y clínico para la predicción de desenlaces en pacientes con artritis reumatoide tratados con metotrexato y adalimumab. Universidad Nacional de Colombia - Sede Bogotá, Bogotá D.C | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78759 | |
dc.description.abstract | GOAL: To develop a pharmacogenetic and clinical model to predict effectiveness outcomes in a cohort of patients diagnosed with rheumatoid arthritis (RA) treated with methotrexate or adalimumab at the Central Military Hospital in Bogota, Colombia.
METHODS: Five statistical learning methods were tested on the data set with previous pre-processing for variable cleaning and selection: Logistic regression, decision trees, random forests, Support Vector Machines (SVM) and Artificial Neural Networks (ANN). The models were applied in a cohort of 155 patients treated with MTX which was derived in a training (124 patients) and a test cohort (31 patients). Both clinical variables and genetic variations were included. The chosen outcome was the therapy response measured as a DAS 28 score <3.2. The performance evaluation criterion was the area (AUC) under the receiver operating characteristics (ROC) curve.
RESULTS: The algorithms with the highest predictive power were SVM and ANN. For the MTX cohort, the main selected variables were age, time with RA, functional classification, and genotypes of the rs9344, rs4148396, rs4673993, rs1801133 and rs7279445 variants. Given the size of the cohort of ADA-treated patients (12 patients), no machine learning model could be successfully adjusted.
CONCLUSIONS: A prognostic model with high predictive power was developed in the cohort of patients treated with MTX, which is able to identify patients prone to not responding well to treatment. | |
dc.description.abstract | OBJETIVO: Desarrollar un modelo farmacogenético y clínico para la predicción de desenlaces de efectividad en una cohorte de pacientes diagnosticados con artritis reumatoide (AR) tratados con metotrexato o adalimumab en el Hospital Militar Central.
MÉTODOS: Se probaron cinco métodos de aprendizaje automático en el conjunto de datos con previo preprocesamiento para limpieza y selección de variables: Regresión logística, árboles de decisión, bosques aleatorios, máquinas de soporte vectorial (SVM) y redes neuronales artificiales (ANN) en una cohorte de 155 pacientes tratados con MTX que fue derivada en una cohorte de entrenamiento (124 pacientes) y una de prueba (31 pacientes).Se incluyeron tanto variables clínicas como variaciones genéticas El desenlace escogido fue la respuesta a la terapia medida como un puntaje DAS 28 < 3,2. El criterio de evaluación de desempeño fue el área bajo la curva (AUC) de las características operativas del receptor (ROC).
RESULTADOS: Los algoritmos con mayor poder predictivo fueron las SVM y las ANN. Las principales variables seleccionadas para la cohorte de MTX fueron la edad, tiempo con AR, clasificación funcional y genotipos de las variantes rs9344, rs4148396, rs4673993, rs1801133 y rs7279445. Dado el tamaño de la cohorte de pacientes tratados con ADA (12 pacientes), no se pudo ajustar de forma exitosa ningún modelo de aprendizaje automático.
CONCLUSIONES: Se desarrolló un modelo pronóstico con un poder predictivo alto en la cohorte de pacientes tratados con MTX que identifica pacientes propensos a no responder al tratamiento. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Bioinformática | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Maradit-Kremers H, Nicola PJ, Crowson CS, O’Fallon WM, Gabriel SE. Patient, disease, and therapy-related factors that influence discontinuation of disease-modifying antirheumatic drugs: A population-based incidence cohort of patients with rheumatoid arthritis. J Rheumatol. 2006.33(2):248–55. | |
dc.relation | McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011.365(23):2205–19. | |
dc.relation | Singh JA, Saag KG, Bridges SL, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2016.68(1):1–25 | |
dc.relation | Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017.76(6):960–77. | |
dc.relation | Boonen A, Severens JL. The burden of illness of rheumatoid arthritis. Clin Rheumatol. 2011.30(SUPPL. 1):3–8. | |
dc.relation | Umićević Mirkov M, Coenen MJ. Pharmacogenetics of disease-modifying antirheumatic drugs in rheumatoid arthritis: towards personalized medicine. Pharmacogenomics. 2013.14(4):425–44. | |
dc.relation | Padmanabhan S. Handbook of Pharmacogenomics and Stratified Medicine. Padmanabhan S, editor. 2014. 1–1119 p. | |
dc.relation | Beyer K, Zaura E, Brandt BW, Buijs MJ, Brun JG, Crielaard W, et al. Subgingival microbiome of rheumatoid arthritis patients in relation to their disease status and periodontal health. PLoS One. 2018.13(9):e0202278. | |
dc.relation | Visser B, Brinkman I, Van De Laar MA. Personalized medicine in rheumatoid arthritis: Rationale and clinical evidence. Clin Investig (Lond). 2012.2(8):797–802. | |
dc.relation | Littman BH. Translational strategies to implement personalized medicine: rheumatoid arthritis examples. Per Med. 2009.6(4):429–37. | |
dc.relation | Mathé E, Hays J, Stover D, Chen J. The Omics Revolution Continues: The Maturation of High-Throughput Biological Data Sources. Yearb Med Inform. 2018.27(01):211–22. | |
dc.relation | Walsh AM, Whitaker JW, Huang CC, Cherkas Y, Lamberth SL, Brodmerkel C, et al. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations. Genome Biol. 2016.17(1):79. | |
dc.relation | Maldonado-Montoro M, Canadas-Garre M, Gonzalez-Utrilla A, Plaza-Plaza JC, Calleja-Hernandez MY. Genetic and clinical biomarkers of tocilizumab response in patients with rheumatoid arthritis. Pharmacol Res. 2016.111:264–71. | |
dc.relation | Moya P, Salazar J, Arranz MJ, Díaz-Torné C, del Río E, Casademont J, et al. Methotrexate pharmacokinetic genetic variants are associated with outcome in rheumatoid arthritis patients. Pharmacogenomics. 2016.17(1):25–9. | |
dc.relation | Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN. Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology (Oxford). 2008.47(8):1156–9. | |
dc.relation | Chandran V, Siannis F, Rahman P, Pellett FJ, Farewell VT, Gladman DD. Folate pathway enzyme gene polymorphisms and the efficacy and toxicity of methotrexate in psoriatic arthritis. J Rheumatol. 2010.37(7):1508–12. | |
dc.relation | Potter C, Cordell HJ, Barton A, Daly AK, Hyrich KL, Mann DA, et al. Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NF$κ$B signalling pathways. Ann Rheum Dis. 2010.69(7):1315–20. | |
dc.relation | Netz U, Carter JV, Eichenberger MR, Dryden GW, Pan J, Rai SN, et al. Genetic polymorphisms predict response to anti-tumor necrosis factor treatment in Crohn’s disease. WORLD J Gastroenterol. 2017.23(27):4958–67 | |
dc.relation | Lech-Maranda E, Grzybowska-Izydorczyk O, Wyka K, Mlynarski W, Borowiec M, Antosik K, et al. Serum tumor necrosis factor-alpha and interleukin-10 levels as markers to predict outcome of patients with chronic lymphocytic leukemia in different risk groups defined by the IGHV mutation status. Arch Immunol Ther Exp (Warsz). 2012.60(6):477–86. | |
dc.relation | Liu C, Batliwalla F, Li W, Lee A, Roubenoff R, Beckman E, et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med. 14(9–10):575–81. | |
dc.relation | Jenko B, Lusa L, Tomsic M, Praprotnik S, Dolzan V. Clinical-pharmacogenetic predictive models for MTX discontinuation due to adverse events in rheumatoid arthritis. Pharmacogenomics J. 2017.17(5):412–8. | |
dc.relation | Jenko B, Tomšič M, Jekić B, Milić V, Dolžan V, Praprotnik S. Clinical Pharmacogenetic Models of Treatment Response to Methotrexate Monotherapy in Slovenian and Serbian Rheumatoid Arthritis Patients: Differences in Patient’s Management May Preclude Generalization of the Models. Front Pharmacol. 2018.9:20. | |
dc.relation | Fransen J, Kooloos WM, Wessels JAM, Huizinga TWJ, Guchelaar H-J, van Riel PLCM, et al. Clinical pharmacogenetic model to predict response of MTX monotherapy in patients with established rheumatoid arthritis after DMARD failure. Pharmacogenomics. 2012.13(9):1087–94. | |
dc.relation | de Rotte MCFJ, Pluijm SMF, de Jong PHP, Bulatović Ćalasan M, Wulffraat NM, Weel AEAM, et al. Development and validation of a prognostic multivariable model to predict insufficient clinical response to methotrexate in rheumatoid arthritis. Abu-Shakra M, editor. PLoS One. 2018.13(12):e0208534. | |
dc.relation | van Dijkhuizen EHP, Bulatovic Calasan M, Pluijm SMF, de Rotte MCFJ, Vastert SJ, Kamphuis S, et al. Prediction of methotrexate intolerance in juvenile idiopathic arthritis: a prospective, observational cohort study. Pediatr Rheumatol Online J. 2015.13:5. | |
dc.relation | Marwa OS, Kalthoum T, Wajih K, Kamel H. Association of IL17A and IL17F genes with rheumatoid arthritis disease and the impact of genetic polymorphisms on response to treatment. Immunol Lett. 2017.183:24–36. | |
dc.relation | Boughrara W, Benzaoui A, Aberkane M, Moghtit FZ, Dorgham S, Lardjam-Hetraf AS, et al. No correlation between MTHFR c.677 C >T, MTHFR c.1298 A >C, and ABCB1 c.3435 C >T polymorphisms and methotrexate therapeutic outcome of rheumatoid arthritis in West Algerian population. Inflamm Res. 2017.66(6):505–13 | |
dc.relation | Soukup T, Dosedel M, Pavek P, Nekvindova J, Barvik I, Bubancova I, et al. The impact of C677T and A1298C MTHFR polymorphisms on methotrexate therapeutic response in East Bohemian region rheumatoid arthritis patients. Rheumatol Int. 2015.35(7):1149–61. | |
dc.relation | Lima A, Seabra V, Bernardes M, Azevedo R, Sousa H, Medeiros R. Role of key TYMS polymorphisms on methotrexate therapeutic outcome in portuguese rheumatoid arthritis patients. PLoS One. 2014.9(10):e108165. | |
dc.relation | Lee YH, Ji JD, Bae S-C, Song GG. Associations between tumor necrosis factor-alpha (TNF-alpha) -308 and -238 G/A polymorphisms and shared epitope status and responsiveness to TNF-alpha blockers in rheumatoid arthritis: a metaanalysis update. J Rheumatol. 2010.37(4):740–6. | |
dc.relation | Cuchacovich M, Soto L, Edwardes M, Gutierrez M, Llanos C, Pacheco D, et al. Tumour necrosis factor (TNF)alpha -308 G/G promoter polymorphism and TNFalpha levels correlate with a better response to adalimumab in patients with rheumatoid arthritis. Scand J Rheumatol. 2006.35(6):435–40 | |
dc.relation | Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019.37(3):347–57. | |
dc.relation | Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Prim. 2018.4(1):18001 | |
dc.relation | Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis. JAMA. 2018.320(13):1360. | |
dc.relation | Tan EM, Smolen JS. Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. J Exp Med. 2016.213(10):1937–50. | |
dc.relation | Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012.11(3):234–50. | |
dc.relation | Aletaha D, Smolen JS. Joint damage in rheumatoid arthritis progresses in remission according to the Disease Activity Score in 28 joints and is driven by residual swollen joints. Arthritis Rheum. 2011.63(12):3702–11. | |
dc.relation | Wallach D. The cybernetics of TNF: Old views and newer ones. Semin Cell Dev Biol. 2016.50:105–14. | |
dc.relation | Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR, Miller A, et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res (Hoboken). 2015.67(7):891–7. | |
dc.relation | Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010.62(9):2569–81. | |
dc.relation | Díaz-Rojas JA, Dávila-Ramírez FA, Quintana-López G, Aristizábal-Gutiérrez F, Brown P. Prevalencia de artritis reumatoide en Colombia: una aproximación basada en la carga de la enfermedad durante el año 2005. Rev Colomb Reumatol. 2016.23(1):11–6. | |
dc.relation | Fernández-Ávila DG, Rincón-Riaño DN, Bernal-Macías S, Gutiérrez Dávila JM, Rosselli D. Prevalencia de la artritis reumatoide en Colombia según información del Sistema Integral de Información de la Protección Social. Rev Colomb Reumatol. 2019.26(2):83–7. | |
dc.relation | Cuenta de Alto Costo. Situación de la artritis reumatoide en Colombia 2016 [Internet]. Bogotá D.C.: Fondo Colombiano de Enfermedades de Alto Costo; 2017. p. 1–81. | |
dc.relation | Eriksson JK, Johansson K, Askling J, Neovius M. Costs for hospital care, drugs and lost work days in incident and prevalent rheumatoid arthritis: how large, and how are they distributed? Ann Rheum Dis. 2015.74(4):648–54. | |
dc.relation | Sokka T, Kautiainen H, Pincus T, Verstappen SMM, Aggarwal A, Alten R, et al. Work disability remains a major problem in rheumatoid arthritis in the 2000s: data from 32 countries in the QUEST-RA study. Arthritis Res Ther. 2010.12(2):R42. | |
dc.relation | Machado J, Moncada JC, Pineda R. Perfil de utilización de los anti-factor de necrosis tumoral en pacientes de Colombia. Biomédica. 2011.31(2):250. | |
dc.relation | Quintana G, Mora C, González A, Díaz JD. Costos directos de la artritis reumatoide temprana en el primer año de atención: simulación de tres situaciones clínicas en un hospital universitario de tercer nivel en Colombia. Biomédica. 2009.29(1):43. | |
dc.relation | Montoya N, Gómez L, Vélez M, Rosselli D. Costos directos del tratamiento de pacientes con artritis reumatoide en Medellín, Colombia. Rev Colomb Reumatol. 2011.18(1):26–33. | |
dc.relation | Aletaha D, Ward MM, Machold KP, Nell VPK, Stamm T, Smolen JS. Remission and active disease in rheumatoid arthritis: defining criteria for disease activity states. Arthritis Rheum. 2005.52(9):2625–36. | |
dc.relation | Mierau M, Schoels M, Gonda G, Fuchs J, Aletaha D, Smolen JS. Assessing remission in clinical practice. Rheumatology (Oxford). 2007.46(6):975–9. | |
dc.relation | Klarenbeek NB, Guler-Yuksel M, van der Kooij SM, Han KH, Ronday HK, Kerstens PJSM, et al. The impact of four dynamic, goal-steered treatment strategies on the 5-year outcomes of rheumatoid arthritis patients in the BeSt study. Ann Rheum Dis. 2011.70(6):1039–46. | |
dc.relation | Aletaha D, Smolen J, Ward MM. Measuring function in rheumatoid arthritis: Identifying reversible and irreversible components. Arthritis Rheum. 2006.54(9):2784–92. | |
dc.relation | van der Heijde DM, van ’t Hof M, van Riel PL, van de Putte LB. Development of a disease activity score based on judgment in clinical practice by rheumatologists. J Rheumatol. 1993.20(3):579–81. | |
dc.relation | Prevoo ML, van ’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995.38(1):44–8. | |
dc.relation | Bakker MF, Jacobs JWG, Verstappen SMM, Bijlsma JWJ. Tight control in the treatment of rheumatoid arthritis: efficacy and feasibility. Ann Rheum Dis. 2007.66 Suppl 3:iii56-60. | |
dc.relation | Fransen J, Stucki G, van Riel PLCM. Rheumatoid arthritis measures: Disease Activity Score (DAS), Disease Activity Score-28 (DAS28), Rapid Assessment of Disease Activity in Rheumatology (RADAR), and Rheumatoid Arthritis Disease Activity Index (RADAI). Arthritis Rheum. 2003.49(S5):S214–24. | |
dc.relation | Smolen JS, van der Heijde D, Machold KP, Aletaha D, Landewé R. Proposal for a new nomenclature of disease-modifying antirheumatic drugs: Table 1. Ann Rheum Dis. 2014.73(1):3–5. | |
dc.relation | Hoffmeister RT. Methotrexate therapy in rheumatoid arthritis: 15 years experience. Am J Med. 1983.75(6):69–73. | |
dc.relation | Grosflam J, Weinblatt ME. Methotrexate: mechanism of action, pharmacokinetics, clinical indications, and toxicity. Curr Opin Rheumatol. 1991.3(3):363–8. | |
dc.relation | Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am. 1997.23(4):739–55. | |
dc.relation | Segal R, Tartakovsky B, Rafael B. Methotrexate: Mechanism of Action in Rheumatoid Arthriti. Semin Arthritis Rheum. 1990.20(3):190–9. | |
dc.relation | Ministerio de Salud y Protección Social. Departamento Administrativo de Ciencia Tecnología e Innovación. Guía de Práctica Clínica para la detección temprana, diagnóstico y tratamiento de la artritis reumatoide. Guía No. GPC-2014-26. 2014; p. 1–876 | |
dc.relation | Kiely P, Walsh D, Williams R, Young A. Outcome in rheumatoid arthritis patients with continued conventional therapy for moderate disease activity--the early RA network (ERAN). Rheumatology. 2011.50(5):926–31. | |
dc.relation | Porter D, van Melckebeke J, Dale J, Messow CM, McConnachie A, Walker A, et al. Tumour necrosis factor inhibition versus rituximab for patients with rheumatoid arthritis who require biological treatment (ORBIT): an open-label, randomised controlled, non-inferiority, trial. Lancet (London, England). 2016.388(10041):239–47. | |
dc.relation | Weinblatt ME, Schiff M, Valente R, van der Heijde D, Citera G, Zhao C, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 2013.65(1):28–38. | |
dc.relation | Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet (London, England). 2017.390(10093):457–68. | |
dc.relation | Fleischmann R, Schiff M, van der Heijde D, Ramos-Remus C, Spindler A, Stanislav M, et al. Baricitinib, Methotrexate, or Combination in Patients With Rheumatoid Arthritis and No or Limited Prior Disease-Modifying Antirheumatic Drug Treatment. Arthritis Rheumatol (Hoboken, NJ). 2017.69(3):506–17. | |
dc.relation | Nam JL, Takase-Minegishi K, Ramiro S, Chatzidionysiou K, Smolen JS, van der Heijde D, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2017.76(6):1113–36. | |
dc.relation | Bang LM, Keating GM. Adalimumab - A Review of its Use in Rheumatoid Arthritis. BioDrugs. 2004.18(2):121–39. | |
dc.relation | Combe B, Logeart I, Belkacemi MC, Dadoun S, Schaeverbeke T, Daurès JP, et al. Comparison of the long-term outcome for patients with rheumatoid arthritis with persistent moderate disease activity or disease remission during the first year after diagnosis: data from the ESPOIR cohort. Ann Rheum Dis. 2015.74(4):724–9. | |
dc.relation | Jayakumar K, Norton S, Dixey J, James D, Gough A, Williams P, et al. Sustained clinical remission in rheumatoid arthritis: prevalence and prognostic factors in an inception cohort of patients treated with conventional DMARDS. Rheumatology (Oxford). 2012.51(1):169–75. | |
dc.relation | Svensson B, Andersson MLE, Bala S-V, Forslind K, Hafström I, BARFOT study group. Long-term sustained remission in a cohort study of patients with rheumatoid arthritis: choice of remission criteria. BMJ Open. 2013.3(9):e003554. | |
dc.relation | Owen SA, Lunt M, Hider SL, Bruce IN, Barton A, Thomson W. Testing pharmacogenetic indices to predict efficacy and toxicity of methotrexate monotherapy in a rheumatoid arthritis patient cohort. Arthritis Rheum. 2010.62(12):3827–9. | |
dc.relation | Zhu H, Deng F-Y, Mo X-B, Qiu Y-H, Lei S-F. Pharmacogenetics and pharmacogenomics for rheumatoid arthritis responsiveness to methotrexate treatment: the 2013 update. Pharmacogenomics. 2014.15(4):551–66. | |
dc.relation | Malik F, Ranganathan P. Methotrexate pharmacogenetics in rheumatoid arthritis: a status report. Pharmacogenomics. 2013.14(3):305–14. | |
dc.relation | Cuchacovich M, Ferreira L, Aliste M, Soto L, Cuenca J, Cruzat A, et al. Tumour necrosis factor-alpha (TNF-alpha) levels and influence of -308 TNF-alpha promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand J Rheumatol. 2004.33(4):228–32. | |
dc.relation | O’Rielly DD, Roslin NM, Beyene J, Pope A, Rahman P. TNF-alpha-308 G/A polymorphism and responsiveness to TNF-alpha blockade therapy in moderate to severe rheumatoid arthritis: a systematic review and meta-analysis. Pharmacogenomics J. 2009.9(3):161–7. | |
dc.relation | Umicevic Mirkov M, Cui J, Vermeulen SH, Stahl EA, Toonen EJM, Makkinje RR, et al. Genome-wide association analysis of anti-TNF drug response in patients with rheumatoid arthritis. Ann Rheum Dis. 2013.72(8):1375–81. | |
dc.relation | Montes A, Perez-Pampin E, Narváez J, Cañete JD, Navarro-Sarabia F, Moreira V, et al. Association of FCGR2A with the response to infliximab treatment of patients with rheumatoid arthritis. Pharmacogenet Genomics. 2014.24(5):238–45. | |
dc.relation | Lee YH, Bae S-C. Associations between PTPRC rs10919563 A/G and FCGR2A R131H polymorphisms and responsiveness to TNF blockers in rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2016.36(6):837–44. | |
dc.relation | Cui J, Saevarsdottir S, Thomson B, Padyukov L, van der Helm-van Mil AHM, Nititham J, et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy. Arthritis Rheum. 2010.62(7):1849–61. | |
dc.relation | Ferreiro-Iglesias A, Montes A, Perez-Pampin E, Canete JD, Raya E, Magro-Checa C, et al. Replication of PTPRC as genetic biomarker of response to TNF inhibitors in patients with rheumatoid arthritis. Pharmacogenomics J. 2016.16(2):137–40. | |
dc.relation | Dávila-Fajardo CL, van der Straaten T, Baak-Pablo R, Medarde Caballero C, Cabeza Barrera J, Huizinga TW, et al. FcGR genetic polymorphisms and the response to adalimumab in patients with rheumatoid arthritis. Pharmacogenomics. 2015.16(4):373–81. | |
dc.relation | Canhão H, Rodrigues AM, Santos MJ, Carmona-Fernandes D, Bettencourt BF, Cui J, et al. TRAF1/C5 but not PTPRC variants are potential predictors of rheumatoid arthritis response to anti-tumor necrosis factor therapy. Biomed Res Int. 2015.2015:490295. | |
dc.relation | Bek S, Bojesen AB, Nielsen J V, Sode J, Bank S, Vogel U, et al. Systematic review and meta-analysis: pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharmacogenomics J. 2017.17(5):403–11. | |
dc.relation | Cuppen BVJ, Welsing PMJ, Sprengers JJ, Bijlsma JWJ, Marijnissen ACA, van Laar JM, et al. Personalized biological treatment for rheumatoid arthritis: a systematic review with a focus on clinical applicability. Rheumatology. 2016.55(5):826–39. | |
dc.relation | Gavan S, Harrison M, Iglesias C, Barton A, Manca A, Payne K. Economics of Stratified Medicine in Rheumatoid Arthritis. Curr Rheumatol Rep. 2014.16(12):468. | |
dc.relation | Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang J-F, et al. Data mining in healthcare and biomedicine: A survey of the literature. J Med Syst. 2012.36(4):2431–48. | |
dc.relation | Jekic B, Lukovic L, Bunjevacki V, Milic V, Novakovic I, Damnjanovic T, et al. Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol. 2013.69(3):377–83. | |
dc.relation | Wijnen PA, Cremers JP, Nelemans PJ, Erckens RJ, Hoitsma E, Jansen TL, et al. Association of the TNF-alpha G-308A polymorphism with TNF-inhibitor response in sarcoidosis. Eur Respir J. 2014.43(6):1730–9. | |
dc.relation | Iannaccone CK, Lee YC, Cui J, Frits ML, Glass RJ, Plenge RM, et al. Using genetic and clinical data to understand response to disease-modifying anti-rheumatic drug therapy: data from the Brigham and Women’s Hospital Rheumatoid Arthritis Sequential Study. Rheumatology (Oxford). 2011.50(1):40–6. | |
dc.relation | Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014.506(7488):376+. | |
dc.relation | Hernandez I, Zhang Y, I. H, Y. Z. Using predictive analytics and big data to optimize pharmaceutical outcomes. Am J Heal Pharm. 2017.74(18):1494–500. | |
dc.relation | Shah SC, Kusiak A. Data mining and genetic algorithm based gene/SNP selection. Artif Intell Med. 2004.31(3):183–96. | |
dc.relation | Zayed N, Awad AB, El-Akel W, Doss W, Awad T, Radwan A, et al. The assessment of data mining for the prediction of therapeutic outcome in 3719 Egyptian patients with chronic hepatitis C. Clin Res Hepatol Gastroenterol. 2013.37(3):254–61. | |
dc.relation | Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002.35(5–6):352–9. | |
dc.relation | Wessels JAM, van der Kooij SM, le Cessie S, Kievit W, Barerra P, Allaart CF, et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 2007.56(6):1765–75. | |
dc.relation | van Asten F, Rovers MM, Lechanteur YTE, Smailhodzic D, Muether PS, Chen J, et al. Predicting non-response to ranibizumab in patients with neovascular age-related macular degeneration. Ophthalmic Epidemiol. 2014.21(6):347–55. | |
dc.relation | Yang Y, Niehaus KE, Walker TM, Iqbal Z, Walker AS, Wilson DJ, et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. BIOINFORMATICS. 2018.34(10):1666–71. | |
dc.relation | Yin J-Y, Li X-P, Li X-P, Xiao L, Zheng W, Chen J, et al. Prediction models for platinum-based chemotherapy response and toxicity in advanced NSCLC patients. Cancer Lett. 2016.377(1):65–73. | |
dc.relation | Gonzalez Bosquet J, Newtson AM, Chung RK, Thiel KW, Ginader T, Goodheart MJ, et al. Prediction of chemo-response in serous ovarian cancer. Mol Cancer. 2016.15(1):66. | |
dc.relation | James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Vol. 112. Springer; 2013. | |
dc.relation | Rashkin SR, Chua KC, Ho C, Mulkey F, Jiang C, Mushiroda T, et al. A Pharmacogenetic Prediction Model of Progression-Free Survival in Breast Cancer using Genome-Wide Genotyping Data from CALGB 40502 (Alliance). Clin Pharmacol Ther. 2019.105(3):738–45. | |
dc.relation | Naushad SM, Dorababu P, Rupasree Y, Pavani A, Raghunadharao D, Hussain T, et al. Classification and regression tree-based prediction of 6-mercaptopurine-induced leucopenia grades in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019.83(5):875–80. | |
dc.relation | de Rotte MCFJ, Pluijm SMF, de Jong PHP, Bulatović Ćalasan M, Wulffraat NM, Weel AEAM, et al. Development and validation of a prognostic multivariable model to predict insufficient clinical response to methotrexate in rheumatoid arthritis. Abu-Shakra M, editor. PLoS One. 2018.13(12):e0208534 | |
dc.relation | Maciukiewicz M, Marshe VS, Hauschild A-C, Foster JA, Rotzinger S, Kennedy JL, et al. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J Psychiatr Res. 2018.99:62–8. | |
dc.relation | Jiménez-Sousa MA, Berenguer J, Rallón N, Guzmán-Fulgencio M, López JC, Soriano V, et al. IL28RA polymorphism is associated with early hepatitis C virus (HCV) treatment failure in human immunodeficiency virus-/HCV-coinfected patients. J Viral Hepat. 2013.20(5):358–66. | |
dc.relation | Luxburg U von, Schölkopf B. Statistical Learning Theory: Models, Concepts, and Results. In 2011. p. 651–706. | |
dc.relation | Kureshi N, Abidi SSR, Blouin C. A Predictive Model for Personalized Therapeutic Interventions in Non-small Cell Lung Cancer. IEEE J Biomed Heal informatics. 2016.20(1):424–31. | |
dc.relation | KayvanJoo AH, Ebrahimi M, Haqshenas G. Prediction of hepatitis C virus interferon/ribavirin therapy outcome based on viral nucleotide attributes using machine learning algorithms. BMC Res Notes. 2014.7:565. | |
dc.relation | Bannerman-Thompson H, Bhaskara Rao M, Kasala S. Bagging, Boosting, and Random Forests Using R. In 2013. p. 101–49. | |
dc.relation | Khoshgoftaar TM, Van Hulse J, Napolitano A. Comparing Boosting and Bagging Techniques With Noisy and Imbalanced Data. IEEE Trans Syst Man, Cybern - Part A Syst Humans. 2011.41(3):552–68. | |
dc.relation | Freund Y, Schapire RE, others. Experiments with a new boosting algorithm. In: icml. 1996. p. 148–56. | |
dc.relation | Breiman L. Bagging predictors. Mach Learn. 1996.24(2):123–40. | |
dc.relation | Breiman L. Random Forests. Mach Learn. 2001.45(1):5–32. | |
dc.relation | Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010.31(14):2225–36. | |
dc.relation | Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst their Appl. 1998.13(4):18–28. | |
dc.relation | Zhang Y, Wang H, Mao X, Guo Q, Li W, Wang X, et al. A Novel Circulating miRNA-Based Model Predicts the Response to Tripterysium Glycosides Tablets: Moving Toward Model-Based Precision Medicine in Rheumatoid Arthritis. Front Pharmacol. 2018.9(MAY):378. | |
dc.relation | Daemen A, Gevaert O, Ojeda F, Debucquoy A, Suykens JA, Sempoux C, et al. A kernel-based integration of genome-wide data for clinical decision support. Genome Med. 2009.1(4):39. | |
dc.relation | Kim J-W, Sharma V, Ryan ND. Predicting Methylphenidate Response in ADHD Using Machine Learning Approaches. Int J Neuropsychopharmacol. 2015.18(11):pyv052. | |
dc.relation | Vapnik V. The nature of statistical learning theory. Springer science & business media; 2013. | |
dc.relation | Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995.20(3):273–97. | |
dc.relation | McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943.5(4):115–33. | |
dc.relation | Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras E, et al. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp Hematol. 2010.38(5):426–33 | |
dc.relation | Lin E, Hwang Y, Wang S-C, Gu ZJ, Chen EY. An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics. 2006.7(7):1017–24. | |
dc.relation | Lin C-C, Wang Y-C, Chen J-Y, Liou Y-J, Bai Y-M, Lai I-C, et al. Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data. Comput Methods Programs Biomed. 2008.91(2):91–9. | |
dc.relation | Hirose A. Complex-valued neural networks: Advances and applications. Vol. 18. John Wiley & Sons; 2013. | |
dc.relation | Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018.77:354–77. | |
dc.relation | Suzuki K. Artificial neural networks: methodological advances and biomedical applications. BoD--Books on Demand; 2011. | |
dc.relation | Kumar V, Mishra BK, Mazzara M, Thanh DNH, Verma A. Prediction of Malignant and Benign Breast Cancer: A Data Mining Approach in Healthcare Applications. In 2020. p. 435–42. | |
dc.relation | Krishna CL, Reddy PVS. An Efficient Deep Neural Network Multilayer Perceptron Based Classifier in Healthcare System. In: 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). IEEE; 2019. p. 1–6 | |
dc.relation | Kutlay MA, Gagula-Palalic S. Application Of Machine Learning In Healthcare: Analysis On MHEALTH Dataset. Southeast Eur J Soft Comput. 2016.4(2). | |
dc.relation | Naraei P, Abhari A, Sadeghian A. Application of multilayer perceptron neural networks and support vector machines in classification of healthcare data. In: 2016 Future Technologies Conference (FTC). IEEE; 2016. p. 848–52. | |
dc.relation | Sordo M. Introduction to neural networks in healthcare. Open Clin Knowl Manag Med care. 2002. | |
dc.relation | Parr T, Howard J. The matrix calculus you need for deep learning. arXiv Prepr arXiv180201528. 2018. | |
dc.relation | Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing. 2018.300:70–9. | |
dc.relation | Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H. Advancing feature selection research. ASU Featur Sel Repos Arizona State Univ. 2010.:1–28. | |
dc.relation | Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, et al. Construction of possible integrated predictive index based on EGFR and ANXA3 polymorphisms for chemotherapy response in fluoropyrimidine-treated Japanese gastric cancer patients using a bioinformatic method. BMC Cancer. 2015.15. | |
dc.relation | Chen T, Chen L. Prediction of Clinical Outcome for All Stages and Multiple Cell Types of Non-small Cell Lung Cancer in Five Countries Using Lung Cancer Prognostic Index. EBioMedicine. 2014.1(2–3):156–66. | |
dc.relation | Hanchuan Peng, Fuhui Long, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005.27(8):1226–38. | |
dc.relation | Cover TM. The Best Two Independent Measurements Are Not the Two Best. IEEE Trans Syst Man Cybern. 1974.SMC-4(1):116–7. | |
dc.relation | Jain AK, Duin PW, Jianchang Mao. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell. 2000.22(1):4–37. | |
dc.relation | DING C, PENG H. MINIMUM REDUNDANCY FEATURE SELECTION FROM MICROARRAY GENE EXPRESSION DATA. J Bioinform Comput Biol. 2005.03(02):185–205. | |
dc.relation | Beh EJ. Simple Correspondence Analysis: A Bibliographic Review. Int Stat Rev. 2007.72(2):257–84. | |
dc.relation | Greenacre M. Correspondence analysis in practice. CRC press; 2017. | |
dc.relation | Greenacre M, Hastie T. The Geometric Interpretation of Correspondence Analysis. J Am Stat Assoc. 1987.82(398):437–47. | |
dc.relation | Kuhn M. Package ‘caret’ [Internet]. CRAN Repository. 2020; p. 1–223. Available from: https://cran.r-project.org/web/packages/caret/caret.pdf | |
dc.relation | Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci. 2002.99(10):6562–6 | |
dc.relation | The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. Higgins JP, Green S, editors. Chichester, UK: John Wiley & Sons, Ltd; 2008. | |
dc.relation | Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009.6(7):e1000097. | |
dc.relation | Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering – A systematic literature review. Inf Softw Technol. 2009.51(1):7–15 | |
dc.relation | Mariano DCB, Leite C, Santos LHS, Rocha REO, Cardoso De R, Minardi M, et al. A guide to performing systematic literature reviews in bioinformatics. 2017. | |
dc.relation | Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med. 2015.162(1):W1. | |
dc.relation | Lin E, Kuo P-H, Liu Y-L, Yu YW-Y, Yang AC, Tsai S-J. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front PSYCHIATRY. 2018.9. | |
dc.relation | Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015.16(2):85–97. | |
dc.relation | Shahid M, Choi TG, Nguyen MN, Matondo A, Jo YH, Yoo JY, et al. An 8-gene signature for prediction of prognosis and chemoresponse in non-small cell lung cancer. Oncotarget. 2016.7(52):86561–72. | |
dc.relation | Walter RB, Othus M, Burnett AK, Lowenberg B, Kantarjian HM, Ossenkoppele GJ, et al. Resistance prediction in AML: analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia. 2015.29(2):312–20. | |
dc.relation | S.P. L, T.M. B, C.D. H, G. S, C. D. A multimarker model to predict outcome in tamoxifen-treated breast cancer patients. Clin Cancer Res. 2006.12(4):1175–83. | |
dc.relation | Beerenwinkel N, Montazeri H, Schuhmacher H, Knupfer P, von Wyl V, Furrer H, et al. The individualized genetic barrier predicts treatment response in a large cohort of HIV-1 infected patients. PLoS Comput Biol. 2013.9(8):e1003203. | |
dc.relation | Kuo H-C, Wong HS-C, Chang W-P, Chen B-K, Wu M-S, Yang KD, et al. Prediction for Intravenous Immunoglobulin Resistance by Using Weighted Genetic Risk Score Identified From Genome-Wide Association Study in Kawasaki Disease. Circ Cardiovasc Genet. 2017.10(5). | |
dc.relation | Xu M, Tantisira KG, Wu A, Litonjua AA, Chu J, Himes BE, et al. Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers. BMC Med Genet. 2011.12:90. | |
dc.relation | Xie S, Ma W, Shen M, Guo Q, Wang E, Huang C, et al. Clinical and pharmacogenetics associated with recovery time from general anesthesia. Pharmacogenomics. 2018.19(14):1111–23. | |
dc.relation | O’Brien TR, Everhart JE, Morgan TR, Lok AS, Chung RT, Shao Y, et al. An IL28B genotype-based clinical prediction model for treatment of chronic hepatitis C. PLoS One. 2011.6(7):e20904. | |
dc.relation | Khalid S, Khalil T, Nasreen S. A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference. IEEE; 2014. p. 372–8. | |
dc.relation | Liu H, Motoda H, editors. Feature Extraction, Construction and Selection [Internet]. Boston, MA: Springer US; 1998. | |
dc.relation | Holmes JH. Applying a Learning Classifier System to Mining Explanatory and Predictive Models from a Large Clinical Database. In 2001. p. 103–13. | |
dc.relation | Lever J, Krzywinski M, Altman N. Model selection and overfitting. Nat Methods. 2016.13(9):703–4. | |
dc.relation | Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance. BMC Med Inform Decis Mak. 2012.12:8. | |
dc.relation | Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018.74(3):785–94. | |
dc.relation | Schrider DR, Kern AD. Supervised Machine Learning for Population Genetics: A New Paradigm. Trends Genet. 2018.34(4):301–12. | |
dc.relation | Bridges M, Heron EA, O’Dushlaine C, Segurado R, Morris D, Corvin A, et al. Genetic Classification of Populations Using Supervised Learning. Kliebenstein DJ, editor. PLoS One. 2011.6(5):e14802. | |
dc.relation | Concato J. Observational versus experimental studies: what’s the evidence for a hierarchy? NeuroRx. 2004.1(3):341–7. | |
dc.relation | Boyko EJ. Observational research opportunities and limitations. J Diabetes Complications. 27(6):642–8. | |
dc.relation | Rodin AS, Gogoshin G, Boerwinkle E. Systems biology data analysis methodology in pharmacogenomics. Pharmacogenomics. 2011.12(9):1349–60. | |
dc.relation | Ellis JA, Ong B. The MassARRAY® System for Targeted SNP Genotyping. In 2017. p. 77–94. | |
dc.relation | Mancini MC, Cardoso-Silva CB, Costa EA, Marconi TG, Garcia AAF, De Souza AP. New Developments in Sugarcane Genetics and Genomics. In: Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Cham: Springer International Publishing; 2017. p. 159–74. | |
dc.relation | Fardo DW, Ionita-Laza I, Lange C. On Quality Control Measures in Genome-Wide Association Studies: A Test to Assess the Genotyping Quality of Individual Probands in Family-Based Association Studies and an Application to the HapMap Data. Dermitzakis ET, editor. PLoS Genet. 2009.5(7):e1000572. | |
dc.relation | Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020.48(D1):D941–7. | |
dc.relation | Bedoya G, Montoya P, Garcia J, Soto I, Bourgeois S, Carvajal L, et al. Admixture dynamics in Hispanics: A shift in the nuclear genetic ancestry of a South American population isolate. Proc Natl Acad Sci. 2006.103(19):7234–9. | |
dc.relation | Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006.7(10):781–91. | |
dc.relation | Li W. Three lectures on case control genetic association analysis. Brief Bioinform. 2007.9(1):1–13. | |
dc.relation | Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic statistical analysis in genetic case-control studies. Nat Protoc. 2011.6(2):121–33. | |
dc.relation | Tang F, Ishwaran H. Random Forest Missing Data Algorithms. Stat Anal Data Min. 2017.10(6):363–77. | |
dc.relation | Rodriguez S, Gaunt TR, Day INM. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am J Epidemiol. 2009.169(4):505–14. | |
dc.relation | Horita N, Kaneko T. Genetic model selection for a case-control study and a meta-analysis. Meta gene. 2015.5:1–8. | |
dc.relation | Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005.24(9):1291–306. | |
dc.relation | TYMS thymidylate synthetase [ Homo sapiens (human) ] [Internet]. NCBI Gene. 2020; Available from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=7298 | |
dc.relation | ABCC2 ATP binding cassette subfamily C member 2 [ Homo sapiens (human) ] [Internet]. NCBI Gene. 2020; Available from: https://www.ncbi.nlm.nih.gov/gene/1244 | |
dc.relation | Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008.35(4):572–9. | |
dc.relation | ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase [ Homo sapiens (human) ] [Internet]. NCBI Gene. 2020; Available from: https://www.ncbi.nlm.nih.gov/gene/471 | |
dc.relation | Lee YC, Cui J, Costenbader KH, Shadick NA, Weinblatt ME, Karlson EW. Investigation of candidate polymorphisms and disease activity in rheumatoid arthritis patients on methotrexate. Rheumatology (Oxford). 2009.48(6):613–7. | |
dc.relation | Iannaccone CK, Lee YC, Cui J, Frits ML, Glass RJ, Plenge RM, et al. Using genetic and clinical data to understand response to disease-modifying anti-rheumatic drug therapy: data from the Brigham and Women’s Hospital Rheumatoid Arthritis Sequential Study. Rheumatology (Oxford). 2011.50(1):40–6. | |
dc.relation | SLC19A1 solute carrier family 19 member 1 [ Homo sapiens (human) ] [Internet]. NCBI Gene. 2020; Available from: https://www.ncbi.nlm.nih.gov/gene/6573 | |
dc.relation | Owen SA, Hider SL, Martin P, Bruce IN, Barton A, Thomson W. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J. 2013.13(3):227–34. | |
dc.relation | MTHFR methylenetetrahydrofolate reductase [ Homo sapiens (human) ] [Internet]. NCBI Gene. 2020; Available from: https://www.ncbi.nlm.nih.gov/gene/4524 | |
dc.relation | Wessels JAM, de Vries-Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop-Ruiterman YPM, Allaart CF, et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum. 2006.54(4):1087–95. | |
dc.relation | Plaza-Plaza JC, Aguilera M, Cañadas-Garre M, Chemello C, González-Utrilla A, Faus Dader MJ, et al. Pharmacogenetic polymorphisms contributing to toxicity induced by methotrexate in the southern Spanish population with rheumatoid arthritis. OMICS. 2012.16(11):589–95. | |
dc.relation | STEINBROCKER O. THERAPEUTIC CRITERIA IN RHEUMATOID ARTHRITIS. JAMA J Am Med Assoc. 1949.140(8):659. | |
dc.relation | Julià M, Guilabert A, Lozano F, Suarez-Casasús B, Moreno N, Carrascosa JM, et al. The role of Fcγ receptor polymorphisms in the response to anti–tumor necrosis factor therapy in psoriasis A pharmacogenetic study. JAMA dermatology. 2013.149(9):1033–9. | |
dc.relation | Arandjelovic O. Prediction of health outcomes using big (health) data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 2543–6. | |
dc.relation | Ravizza S, Huschto T, Adamov A, Böhm L, Büsser A, Flöther FF, et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat Med. 2019.25(1):57–9. | |
dc.relation | Lee J, An JY, Choi MG, Park SH, Kim ST, Lee JH, et al. Deep Learning-Based Survival Analysis Identified Associations Between Molecular Subtype and Optimal Adjuvant Treatment of Patients With Gastric Cancer. JCO Clin cancer informatics. 2018.2(2):1–14. | |
dc.relation | Liang Z, Huang JX, Zeng X, Zhang G. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions. BMC Med Genomics. 2016.9(2). | |
dc.relation | Rizk HH, Hamdy NM, Al-Ansari NL, El-Mesallamy HO. Pretreatment Predictors of Response to PegIFN-RBV Therapy in Egyptian Patients with HCV Genotype 4. PLoS One. 2016.11(4):e0153895. | |
dc.relation | Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J, et al. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol. 2015.25(4):441–53. | |
dc.relation | Kim S-K, Kim S-Y, Kim J-H, Roh SA, Cho D-H, Kim YS, et al. A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol Oncol. 2014.8(8):1653–66. | |
dc.relation | Zhang W, Ota T, Shridhar V, Chien J, Wu B, Kuang R. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput Biol. 2013.9(3):e1002975. | |
dc.relation | Vidal-Castineira JR, Lopez-Vazquez A, Alonso-Arias R, Moro-Garcia MA, Martinez-Camblor P, Melon S, et al. A predictive model of treatment outcome in patients with chronic HCV infection using IL28B and PD-1 genotyping. J Hepatol. 2012.56(6):1230–8. | |
dc.relation | Neukam K, Camacho A, Caruz A, Rallón N, Torres-Cornejo A, Rockstroh JK, et al. Prediction of response to pegylated interferon plus ribavirin in HIV/hepatitis C virus (HCV)-coinfected patients using HCV genotype, IL28B variations, and HCV-RNA load. J Hepatol. 2012.56(4):788–94. | |
dc.relation | Alterovitz G, Tuthill C, Rios I, Modelska K, Sonis S. Personalized medicine for mucositis: Bayesian networks identify unique gene clusters which predict the response to gamma-D-glutamyl-L-tryptophan (SCV-07) for the attenuation of chemoradiation-induced oral mucositis. Oral Oncol. 2011.47(10):951–5. | |
dc.relation | Kurosaki M, Tanaka Y, Nishida N, Sakamoto N, Enomoto N, Honda M, et al. Pre-treatment prediction of response to pegylated-interferon plus ribavirin for chronic hepatitis C using genetic polymorphism in IL28B and viral factors. J Hepatol. 2011.54(3):439–48. | |
dc.relation | Petrovski S, Szoeke CE, Sheffield LJ, D’souza W, Huggins RM, O’brien TJ. Multi-SNP pharmacogenomic classifier is superior to single-SNP models for predicting drug outcome in complex diseases. Pharmacogenet Genomics. 2009.19(2):147–52. | |
dc.relation | Wu X, Lu C, Ye Y, Chang J, Yang H, Lin J, et al. Germline genetic variations in drug action pathways predict clinical outcomes in advanced lung cancer treated with platinum-based chemotherapy. Pharmacogenet Genomics. 2008.18(11):955–65. | |
dc.relation | Modlich O, Prisack H-B, Munnes M, Audretsch W, Bojar H. Predictors of primary breast cancers responsiveness to preoperative epirubicin/cyclophosphamide-based chemotherapy: translation of microarray data into clinically useful predictive signatures. J Transl Med. 2005.3:32. | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Modelo farmacogenético y clínico para la predicción de desenlaces en pacientes con artritis reumatoide tratados con metotrexato y adalimumab | |
dc.type | Otro | |