dc.contributorGonzález Osorio, Fabio Augusto
dc.contributorPerdomo Charry, Oscar Julián
dc.contributorMindLab
dc.creatorde la Pava Rodriguez, Melissa
dc.date.accessioned2022-02-22T16:35:41Z
dc.date.available2022-02-22T16:35:41Z
dc.date.created2022-02-22T16:35:41Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81038
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractDiabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina. It can cause blindness if left undiagnosed and untreated. The ophthalmologist performs the diagnosis by screening each patient and detecting in ocular imaging the lesions caused by DR, namely, microaneurisms, hemorrhages, cotton wool spots, venous beading and neovascularization. However, the analysis of ocular findings is cumbersome, time-consuming, and demanding. Due to the insufficient amount of trained specialists to diagnose the illness, and the actual growing population with DR, it is important to develop a method to assist the DR diagnosis. This thesis presents two approaches for the automatic classification of DR using eye fundus images. The first one utilizes convolutional neural networks, transfer learning and shallow machine learning classifiers to identify the main ocular lesions related to DR and then use them to diagnose the illness. The second one is a multitask model which predicts simultaneously ocular lesions and DR. These approaches follow a similar workflow to that of clinicians, providing information that can be interpreted clinically to support the prediction. To achieve this goal a subset of the kaggle EyePACS and the Messidor-2 datasets, are labeled with ocular lesions by a certified opthalmologist. The kaggle EyePACS subset is used as training set and the Messidor-2 dataset is used as test set for both, the lesions and DR classification models. The results indicate that both methods achieve results comparable with state-of-the-art performances. The best results are obtained using the first approach with a multi layer perceptron as classifier for the automatic detection of DR, however, the multitask approach lead to similar results and has a simpler architecture.
dc.description.abstractLa retinopatía diabética (RD) es el resultado de una complicacion de la diabetes que afecta la retina. Puede causar ceguera si no se diagnostica ni se trata. El diagnóstico de esta enfermedad se hace mediante el escaneo de cada paciente y el análisis de imágenes oculares para detectar lesiones causadas por la RD, como microaneurismas, hemorragias, manchas algodonosas, arrosamiento venoso y neovascularización. Sin embargo, el análisis de las lesiones oculares es engorroso, lento y exigente. Debido a la cantidad insuficiente de especialistas capacitados para diagnosticar la enfermedad y al crecimiento actual de la población con RD, es importante desarrollar un método para ayudar en el diagnóstico de esta enfermedad. Esta tesis presenta dos enfoques para la clasificación automática de la RD utilizando imágenes de fondo de ojo. El primero utiliza redes neuronales convolucionales, transferencia de aprendizaje y clasificadores clásicos de aprendizaje de máquina para identificar las principales lesiones oculares relacionadas con la RD y luego usarlas para diagnosticar la enfermedad. El segundo es un modelo multitarea que predice simultáneamente lesiones oculares y RD. Estos enfoques siguen un flujo de trabajo similar al de los médicos, proporcionando información que puede interpretarse clínicamente para respaldar la predicción. Para lograr este objetivo, un subconjunto de las bases de datos kaggle EyePACS y Messidor-2 fueron etiquetados con lesiones oculares por un oftalmólogo certificado. El subconjunto de kaggle EyePACS se utiliza como conjunto de entrenamiento y el de Messidor-2 se utiliza como conjunto de prueba tanto para los modelos de detección de lesiones, como para los de clasificación de RD. Los resultados indican que ambos enfoques logran desempeños comparables con los métodos del estado del arte. Los mejores resultados se obtienen utilizando el primer enfoque con un perceptrón multicapa como clasificador para la detección automática de RD, sin embargo, el enfoque multitarea conduce a resultados similares y tiene una arquitectura más simple. (Texto tomado de la fuente).
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisherDepartamento de Ingeniería de Sistemas e Industrial
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAutomatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. In: BioMed Research International 2019 (2019), S. 13.
dc.relationAbdelmaksoud, Eman ; El-Sappagh, Shaker ; Barakat, Sherif ; Abuhmed, Tamer ; Elmogy, Mohammed: Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. In: IEEE Access 9 (2021), Nr. January, S. 15939–15960. http://dx.doi.org/10.1109/ACCESS.2021.3052870. – DOI 10.1109/ACCESS.2021.3052870. – ISSN 21693536
dc.relationAbramoff, Michael D.: Datasets and Algorithms. https://medicine.uiowa.edu/eye/abramoff, 2015. – [Online; accessed 15-January-2020]
dc.relationAbràmoff, Michael D. ; Lavin, Philip T. ; Birch, Michele ; Shah, Nilay ; Folk, James C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. In: npj Digital Medicine 1 (2018), Nr. 1. http://dx.doi.org/10.1038/s41746-018-0040-6. – DOI 10.1038/s41746–018–0040–6. – ISSN 2398–6352
dc.relationAlaguselvi, R. ; Murugan, Kalpana: Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. In: Signal, Image and Video Processing 15 (2021), Nr. 4, 797–805. http://dx.doi.org/10.1007/s11760-020-01798-x. – DOI 10.1007/s11760–020–01798–x. – ISSN 18631711
dc.relationAmin, Javeria ; Sharif, Muhammad ; Yasmin, Mussarat ; Ali, Hussam ; Fernandes, Steven L.: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions
dc.relationAntal, Bálint ; Hajdu, András: An ensemble-based system for automatic screening of diabetic retinopathy. In: Knowledge-Based Systems 60 (2014), Nr.January, S. 20–27. http://dx.doi.org/10.1016/j.knosys.2013.12.023. – DOI 10.1016/j.knosys.2013.12.023. – ISSN 09507051
dc.relationAshikur, Md ; Arifur, Md ; Ahmed, Juena: Automated Detection of Diabetic Retinopathy using Deep Residual Learning
dc.relationBeagley, Jessica ; Guariguata, Leonor ; Weil, Clara ; Motala, Ayesha A.: Global estimates of undiagnosed diabetes in adults. In: Diabetes Research and Clinical Practice 103 (2014), Nr. 2, 150–160. http://dx.doi.org/10.1016/j.diabres.2013.11.001. –DOI 10.1016/j.diabres.2013.11.001. – ISSN 18728227
dc.relationBhaskaranand, Malavika ; Ramachandra, Chaithanya ; Bhat, Sandeep ; Cuadros, Jorge ; Nittala, Muneeswar G. ; Sadda, Srinivas R. ; Solanki, Kaushal: The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. In: Diabetes Technology and Therapeutics 21 (2019), Nr. 11, S. 635–643. http://dx.doi.org/10.1089/dia.2019.0164. – DOI 10.1089/dia.2019.0164. – ISSN 15578593
dc.relationBresnick, George H. ; Mukamel, Dana B. ; Dickinson, John C. ; Cole, David R.: A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. In: Ophthalmology 107 (2000), Nr. 1, S. 19–24. http://dx.doi.org/10.1016/S0161-6420(99)00010-X. – DOI 10.1016/S0161– 6420(99)00010–X. – ISSN 01616420
dc.relationCarvalho, C. ; Pedrosa, João ; Maia, Carolina ; Penas, S. ; Carneiro, Â. ; Mendonça, L. ; Mendonça, A. M. ; Campilho, A.: A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images. In: ICIAR, 2020
dc.relationChen, Benzhi ; Wang, Lisheng ; Wang, Xiuying ; Sun, Jian ; Huang, Yijie ; Feng, Dagan ; Xu, Zongben: Abnormality detection in retinal image by individualized background learning. In: Pattern Recognition 102 (2020), 107209. http://dx.doi.org/10.1016/j.patcog.2020.107209. – DOI 10.1016/j.patcog.2020.107209. – ISSN 00313203
dc.relationChen, Weijie ; Sahiner, Berkman ; Samuelson, Frank ; Pezeshk, Aria ; Petrick, Nicholas: Calibration of medical diagnostic classifier scores to the probability of disease. In: Statistical Methods in Medical Research 27 (2018), Nr. 5, S. 1394–1409. http://dx.doi.org/10.1177/0962280216661371. – DOI 10.1177/0962280216661371. – ISBN 0962280216
dc.relationChudzik, Piotr ; Majumdar, Somshubra ; Calivá, Francesco ; Al-Diri, Bashir ; Hunter, Andrew: Microaneurysm detection using fully convolutional neural networks. In: Computer Methods and Programs in Biomedicine 158 (2018), S. 185–192. http://dx.doi.org/10.1016/j.cmpb.2018.02.016. – DOI 10.1016/j.cmpb.2018.02.016. – ISSN 18727565
dc.relationCrawshaw, Michael: Multi-Task Learning with Deep Neural Networks: A Survey. (2020). http://arxiv.org/abs/2009.09796
dc.relationCun, Y. L. ; Boser, B. ; Denker, J. S. ; Henderson, D. ; Howard, R. E. ; Hubbard, W. ; Jackel, L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: Advances in neural information processing systems 2 (1989), S. 396–404
dc.relationDecencière, E. ; Cazuguel, G. ; Zhang, X. ; Thibault, G. ; Klein, J. C. ; Meyer, F. ; Marcotegui, B. ; Quellec, G. ; Lamard, M. ; Danno, R. ; Elie, D. ; Massin, P. ; Viktor, Z. ; Erginay, A. ; Laÿ, B. ; Chabouis, A.: TeleOphta: Machine learning and image processing methods for teleophthalmology
dc.relationDing, Jie ; Wong, Tien Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. In: Current Diabetes Reports 12 (2012), Nr. 4, S. 346–354. http://dx.doi.org/10.1007/s11892-012-0283-6. – DOI 10.1007/s11892–012–0283–6. –ISSN 15344827
dc.relationGargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopathy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, 962–969. http://dx.doi.org/10.1016/j.ophtha.2017.02.008. – DOI 10.1016/j.ophtha.2017.02.008. –ISSN 15494713
dc.relationGayathri, S. ; Gopi, Varun P. ; Palanisamy, P.: A lightweight CNN for Diabetic Retinopathy classification from fundus images. In: Biomedical Signal Processing and Control 62 (2020), Nr. August, 102115. http://dx.doi.org/10.1016/j.bspc.2020. 102115. – DOI 10.1016/j.bspc.2020.102115. – ISSN 17468108
dc.relationGoldbaum, M. H.: STructured Analysis of the Retina Project. http://cecas. clemson.edu/~ahoover/stare. Version: 1975
dc.relationGulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410. http://dx.doi.org/10.1001/jama.2016.17216. – DOI 10.1001/jama.2016.17216. – ISSN 15383598
dc.relationGulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316
dc.relationHassan, Siti Syafinah A. ; Bong, David B. ; Premsenthil, Mallika: Detection of Neovascularization in Diabetic Retinopathy. In: Journal of Digital Imaging 25 (2012), S. 437
dc.relationHe, Along ; Li, Tao ; Li, Ning ; Wang, Kai ; Fu, Huazhu: CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 1, S. 143–153. http://dx.doi.org/10.1109/TMI. 2020.3023463. – DOI 10.1109/TMI.2020.3023463. – ISSN 1558254X
dc.relationHeijden, Amber A. d. ; Abramoff, Michael D. ; Verbraak, Frank ; Hecke, Manon V. ; Liem, Albert ; Nijpels, Giel: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System
dc.relationHoover, A. D. ; Kouznetsova, V. ; Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. In: IEEE Transactions on Medical Imaging 19 (2000), March, Nr. 3, S. 203–210. http://dx.doi.org/10.1109/42.845178. – DOI 10.1109/42.845178. – ISSN 0278–0062
dc.relationImaging Experts, ADCIS: A T.: Messidor. https://www.adcis.net/en/third-party/messidor/, 2008. – [Online; accessed 23-May-2019]
dc.relationImaging Experts, ADCIS: A T.: Messidor-2. https://www.adcis.net/en/third-party/messidor2/, 2015. – [Online; accessed 25-January-2020]
dc.relationJames Talks, Stephen ; Manjunath, Vina ; H W Steel, David ; Peto, Tunde ; Taylor, Roy: New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. In: Br J Ophthalmol 99 (2015), S. 1606–1609
dc.relationKaggle: Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabeticretinopathy-detection, 2015. – [Online; accessed 10-January-2020]
dc.relationKauppi, T. ; Kalesnykiene, V. ; Kamarainen, J. K. ; Lensu, L. ; Sorri, I. ; Raninen, A. ; Voutilainen, R. ; Pietilä, J. ; Kälviäinen, H. ; Uusitalo, H.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine Vision Conference 2007 (2007), S. 1–18. http://dx.doi.org/10.5244/C.21.15. – DOI 10.5244/C.21.15
dc.relationKauppi, Tomi ; Kalesnykiene, Valentina ; Kamarainen, Joni-kristian ; Lensu, Lasse ; Sorri, Iiris ; Uusitalo, Hannu ; Kalviainen, Heikki Pietila, Juhani: DIARETDB0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland. (2006), 1–17. http://www.siue.edu/$\sim$sumbaug/RetinalProjectPapers/DiabeticRetinopathyImageDatabaseInformation.pdf
dc.relationLam, Carson ; Yu, Caroline ; Huang, Laura ; Rubin, Daniel: Retinal Lesion Detection With Deep Learning Using Image Patches. (2018)
dc.relationLeibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. http://dx.doi.org/10. 1038/s41598-017-17876-z. – DOI 10.1038/s41598–017–17876–z. – ISSN 20452322
dc.relationLi, Tao ; Gao, Yingqi ; Wang, Kai ; Guo, Song ; Liu, Hanruo ; Kang, Hong: Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. In: Information Sciences 501 (2019), 511 - 522. http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.06.011. – DOI https://doi.org/10.1016/j.ins.2019.06.011. – ISSN 0020–0255
dc.relationLi, Wong ; Acharya, U R. ; Venkatesh, Y V. ; Chee, Caroline ; Choo, Lim ; Ng, E Y K.: Identification of different stages of diabetic retinopathy using retinal optical images. 178 (2008), S. 106–121. http://dx.doi.org/10.1016/j.ins.2007.07.020. – DOI 10.1016/j.ins.2007.07.020
dc.relationLi, Xiaogang ; Pang, Tiantian ; Xiong, Biao ; Liu, Weixiang ; Liang, Ping ; Wang, Tianfu: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proceedings - 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017 2018-Janua (2018), Nr. 978, S. 1–11. http://dx.doi.org/10.1109/CISP-BMEI. 2017.8301998. – DOI 10.1109/CISP–BMEI.2017.8301998. ISBN 9781538619377
dc.relationMeriaudeau, Prasanna Porwal; Samiksha Pachade; Ravi Kamble; Manesh Kokare; Girish Deshmukh; Vivek Sahasrabuddhe; F.: Indian Diabetic Retinopathy Image Dataset (IDRiD). (2018). http://dx.doi.org/10.21227/H25W98. – DOI 10.21227/H25W98
dc.relationMookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Lim, Choo M. ; Ng, E. Y. ; Laude, Augustinus: Computer-aided diagnosis of diabetic retinopathy: A review. In: Computers in Biology and Medicine 43 (2013), Nr. 12, S. 2136–2155. http://dx.doi.org/10.1016/j.compbiomed.2013.10.007. – DOI 10.1016/j.compbiomed.2013.10.007. – ISSN 00104825
dc.relation(ODIR), Ocular Disease Intelligent R.: ODIR-5K. https://academictorrents.com/details/cf3b8d5ecdd4284eb9b3a80fcfe9b1d621548f72, 2019. – [Online; accessed 13-May-2022]
dc.relationOrlando, JosAn ensemble deep learning based approach for red lesion detection in fundus images I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: lista. An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565
dc.relationOrlando, Josa I. ; Prokofyeva, Elena ; Fresno, Mariana del ; Blaschko, Matthew B.: An ensemble deep learning based approach for red lesion detection in fundus images. In: Computer Methods and Programs in Biomedicine 153 (2018), S. 115–127. http://dx.doi.org/10.1016/j.cmpb.2017.10.017. – DOI 10.1016/j.cmpb.2017.10.017. – ISSN 18727565
dc.relationPaing, May P. ; Choomchuay, Somsak: Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images. (2016). ISBN 9781509039401
dc.relationPandeya, Y.R. ; Lee, J: Deep learning-based late fusion of multimodal information for emotion classification of music video. In: Multimed Tools Appl 80 (2021), S. 2887–2905
dc.relationPrentasic, Pavle ; Loncaric, Sven ; Vatavuk, Zoran ; Bencic, Goran ; Subasic, Marko ; Petkovic, Tomislav ; Malenica-Ravlic, Maja ; Budimlija, Nikolina ; Tadic, Raseljka: Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), S. 711–716
dc.relationQiao, Lifeng ; Zhu, Ying ; Zhou, Hui: Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. In: IEEE Access 8 (2020), S. 104292– 104302. http://dx.doi.org/10.1109/ACCESS.2020.2993937. – DOI 10.1109/ACCESS.2020.2993937. – ISSN 21693536
dc.relationQummar, Sehrish ; Khan, Fiaz G. ; Shah, Sajid ; Khan, Ahmad ; Shamshirband, Shahaboddin ; Rehman, Zia U. ; Khan, Iftikhar A. ; Jadoon, Waqas: A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. In: IEEE Access 7 (2019), S. 150530–150539. http://dx.doi.org/10.1109/ACCESS.2019.2947484. – DOI 10.1109/ACCESS.2019.2947484. – ISSN 21693536
dc.relationRajalakshmi, Ramachandran ; Subashini, Radhakrishnan ; Anjana, Ranjit M. ; Mohan, Viswanathan: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence
dc.relationResnikoff, Serge ; Lansingh, Van C. ; Washburn, Lindsey ; Felch, William ; Gauthier, Tina M. ; Taylor, Hugh R. ; Eckert, Kristen ; Parke, David ; Wiedemann, Peter: Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): Will we meet the needs? In: British Journal of Ophthalmology (2019), Nr. Md, S. 1–5. http://dx.doi.org/10.1136/bjophthalmol-2019-314336. – DOI 10.1136/bjophthalmol–2019–314336. – ISSN 14682079
dc.relationRuder, Sebastian: An Overview of Multi-Task Learning in Deep Neural Networks. (2017)
dc.relationSelvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob (2017), S. 618–626. http://dx.doi.org/10.1109/ICCV.2017.74. – DOI 10.1109/ICCV.2017.74. – ISBN 9781538610329
dc.relationSengar, Namita ; Dutta, Malay K.: lista.Automated method for hierarchal detection and grading of diabetic retinopathy. In: Computer Methods inBiomechanics and Biomedical Engineering: Imaging & Visualization 1163 (2017), Nr. July, 1–11. http://dx.doi.org/10.1080/21681163.2017.1335236. – DOI 10.1080/21681163.2017.1335236. – ISSN 2168–1163
dc.relationSeoud, Lama ; Hurtut, Thomas ; Chelbi, Jihed ; Cheriet, Farida ; Langlois, J. M.: Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 4, S. 1116–1126. http://dx.doi.org/10.1109/TMI.2015.2509785. – DOI 10.1109/TMI.2015.2509785. – ISSN 1558254X
dc.relationSharif, Muhammad ; Shah, Jamal H.: Automatic screening of retinal lesions for grading diabetic retinopathy. In: International Arab Journal of Information Technology 16 (2019), Nr. 4, S. 766–774. – ISSN 23094524
dc.relationSon, Jaemin ; Shin, Joo Y. ; Kim, Hoon D. ; Jung, Kyu H. ; Park, Kyu H. ; Park, Sang J.: Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. In: Ophthalmology 127 (2020), Nr. 1, 85–94. http://dx.doi.org/10.1016/j.ophtha.2019.05.029. – DOI 10.1016/j.ophtha.2019.05.029. – ISSN 15494713
dc.relationStaal, Joes ; Abràmoff, Michael D. ; Niemeijer, Meindert ; Viergever, Max A. ; Ginneken, Bram v.: Ridge-Based Vessel Segmentation in Color Images of the Retina. In: IEEE Transactions on Medical Imaging 23 (2004), Nr. 4, S. 501–509. http://dx.doi.org/10.1080/17455030500184511. – DOI 10.1080/17455030500184511. – ISSN 17455030
dc.relationSymposium, Asia Pacific Tele-Ophthalmology Society (.: APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data, 2019. – [Online; accessed 15-January-2020]
dc.relationTajbakhsh, Nima ; Shin, Jae Y. ; Gurudu, Suryakanth R. ; Hurst, R. T. ; Kendall, Christopher B. ; Gotway, Michael B. ; Liang, Jianming: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? In: IEEE Transactions on Medical Imaging 35 (2016), Nr. 5, S. 1299–1312. http://dx.doi.org/10.1109/TMI.2016.2535302. – DOI 10.1109/TMI.2016.2535302
dc.relationUsman Akram, M. ; Khalid, Shehzad ; Tariq, Anam ; Khan, Shoab A. ; Azam, Farooque: Detection and classification of retinal lesions for grading of diabetic retinopathy. In: Computers in Biology and Medicine 45 (2014), Nr. 1, 161–171. http://dx.doi. org/10.1016/j.compbiomed.2013.11.014. – DOI 10.1016/j.compbiomed.2013.11.014. – ISSN 00104825
dc.relationVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. (2018), 1–16. http://arxiv.org/abs/1803.04337
dc.relationVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. http://dx.doi.org/10.1371/journal.pone.0217541. – DOI 10.1371/journal.pone.0217541. – ISBN 1111111111
dc.relationWan, Shaohua ; Liang, Yan ; Zhang, Yin: Deep convolutional neural networks for diabetic retinopathy detection by image classification. In: Computers and Electrical Engineering 72 (2018), 274–282. http://dx.doi.org/10.1016/j.compeleceng.2018.07.042. – DOI 10.1016/j.compeleceng.2018.07.042. – ISSN 00457906
dc.relationWang, Juan ; Bai, Yujing ; Xia, Bin: Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 12, S. 3397–3407. http://dx.doi.org/10.1109/JBHI.2020.3012547. – DOI 10.1109/JBHI.2020.3012547. – ISSN 21682208
dc.relationWang, Yu T. ; Tadarati, Mongkol ; Wolfson, Yulia ; Bressler, Susan B. ; Bressler, Neil M.: Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. In: JAMA Ophthalmology 134 (2016), Nr. 2, S. 222–228. http://dx.doi.org/10.1001/jamaophthalmol. 2015.5332. – DOI 10.1001/jamaophthalmol.2015.5332. – ISSN 21686165
dc.relationWang, Zhe ; Yin, Yanxin ; Shi, Jianping ; Fang, Wei ; Li, Hongsheng ; Wang, Xiaogang: Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: arXiv 1 (2017), S. 267–275. http://dx.doi.org/10.1007/978-3-319-66179-7. – DOI 10.1007/978–3–319–66179–7. – ISBN 9783319661797
dc.relationWilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682. http://dx.doi.org/10.1016/S0161-6420(03)00475-5. – DOI 10.1016/S0161–6420(03)00475–5. – ISSN 01616420
dc.relationY., LeCun ; Y., Bengio ; G, Hinton: Deep learning. In: Nature 521 (2015), S. 436–444
dc.relationYang, Y ; Li, T ; Li, W ; Wu, H ; Fan, W ; Zhang, W: Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention MICCAI 2017. Bd. 10435, 2017.– ISBN 978–3–319–66184–1, 516–524
dc.relationZago, Gabriel T. ; Andreão, Rodrigo V. ; Dorizzi, Bernadette ; Teatini Salles, Evandro O.: Diabetic retinopathy detection using red lesion localization and convolutional neural networks. In: Computers in Biology and Medicine 116 (2020), Nr.November 2019. http://dx.doi.org/10.1016/j.compbiomed.2019.103537. – DOI 10.1016/j.compbiomed.2019.103537. – ISSN 18790534
dc.relationZander, Eckhard ; Herfurth, Sabine ; Bohl, Beate ; Heinke, Peter ; Kohnert, Klaus D. ; Kerner, Wolfgang ; Herrmann, Uwe: Maculopathy in patients with diabetes mellitus type 1 and type 2: Associations with risk factors. In: British Journal of Ophthalmology 84 (2000), Nr. 8, S. 871–876. http://dx.doi.org/10.1136/bjo.84. 8.871. – DOI 10.1136/bjo.84.8.871. – ISSN 00071161
dc.relationZeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network
dc.relationZhou, Lei ; Zhao, Yu ; Yang, Jie ; Yu, Qi ; Xu, Xun: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. In: IET Image Processing 12 (2018), Nr. 4, S. 563–571. http://dx.doi.org/10.1049/iet-ipr.2017. 0636. – DOI 10.1049/iet–ipr.2017.0636. – ISSN 17519659
dc.relationZhou, Y. ; Wang, B. ; Huang, L. ; Cui, S. ; Shao, L.: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771
dc.relationZhou, Yi ; Wang, Boyang ; Huang, Lei ; Cui, Shanshan ; Shao, Ling: A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. In: IEEE Transactions on Medical Imaging 40 (2021), Nr. 3, S. 818–828. http://dx.doi.org/10.1109/TMI.2020.3037771. – DOI 10.1109/TMI.2020.3037771. – ISSN 1558254X
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAutomatic retinopathy detection using Deep learning and medical findings
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución