dc.contributor | Martínez Alba, Nicolás | |
dc.creator | Yela Rosero, Darlyn Yamid | |
dc.date.accessioned | 2021-10-06T19:34:26Z | |
dc.date.available | 2021-10-06T19:34:26Z | |
dc.date.created | 2021-10-06T19:34:26Z | |
dc.date.issued | 2021-10-04 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80403 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form. | |
dc.description.abstract | En el presente texto se estudia la reducción de estructuras Dirac-Jacobi sobre una variedad diferenciable bajo la presencia de simetrías dadas por la acción de un grupo de Lie conexo. La herramienta principal que se usa es el llamado "truco de homogenización" y las reducciones de Dirac ya conocidas. Se muestran dos casos particulares de reducción Dirac-Jacobi; cuando hay presencia de una aplicación momento y el caso cuando la variedad base está dotada de una 1-forma de contacto. (Texto tomado de la fuente). | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | A. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa-
tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982),
pp. 1–29. | |
dc.relation | H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological
methods for quantum field theory, (2013), pp. 4–38. | |
dc.relation | H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant
algebroids and generalized complex structures, Advances in Mathematics, 211 (2007),
pp. 726–765. | |
dc.relation | J. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures
and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General,
39 (2006). | |
dc.relation | T. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society,
319 (1990), pp. 631–661. | |
dc.relation | M. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003. | |
dc.relation | D. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac
structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085. | |
dc.relation | D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex
structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258. | |
dc.relation | D. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal
of Physics A: Mathematical and General, 39 (2006), p. 4181. | |
dc.relation | J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218
(2003). | |
dc.relation | K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math-
ematical Journal, 73 (1994), pp. 415–452. | |
dc.relation | M. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via
Spencer operators, SIGMA, 13 (2017), p. 033. | |
dc.relation | L. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018),
pp. 485–561. | |
dc.relation | A. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000),
pp. 331–348. | |
dc.relation | A. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier,
Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219. | |
dc.relation | M. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of
Geometry and Physics, 57 (2007), pp. 2372–2397. | |
dc.relation | C. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations
and generalizations of one of the most powerful ideas of modern science, PhD thesis,
The University of Edinburgh, 2019. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Symmetries and reductions of Dirac-Jacobi structures | |
dc.type | Trabajo de grado - Maestría | |