| dc.contributor | Cartagena Valenzuela, José Régulo | |
| dc.contributor | Córdoba-Gaona, Oscar | |
| dc.contributor | Barrera Sánchez, Carlos Felipe | |
| dc.contributor | Mejoramiento y Producción de Especies Andinas y Tropicales | |
| dc.contributor | Ecofisiologìa Agraria | |
| dc.creator | Loaiza Ruiz, Ruby Alejandra | |
| dc.date.accessioned | 2022-08-30T13:32:18Z | |
| dc.date.accessioned | 2022-09-21T15:15:16Z | |
| dc.date.available | 2022-08-30T13:32:18Z | |
| dc.date.available | 2022-09-21T15:15:16Z | |
| dc.date.created | 2022-08-30T13:32:18Z | |
| dc.date.issued | 2022-02-10 | |
| dc.identifier | https://repositorio.unal.edu.co/handle/unal/82185 | |
| dc.identifier | Universidad Nacional de Colombia | |
| dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
| dc.identifier | https://repositorio.unal.edu.co/ | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3377541 | |
| dc.description.abstract | Los programas de mejoramiento genético convencionales se han enfocado en la aplicación de técnicas como el desarrollo de híbridos, inserción de genes de interés, selección molecular y micropropagación, sin embargo, estos enfoques no consideran las interacciones entre las condiciones ambientales del trópico y la capacidad de las plantas para enfrentar la heterogeneidad del entorno natural en el que se desarrollan; por lo anterior, se ha hecho necesario incluir la Fisiología Vegetal como apoyo en los procesos de mejoramiento, que permita comprender los factores que influyen en el rendimiento, las respuestas a las variaciones ambientales, las adaptaciones morfológicas, entre otras, para lograr así, la ampliación de la base genética y la selección de individuos superiores con fundamento fisiológico. El estudio planteado tuvo como objetivo describir características morfológicas y fisiológicas de la papaya (Carica papaya L.) variedad UN Cotové, bajo la oferta ambiental de bs–T, en Santa Fe de Antioquia (Colombia). El material vegetal estaba plantado a una distancia de 2,5 m, entre plantas y 3,0 m entre surcos; distribuidas en triángulo, para un total de 11 surcos con 18 plantas, en esta población se tomaron al azar dos individuos por surco a los que se les realizó un seguimiento de las variables alométricas: altura de la planta (cm), diámetro del tallo (mm) a los 15 cm del suelo, cantidad de hojas (No) y diámetro del dosel (cm), y de las variables fisiológicas fotosíntesis neta – A (μmol [CO2] m-2s-1), tasa transpiratoria - E (mmol [H2O] m-2s-1), conductancia estomática – gs (mmol [H2O] m-2s-1), temperatura de la hoja (ºC) y radiación fotosintéticamente activa – PAR (μmol [fotones] m-2 s-1), A partir de estos valores se calculó, la eficiencia en el uso del agua (EUA), mediante la relación A/E; la eficiencia en el uso de la radiación (EUR) que relaciona A/PAR, el índice de área foliar (IAF) y se cuantificó la eficiencia cuántica fotosintética máxima (Qy=Fv/Fm). Las evaluaciones morfo - fisiológicas se determinaron con una periodicidad mensual a partir de los 15 días de trasplante del vegetal, por seis meses hasta la primera cosecha. La caracterización de la variedad de papaya UN Cotové permitió identificar plantas con características sobresalientes, destacándose las identificadas con los números 3, 5, 9, 11 y 18, por presentar los valores más altos de las variables fisiológicas y morfológicas evaluadas, así como por registrar un EUR tasado en 0,0104 μmol [CO2] / μmol [Fotones], un rendimiento cuántico estimado en 0,8074 y un IAF cuantificado en 0,8182. En contraste, las plantas marcadas con los números 4 y 7 mostraron el menor desempeño en todas las variables evaluadas. Cabe resaltar que las plantas distinguidas con los números 15 y 16 se ubicaron en el grupo de las que tuvieron el mayor desarrollo morfológico pero su desempeño eco fisiológico fue bajo. Los resultados obtenidos demuestran que incluir evaluaciones fisiológicas en los programas de mejoramiento permite identificar plantas que además, de presentar características morfológicas deseables presenten también adaptaciones en sus procesos de intercambio gaseoso, distribución foliar o rendimiento cuántico que les permitan ser mas eficientes en el aprovechamiento de los recursos y confieran capacidades adaptativas que favorecen el desarrollo de nuevas variedades, en este caso de la especie Carica papaya L. bajo condiciones del bs-T en el municipio de Santa Fe de Antioquia. Esta estrategia es beneficiosa bajo los escenarios actuales de cambio climático que debe enfrentar la agricultura. (Texto tomado de la fuente) | |
| dc.description.abstract | Conventional breeding programs have focused on the application of techniques such as the development of hybrids, insertion of genes of interest, molecular selection, micropropagation, however, these approaches do not consider the interactions between the environmental conditions typical of the tropics and the capacity of plants, to face the heterogeneity of the natural environment in which they develop. Due to the above, it has become necessary to include Plant Physiology as support in plant improvement processes, which allows understanding the processes that influence yield, responses to environmental variations, morphological adaptations, among others, to achieve, the broadening of the genetic base and the selection of superior individuals on a physiological basis. The proposed study aimed to describe the components of growth and development and the ecophysiology of papaya (Carica papaya L.) variety UN Cotové, under the environmental offer of bs–T, in Santa Fe de Antioquia (Colombia). Plant material was planted at a distance of 2.5 m between plants and 3.0 m between rows; distributed in a triangle, for a total of 11 rows with 18 plants, in this population two individuals per row were randomly taken and followed up on the allometric variables: plant height (cm), stem diameter (mm) at 15 cm from the ground, number of leaves (No) and canopy diameter (cm), and the ecophysiological variables net photosynthesis - A (μmol [CO2] m-2s-1), transpiration - E (mmol [ H2O] m-2s-1), stomatal conductance – gs (mmol [H2O] m-2s-1), leaf temperature (ºC) and photosynthetically active radiation – PAR (μmol [photons] m-2 s-1). From these values, the water use efficiency (WUE) was calculated through the A/E ratio; the radiation use efficiency (RUE) that relates A/PAR, the leaf area index (LAI) and the maximum photosynthetic quantum efficiency (Qy=Fv/Fm) was evaluated. The morpho-physiological evaluations were determined monthly from 15 days after plant transplantation, for six months until the first harvest. The characterization of the papaya variety UN Cotové allowed identifying plants with outstanding characteristics, standing out those identified with the numbers 3, 5, 9, 11, and 18, for presenting the highest values of the ecophysiological and morphological variables evaluated as well as for registering an RUE at 0.0104 μmol [CO2] / μmol [Photons], an estimated quantum yield at 0.8074 and a quantified IAF of 0.8182. In contrast, the plants marked with the numbers 4 and 7 showed the lowest performance in all the variables evaluated. It should be noted that the plants distinguished with the numbers 15 and 16 were located in the group of those that had the highest morphological development but their ecophysiological performance was low. The results obtained show that including ecophysiological evaluations in breeding programs allows identifying plants that, in addition to presenting desirable morphological characteristics, also present adaptations in their gas exchange processes, foliar distribution or quantum yield that allow them to be more efficient in the use of natural resources. resources and confer adaptive capacities that favor the development of new varieties, in this case of the species Carica papaya L. under conditions of the bs-T in the municipality of Santa Fe de Antioquia. This strategy is beneficial under the current scenarios of climate change that agriculture must face. | |
| dc.language | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher | Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias | |
| dc.publisher | Departamento de Agronómicas | |
| dc.publisher | Facultad de Ciencias Agrarias | |
| dc.publisher | Medellín, Colombia | |
| dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
| dc.relation | Adam, M. 1992 The impact of the common agricultural policy on agriculture in Greece (Doctoral dissertation). Cambridge University. Cambridge, United Kinhdom. 80 p. | |
| dc.relation | Agronet. 2020. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Agronet, MinAgricultura. Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Consultado: marzo 20202. | |
| dc.relation | Almeida, F. T. D., Bernardo, S., Sousa, E. F. D., Marin, S. L. D. and Grippa, S. 2003. Growth and yield of papaya under irrigation. Scientia Agricola, 60(3), 419-424. https://doi.org/10.1590/S0103-90162003000300001 | |
| dc.relation | Altendorf, S. 2017. Perspectivas mundiales de las principales frutas tropicales. Perspectivas, retos y oportunidades a corto plazo en un mercado pujante, FAO. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Tropical_Fruits_Spanish2017. pdf. | |
| dc.relation | Allan, P. 2002. Carica papaya responses under cool subtropical growth conditions. Acta Horticulturae, 575:757–763. https://doi.org/10.17660/ActaHortic.2002.575.89 | |
| dc.relation | An, N., Lv, J., Zhang, A., Xiao, C., Zhang, R. and Chen, P. 2020. Gene expression profiling of papaya (Carica papaya L.) immune response induced by CTS-N after inoculating PLDMV. Gene, 755, 144845. https://doi.org/10.1016/j.gene.2020.144845 | |
| dc.relation | Arango, L., Román, C., Salamanca, C., Almansa, E., Bernal, J., León, G. y Gómez, P. 1999. El cultivo de la papaya en los Llanos Orientales de Colombia. Corpoica–SENA–Asohofrucol. Manual de Asistencia Técnica, (04). 99 p. http://hdl.handle.net/20.500.12324/12830 | |
| dc.relation | Asudi, G.O., Ombwara, F.K., Rimberia, F.K., Nyende, A.B., Ateka, E.M., Wamocho, L.S., Shitanda, D. and Onyango, A. 2010. Morphological diversity of Kenyan papaya germplasm. African Journal of Biotechnology, 9(51), 8754-8762. https://doi.org/10.5897/AJB10.978 | |
| dc.relation | Balakrishan, K, Sundaram, K.M, Natarajaratnam, N. and Rajendram, C. 1988. Prediction of dry matter accumulation through non-destructive methods in pawpaw (Carica papaya). Ind. J. Agric. Sci. 58 74–75. https://eurekamag.com/research/001/915/001915745.php
Banerjee, A. and Dave, R.N. 2004. Validating clusters using the Hopkins statistic. In: 2004 IEEE International conference on fuzzy systems (IEEE Cat. No. 04CH37542) Vo l. 1, IEEE p.149-153. https://doi.org/10.1109/FUZZY.2004.1375706 | |
| dc.relation | Banerjee, A. and Dave, R.N. 2004. Validating clusters using the Hopkins statistic. In: 2004 IEEE International conference on fuzzy systems (IEEE Cat. No. 04CH37542) Vo l. 1, IEEE p.149-153. https://doi.org/10.1109/FUZZY.2004.1375706 | |
| dc.relation | Barragán, I., Méndez, L. and Rodríguez, R. 2018. Ripeness indexes and physicochemical changes of papaya (Carica papaya L. cv. Maradol) during ripening on-tree. Scientia Horticulturae, 236, 272-278. https://doi.org/10.1016/j.scienta.2017.12.012 | |
| dc.relation | Björkman, O., Demmig, B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170, 489–504 https://doi.org/10.1007/BF00402983 | |
| dc.relation | Botini, N., Almeida, F. A., Cruz, K. Z. C. M., Reis, R. S., Vale, E. M., Garcia, A. B., ... and Silveira, V. 2021. Stage-specific protein regulation during somatic embryo development of Carica papaya L. ‘Golden’. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1869(2), 140561. https://doi.org/10.1016/j.bbapap.2020.140561 | |
| dc.relation | Boyer, J. S.1982. Plant productivity and environment. Science, 218(4571), 443-448.https//doi.org/10.1126/ciencia.218.4571.443 | |
| dc.relation | Cabrera, J.A., Ritter, A., Raya, V., Pérez, E. and Lobo, M.G. 2021. Papaya (Carica papaya L.) phenology under different agronomic conditions in the subtropics. agriculture.11(2):173. https://doi.org/10.3390/agriculture11020173 | |
| dc.relation | Cáez, R., G., Alamilla, B., L. and Gutiérrez, L, G. F. 2018. Morphometric analysis and tissue structural continuity evaluation of senescence progression in fresh cut papaya (Carica papaya L.). Journal of Food Engineering, 216, 107-119. https://doi.org/10.1016/j.jfoodeng.2017.08.004 | |
| dc.relation | Campostrini, E. and Glenn, D. M. 2007. Ecophysiology of papaya: a review. Brazilian Journal of Plant Physiology, 19, 413-424. https://www.scielo.br/j/bjpp/a/c7H43PJ8t6p5fS8jZZgRmVC/?format=pdfylang=en | |
| dc.relation | Campostrini, E., Schaffer, B., Ramalho, J. D., González, J. C., Rodrigues, W. P., da Silva, J. R. and Lima, R. S. 2018. Chapter 19 - Environmental Factors Controlling Carbon Assimilation, Growth, and Yield of Papaya (Carica papaya L.) Under Water-Scarcity Scenarios. Pp 481-505. In: Tejero, I. F. G., and Zuazo, V. H. D. (eds.). 2018. Water scarcity and sustainable agriculture in semiarid environment: tools, strategies, and challenges for woody crops. Academic Press. 533 p. | |
| dc.relation | Carvalho, F., Filer, D. and Renner, S. S. 2015. Taxonomy in the electronic age and an emonograph of the papaya family (Caricaceae) as an example. Cladistics, 31(3), 321-329. https://doi.org/10.1111/cla.12095 | |
| dc.relation | Catarina, R.S, Pereira, M. G., Vettorazzi, J. C. F., Cortes, D. F. M., de Sousa Poltronieri, T. P., Azevedo, A. O. N. and Viana, A. P. 2020. Papaya (Carica papaya L.) S1 family recurrent selection: Opportunities and selection alternatives from the base population. Scientia Horticulturae, 260, 108848. https://doi.org/10.1016/j.scienta.2019.108848 | |
| dc.relation | Clemente, H.S. and Marler, T.E. 1996. Drought stress influences gas-exchange responses of papaya leaves to rapid changes in irradiance. J. of the Amer. Soc. for Hortic. Sci., 121(2), 292-295. https://doi.org/10.21273/JASHS.121.2.292 | |
| dc.relation | Cordoba, G.O.D.J, Monsalve, G.D.A., Hernández, A.J.D., Guerra, H.J.J., Gil, R.J.P., Martínez, B. E. and Unigarro, M. C. A. 2018. Gas exchange in young Hevea brasiliensis (Willd. Ex A. Juss.) Müll. Arg.(Euphorbiaceae) plants in Antioquia (Colombia). Ciencia y Tecnología Agropecuaria, 19(1), 91-102. https://doi.org/10.21930/rcta.vol19_num1_art:847 | |
| dc.relation | Chalak, S. U., Hasbnis, S. N. and Supe, V. S. 2017. Papaya ring spot disease management: A review. Journal of Pharmacognosy and Phytochemistry, 6(5), 1911-1914. https://www.phytojournal.com/archives/2017/vol6issue5/PartAB/6-5-262-628.pdf | |
| dc.relation | Chen, X. 2017. Spatio temporal processes of plant phenology: simulation and prediction. Berlin, Springer, Heidelberg. 98 p. | |
| dc.relation | Da Silva, J.G.F. 1999. Efeitos de diferentes lâminas e frequências de irrigação sobre o desenvolvimento e a produtividade do mamoeiro (Carica Papaya L.) (Tesis Doctoral) Universidade Federal de Viçosa, Viçosa. 90p. In: Almeida, F.T.D., Bernardo, S., Sousa, E.F.D., Marin, S.L.D. y Grippa, S. 2003. Growth and yield of papaya under irrigation. Scientia Agricola, 60(3), 419-424. https://doi.org/10.1590/S0103-90162003000300001 | |
| dc.relation | DaMatta, F.M., Grandis, A., Arenque, B.C. and Buckeridge, M.S. 2010. Impacts of climate changes on crop physiology and food quality. Food Research International, 43(7), 1814-1823. https://doi.org/10.1016/j.foodres.2009.11.001 | |
| dc.relation | Davamani, J., Balamohan, T.N. and Sudha, R. 2013. Evaluation of papaya (Carica papaya L.) hybrids for yield and papain recovery. Journal of Horticultural Sciences, 8(2), 165-171. https://jhs.iihr.res.in/index.php/jhs/article/view/237 | |
| dc.relation | De La Cruz M., J., Gilber, V. G. and García, H.S. 2003. Pawpaw: Post-harvest Operation. Edited by AGSI/FAO. 71p. https://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_Pawpaw__Papaya_.pdf | |
| dc.relation | Dos Santos, K.T.H., de Souza, O.V., Santos, G.P., Santos, J.S.H., Schmildt, O. and Schmildt, E.R. 2021. Fruit Mass of Carica papaya L. from Cultivars Aliança and THB from the Width and Length of the Fruit. Agricultural Sciences, 12(1), 9-17. https://doi.org/10.4236 / as.2021.121002 | |
| dc.relation | Dotto, J. M. and Abihudi, S. A. 2021. Nutraceutical value of Carica papaya: A review. Scientific African, 13, e00933. https://doi.org/10.1016/j.sciaf.2021.e00933 | |
| dc.relation | El-Borai F.E. and Duncan L.W. 2005. Nematode Parasites of Subtropical and Tropical Fruit Tree Crops. pp 467-492. In: Luc M, Sikora RA, Bridge J (eds). Plant parasitic nematodes in subtropical and tropical agriculture, CAB International, UK, 899 p. | |
| dc.relation | Elder, R.J., Macleod, W.N.B., Bell, K.L., Tyas, J.A. and Gillespie, R.L. 2000. Growth, yield and phenology of 2 hybrid papayas (Carica papaya L.) as influenced by method of water application. Australian Journal of Experimental Agriculture, 40(5), 739-746. https://doi.org/10.1071/EA98140 | |
| dc.relation | Evans, E. A. y Ballen, F.H. 2012. Una mirada a la producción, el comercio y el consumo de papaya a nivel mundial. EDIS, vol. 2012(11). https://journals.flvc.org/edis/article/view/120125. | |
| dc.relation | Evgenidis, G., Traka, M.E and Koutsika, S.M. 2011. Principal component and cluster analysis as a tool in the assessment of tomato hybrids and cultivars. International Journal of Agronomy, vol. 2011, 7p. https://doi.org/10.1155/2011/697879 | |
| dc.relation | Fallas C., R., y van der Zee, S. E. 2020. Diagnosis and management of nutrient constraints in papaya. In Fruit Crops (pp. 607-628). Elsevier. | |
| dc.relation | FAO - Food and Agriculture Organization .2020. FAOSTAT Database, Production Statistics Disponible en: http://www.fao.org/faostat/es/#data/QC/visualize. Consultado: junio 2020. | |
| dc.relation | Ferraz, T. M., Rodrigues, W. P., Netto, A. T., de Oliveira Reis, F., Pecanha, A. L., de Assis, F. A. M. M., ... and Campostrini, E. 2016. Comparison between single-leaf and whole-canopy gas exchange measurements in papaya (Carica papaya L.) plants. Scientia Horticulturae, 209, 73-78. https://doi.org/10.1016/j.scienta.2016.06.014 | |
| dc.relation | Fitch, M.M., Manshardt, R.M., Gonsalves, D., Slightom, J.L. and Sanford, J.C. 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nature Biotechnology, 10(11), 1466. https://doi.org/10.1038/nbt1192-1466 | |
| dc.relation | García, M.A. 2010. Guía técnica del cultivo de la papaya. Programa MAG-CENTA-FRUTALES. Centro Nacional de Tecnología Agropecuaria y Forestal Enrique Alvarez Córdova. El Salvador. 40 p. http://www.centa.gob.sv/docs/guias/frutales/GUIA%20CULTIVO%20PAPAYA.pdf. | |
| dc.relation | Garcia, Q.S., Rezende, J.L. P., and Aguiar, L.M. S. 2000. Seed dispersal by bats in a disturbed area of Southeastern Brazil. Revista de Biología Tropical, 48(1), 125-128. Retrieved April 23, 2022.http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442000000100014&lng=en&tlng=en. | |
| dc.relation | Ghanem, M.E., Marrou, H. and Sinclair, T.R. 2015. Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3), 139-144. https://doi.org/10.1016/j.tplants.2014.11.006 | |
| dc.relation | Gil, A. I. and Miranda, D. 2005. Morfología de la flor y de la semilla de papaya (Carica papaya L.): variedad Maradol e híbrido Tainung-1. Agronomía Colombiana, 23(2), 217-222. Disponible en: https://revistas.unal.edu.co/index.php/agrocol/article/view/19944 Consultado: noviembre 2021. | |
| dc.relation | Girón, R.A., Peña, R.L.M., Escalante, E.F., Fuentes, G. and Santamaría, J.M. 2021. Identification of the SHINE clade of AP2/ERF domain transcription factors genes in Carica papaya; Their gene expression and their possible role in wax accumulation and water deficit stress tolerance in a wild and a commercial papaya genotypes, Environmental and Experimental Botany, 183,104341. https://doi.org/10.1016/j.envexpbot.2020.104341 | |
| dc.relation | Gonsalves, D., S. Tripathi, J. B. Carr and J. Y. Suzuki. 2010. Papaya Ringspot virus. The Plant Health Instructor. The Plant Health Instructor, 10 (2010): 1094. Disponible en: http://www.apsnet.org/edcenter/intropp/lessons/viruses/Pages/PapayaRingspotvirus.aspx. Consultado: Septiembre 2021. | |
| dc.relation | Gray, S.B. and Brady, S.M. 2016. Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023 | |
| dc.relation | Guerra, C.W., Cabrera, A. y Fernández, L. 2003. Criterios para la selección de modelos estadísticos en la investigación científica. Revista Cubana de Ciencia Agrícola, 37(1), 3-10. https://www.redalyc.org/articulo.oa?id=193018072001 | |
| dc.relation | Holdridge, L. 1978. Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura-IICA. San José, Costa Rica. 216 p. Disponible en: http://repositorio.iica.int/handle/11324/7936 Consultado: noviembre 2019 | |
| dc.relation | Hughes, A. and Freeman, P. 1967. Growth analysis using frequent small harvests. Journal of Applied Ecology, 4(2), 553-560. https://doi.org/10.2307/2401356 | |
| dc.relation | IDEAM. 2020. Instituto de Hidrología Meteorología y Estudios Ambientales –Base de datos. Disponible en: http://dhime.ideam.gov.co/atencionciudadano/ Consultado: marzo 2019 | |
| dc.relation | Ikram, E. H. K., Stanley, R., Netzel, M. and Fanning, K. 2015. Phytochemicals of papaya and its traditional health and culinary uses–a review. Journal of Food Composition and Analysis, 41, 201-211. https://doi.org/10.1016/j.jfca.2015.02.010 | |
| dc.relation | Jackson, P., Robertson, M., Cooper, M. and Hammer, G. 1996. The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Research, 49(1), 11-37. https://doi.org/10.1016/S0378-4290(96)01012-X | |
| dc.relation | Jain, S.M and Priyadarshan, PM (eds.). 2009. Breeding plantation tree crops: tropical species (Vol. 84). New York: Springer.654p. | |
| dc.relation | James, G., Witten, D., Hastie, T. and Tibshirani, R. 2013. An introduction to statistical learning. New York, Springer Vol. 112, 426p. | |
| dc.relation | Jaynes, D.B., Kaspar, T.C., Colvin, T.S. and James, D.E. 2003. Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agronomy Journal, 95(3), 574-586. https://doi.org/10.2134/agronj2003.5740 | |
| dc.relation | Jebli, I., Fatima, Z., Mohammed, I.K. and Amine, T. 2021. Prediction of solar energy guided by Pearson correlation using machine learning, Energy, Vol. 224, 120109. https://doi.org/10.1016/j.energy.2021.120109. | |
| dc.relation | Jensen, D. D. 1949. Papaya virus diseases with special reference to Papaya ringspot. Phytopathology, 39(3). 191-211. https://www.cabdirect.org/cabdirect/welcome/?target=%2fcabdirect%2fabstract%2f19491101136 | |
| dc.relation | Jeyakumar, P., Kavino, M., Kumar, N. and Soorianathasundaram, K. 2007. Physiological performance of papaya cultivars under abiotic stress conditions. Acta Hortic. 740, 209-215. https://doi.org/10.17660/ActaHortic.2007.740.25 | |
| dc.relation | Jia, R., Zhao, H., Huang, J., Kong, H., Zhang, Y., Guo, J., Huang, Q., Guo, Y., Wei, Q., Zuo, J., Zhu, Y., Peng, M. and Guo, A. (2017). Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Scientific reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-13049-0 | |
| dc.relation | Jiménez V.M., Mora Newcomer E., Gutiérrez Soto M.V. 2014 Chapter 2 - Biology of the Papaya plant. pp. 17-33 In: Ming R, Moore PH (eds), Genetics and genomics of papaya, Plant Genetics and Genomics: Crops and Models 10, Springer Science, New York. 433 p. | |
| dc.relation | Khondaker, N.A., Ozawa, K., 2007. Papaya plant growth as affected by soil air oxygen deficiency. Acta Horticulturae. International Society forHorticultural Science (ISHS), Leuven, pp. 225–232. https://doi.org/10.17660/ActaHortic.2007.740.27. | |
| dc.relation | Kim, M. S., Moore, P. H., Zee, F., Fitch, M. M., Steiger, D. L., Manshardt, R. M., ... and Ming, R. 2002. Genetic diversity of Carica papaya as revealed by AFLP markers. Genome, 45(3), 503-512. https://doi.org/10.1139/g02-012 | |
| dc.relation | Kumar, M., Prasad, K.M., Prakash, S. and Kumar, S. 2015. Evaluation of genetic variability, genetic advance, heritability and character association for yield and its contributing traits in papaya (Carica papaya L.). Society Plant Research, 28(2), 99-102. http://doi.org/10.5958/2229-4473.2015.00043.9 | |
| dc.relation | Kung, Y. J., Bau, H. J., Wu, Y. L., Huang, C. H., Chen, T. M. and Yeh, S. D. 2009. Generation of transgenic papaya with double resistance to papaya ringspot virus and papaya leaf-distortion mosaic virus. Phytopathology, 99(11), 1312-1320. https://doi.org/10.1094/PHYTO-99-11-1312 | |
| dc.relation | Lawson, T. 2009. Guard cell photosynthesis and stomatal function. New Phytologist, 181(1), 13-34. https://doi.org/10.1111/j.1469-8137.2008.02685 | |
| dc.relation | Lim, L.S. and Hawa, J.S. 2005. Earliness in flowering and dwarfism in relation to internode length and tree height in papaya (Carica papaya L.). Acta Horticulturae, 740, 103–108. http://doi.org/10.17660/actahortic.2007.740.10 | |
| dc.relation | Lima, R. S. N., García T.I., Lopes, T.S., Costa, J.M., Vaz, M., Durán, Z, V.H., ... and Campostrini, E. 2016. Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes. Agricultural Water Management, 164, 148-157. https://doi.org/10.1016/j.agwat.2015.07.017 | |
| dc.relation | Lobo, M. 2008. Importancia de los recursos genéticos de la agrobiodiversidad en el desarrollo de sistemas de producción sostenibles. Ciencia y Tecnología Agropecuaria, 9(2), 19-30. https://dialnet.unirioja.es/servlet/articulo?codigo=5624739 | |
| dc.relation | Mahouachi, J., Socorro, A. R. and Talon, M. 2006. Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant and Soil, 281(1), 137-146. https://doi.org/10.1007/s11104-005-3935-3 | |
| dc.relation | Manshardt R. 1999. 'UH Rainbow' papaya--a high-quality hybrid with genetically engineered disease resistance. Honolulu (HI): University of Hawaii. 2 p. https://aggie-horticulture.tamu.edu/syllabi/423/PapayaRainbow.pdf | |
| dc.relation | Manterola, C. y Zavando, D. 2009. Cómo interpretar los" Niveles de Evidencia" en los diferentes escenarios clínicos. Revista Chilena de Cirugía, 61(6), 582-595. http://dx.doi.org/10.4067/S0718-40262009000600017 | |
| dc.relation | Marler, T.E. and Mickelbart, M.V. 1998. Drought, leaf gas exchange, and chlorophyll fluorescence of field grown papaya. J. Am. Soc. Hortic. Sci. 23:714-718. https://doi.org/10.21273/JASHS.123.4.714 | |
| dc.relation | Massignam, A. M., Chapman, S. C., Hammer, G. L. and Fukai, S. 2009. Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Research, 113(3), 256-267. https://doi.org/10.1016/j.fcr.2009.06.001 | |
| dc.relation | MINTIC. 2016. Ministerio de Tecnologías de la Información y las Comunicaciones del Gobierno de Colombia. https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Cadena-Productiva-Papaya-Area-Producci-n-Y-Rendimi/cb4h-7tns/data | |
| dc.relation | Mir, R., Zaman, A.M., Sreenivasulu, N., Trethowan, R. and Varshney, R. K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125(4), 625-645. https://dx.doi.org/10.1007/s00122-012-1904-9 | |
| dc.relation | Mir, R., Zaman, A.M., Sreenivasulu, N., Trethowan, R. and Varshney, R. K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125(4), 625-645. https://dx.doi.org/10.1007/s00122-012-1904-9 | |
| dc.relation | Mora, N.E. y Bogantes, A. A. 2005. Estudio de una mutación en papaya (Carica papaya L.) que produce letalidad de plantas femeninas. Agronomía Mesoamericana, 16(1), 89-94 https://www.redalyc.org/articulo.oa?id=43716111 | |
| dc.relation | Moraes, R., Vivas, M., da Cruz, D.P., Santa-Catarina, R …and Gonzaga, P.M 2021.Selection for papaya resistance to multiple diseases in a base population of recurrent selection. Euphytica 217, 188. https://doi.org/10.1007/s10681-021-02919-4 | |
| dc.relation | Moraes, R., Vivas, M., Vivas, J. M. S., Daher, R. F., Amaral Gravina, G., de Oliveira Francelino, H., ... and Pereira, M. G. 2019. Genetic parameters and performance of papaya genotypes to black spot resistance ('Asperisporium caricae'). Australian Journal of Crop Science, 13(5), 649-655. https://search.informit.org/doi/10.3316/informit.584615178042611 | |
| dc.relation | Na, S., Xumin, L. and Yong, G. 2010. Research on K-means clustering algorithm: An Improved K-means Clustering Algorithm. En: 2010 Third International Symposium on Intelligent Information Technology and Security Informatics. p. 63-67. https://doi.org/10.1109/IITSI.2010.74 | |
| dc.relation | Nabors, M.W. 2006. Introducción a la botánica. Pearson Educación. Madrid. 744p. | |
| dc.relation | Nakasone, H. Y., Crozier, J. A. and Ikehara, D. K. 1972. Evaluation of 'Waimanalo,'a new papaya strain. Hawaii Agricultural Experiment Station, University of Hawaii. https://scholarspace.manoa.hawaii.edu/bitstream/10125/42242/1/evaluationwaimanalo.pdf | |
| dc.relation | Nishina M., Zee F., Ebesu R., Arakaki A., Hamasaki R., Fuduka S., Nagata N., Chia C. L., Nishijima W., Mau R. and Uchida R. 2000. Papaya production in Hawaii. In: Fruits and Nuts, College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii, Manao. F&N-3, pp 1-8 http://hdl.handle.net/10125/2381 | |
| dc.relation | Ocampo, J., d’Eeckenbrugge, G.C., Bruyère, S., de Bellaire, L.D.L. and Ollitrault, P. 2006. Organization of morphological and genetic diversity of Caribbean and Venezuelan papaya germplasm. Fruits, 61(1), 25-37. https://doi.org/10.1051/fruits:2006003 | |
| dc.relation | Oliveira, J. G. and Vitória, A. P. 2011. Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Research International, 44(5), 1306-1313.https://doi.org/10.1016/j.foodres.2010.12.035 | |
| dc.relation | Olubode, O.O., Odeyemi, O.M. and Aiyelaagbe, I.O.O. 2016. Influence of environmental factors and production practices on the growth and productivity of pawpaw (Carica papaya L.) in south western Nigeria – A review. Fruits, 71(6), 341-361. https://doi.org/10.1051/fruits/2016027 | |
| dc.relation | Paixão, J. S., Da Silva, J. R., Ruas, K. F., Rodrigues, W. P., Filho, J. A. M., Bernado, W. D. P., ... and Campostrini, E. 2019. Photosynthetic capacity, leaf respiration and growth in two papaya (Carica papaya) genotypes with different leaf chlorophyll concentrations. Aob Plants, 11(2), plz013. https://doi.org/10.1093/aobpla/plz013 | |
| dc.relation | Parkash, V. and Singh, S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. https://www.mdpi.com/2071-1050/12/10/3945/pdf | |
| dc.relation | Paull, R.E. and Duarte, O. 2011. Chapter 11 - Papaya. pp 291 – 326. In: Paull, R.E., Duarte, O. (eds.), Tropical Fruits, Volume 1. Crop Production Science in Horticulture 20. Second edition. CABI, UK. 408 p | |
| dc.relation | Peçanha, A.L., da Silva, J.R., Rodrigues, W.P., Ferraz, T.M., Netto, A.T., Lima, R.S.N., ... and Campostrini, E. 2017. Leaf gas exchange and growth of two papaya (Carica papaya L.) genotypes are affected by elevated electrical conductivity of the nutrient solution. Scientia Horticulturae, 218, 230-239. https://doi.org/10.1016/j.scienta.2017.02.018 | |
| dc.relation | Peláez, E. E., Ramírez, D. P. y Cayón, D. G. 2010. Fisiología comparada de palmas africana (Elaeis guineensis Jacq.), americana (Elaeis oleífera HBK Cortes) e híbridos (E. oleífera x E. guineensis) en Hacienda La Cabaña. Revista Palmas, 31(2), 29-38. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1476 | |
| dc.relation | Pereira, M.G. and Santa-Catarina, R. 2021. Recurrent selection in papaya: An effective strategy for the continuous development of new cultivars. Crop Breeding and Applied Biotechnology, 21(S): e381321S7. https://doi.org/10.1590/1984-70332021v21Sa20 | |
| dc.relation | Pirovani, A.A.V., Ramos, H.C.C., Santa-Catarina, R., de Sousa P, T.P., Vettorazzi, J.C.F., Santos, P.H.A.D., ... and Pereira, M.G. 2021. New source of alleles for resistance to black spot and phoma spot in papaya (Carica papaya L.). Euphytica, 217(6), 1-13. https://doi.org/10.1007/s10681-021-02863-3 | |
| dc.relation | Poorter, H. 1989. Plant growth analysis: towards a synthesis of the classical and the functional approach. Physiologia Plantarum, 75(2), 237-244. https://doi.org/10.1111/j.1399-3054.1989.tb06175.x | |
| dc.relation | Posada, L.P., Kosky, R.G., Ponce, J.P., Vega, M.R. and Montenegro, O.N. 2010. Development of a new papaya (Carica papaya L.) hybrid IBP 42-99. Interciencia, 35(6), 461-465. https://www.redalyc.org/articulo.oa?id=33913158011 | |
| dc.relation | PTP - Programa de Transformación Productiva. 2013. Plan de Negocios de Papaya. Asohofrucol y Fondo Nacional de Fomento Hortofrutícola. https://www.ptp.com.co/ptp-capacita/publicaciones/sectoriales/publicaciones-frutas-y-sus-derivados/plan-de-negocios-papaya-2013 | |
| dc.relation | Purcifull, D. E., Edwardson, J., Hiebert, E. and Gonsalves, D. 1984. Papaya ringspot virus: Descriptions of Plant Viruses. Commonw. Mycol. Inst. Assoc. Appl. Biol., Surrey, UK. CMI/AAB, No. 292. | |
| dc.relation | Qiu B. and Cao X. 2016. Clustering boundary detection for high dimensional space based on space inversion and Hopkins statistics. Knowledge-Based Systems, 98, 216-225. https://doi.org/10.1016/j.knosys.2016.01.035 | |
| dc.relation | R - Development Core Team .2020. R: A Language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Disponible en: http://www.rstudio.com/ Consultado: Octubre 2020. | |
| dc.relation | Reyes, C. 1996. U.N Cotové. Una nueva variedad de papaya (Carica papaya L.) para Colombia. Universidad Nacional de Colombia, sede Medellín. Departamento de Agronomía. Medellín. 158 p. | |
| dc.relation | Reyes, C. 1999. El cultivo de la papaya (Carica papaya L.) Universidad Nacional de Colombia, sede Medellín. Departamento de Agronomía. Medellín. 45p. | |
| dc.relation | Reynolds, M. P., Pask, A. J. D., Mullan, D. M. y Chavez-Dulanto, P. N. (eds.). 2013. Fitomejoramiento Fisiologico I: Enfoques interdisciplinarios para mejorar la adaptación del cultivo. CIMMYT. México, D.F. 174 p. | |
| dc.relation | Reynolds, M., Dreccer, F. and Trethowan, R. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58(2), 177-186. https://doi.org/10.1093/jxb/erl250 | |
| dc.relation | Riaño N., Tangarife G., Osorio O., Giraldo J., Ospina C., Obando D. y Jaramillo L. 2005. Modelo de crecimiento y captura de carbono para especies forestales en el trópico: CREFT V1. 0. https://www.ricclisa.org/images/manualcreft.pdf. | |
| dc.relation | Rimberia, F.K., Ombwara, F.K., Mumo, N.N. and Ateka, E.M. 2018. Genetic Improvement of papaya (Carica papaya L.). Advances in Plant Breeding Strategies: Fruits, 897–928. https://doi.org/10.1007/978-3-319-91944-7_21 | |
| dc.relation | Rivera, P. D., Yahia, E. M., and González‐Aguilar, G. A. 2010. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. Journal of the Science of Food and Agriculture, 90(14), 2358-2365. https://doi.org/10.1002/jsfa.4092 | |
| dc.relation | Salazar, R., Arango, L.V. y Bedoya, L. 1986. Determinacion de distancia optima de siembra en papaya, Carica papaya L. para la zona plana del Valle del Cauca. Instituto Colombiano Agropecuario, Bogota (Colombia). Revista ICA, Volumen 21, abril-junio. 9 p. https://repository.agrosavia.co/handle/20.500.12324/15447 | |
| dc.relation | Salinas, I., Hueso, J.J. and Cuevas, J. 2019. Fruit growth model, thermal requirements and fruit size determinants in papaya cultivars grown under subtropical conditions. Scientia Horticulturae, 246, 1022-1027. https://doi.org/10.1016/j.scienta.2018.11.056 | |
| dc.relation | Santos, D. L., Coelho, E. F., da Cunha, F. F., Donato, S. L. R., de Paula Bernado, W., Rodrigues, W. P.and Campostrini, E. 2021. Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency. Agricultural Water Management, 243, 106421.https://doi.org/10.1016/j.agwat.2020.106421 | |
| dc.relation | Santos, E. M., Silva Júnior, G. B. D., Cavalcante, Í. H. L., Marques, A. S. and Albano, F. G. 2016. Planting spacing and NK fertilizing on physiological indexes and fruit production of papaya under semiarid climate. Bragantia, 75(1), 63-69 http://dx.doi.org/10.1590/1678-4499.111 | |
| dc.relation | Serrano, L. A. L. y Cattaneo, L. F. 2010. O cultivo do mamoeiro no Brasil. Revista Brasileira de Fruticultura, 32 (3). https://doi.org/10.1590/S0100-29452010000300001 | |
| dc.relation | Sharma, S. K. and Tripathi, S. 2021. Overcoming limitations of resistance breeding in Carica papaya L. against papaya ringspot virus—Recent approaches. In: Plant Virus-Host Interaction Academic Press pp. 489-506. https://doi.org/10.1016/B978-0-12-821629-3.00008-7 | |
| dc.relation | Siar, S. V., Beligan, G. A., Sajise, A. J. C., Villegas, V. N. and R. A. Drew. 2011. Papaya ringspot virus resistance in Carica papaya via introgression from Vasconcellea quercifolia. Euphytica 181, 159–168 https://doi.org/10.1007/s10681-011-0388-z | |
| dc.relation | Silva, J. D., Rashid, Z., Nhut, D. T., Sivakumar, D., Gera, A., Souza, M. T. and Tennant, P. 2007. Papaya (Carica papaya L.) biology and biotechnology. Tree and Forestry Science and Biotechnology, 1(1), 47-73. https://library.wur.nl/WebQuery/wurpubs/fulltext/10209 | |
| dc.relation | Silva, J. G.B., Cavalcante, Í. H. L., Santos, E. M., Albano, F. G., and Silva, A. M. 2016. Growth, physiology and yield of formosa'papaya'cultivated under different doses of coated and conventional urea. Revista Caatinga, 29(3), 559-568. http://dx.doi.org/10.1590/1983-21252016v29n305rc | |
| dc.relation | Silva, J. R., Rodrigues, W. P., Ruas, K. F., Paixao, J. S., Nunes de Lima, R. S., Filho, J. A. M., ... and Campostrini, E. 2019. Light, photosynthetic capacity and growth of papaya (Carica papaya L.): A short review. Australian Journal of Crop Science, 13(3), 480-485. https://doi.org/10.21475/ajcs.19.13.03. p1607. | |
| dc.relation | Sinclair, T. R., Purcell, L. C., Vadez, V., Serraj, R., King, C. A. and Nelson, R. 2000. Identification of soybean genotypes with N2 fixation tolerance to water deficits. Crop Science, 40(6), 1803-1809. https://doi.org/10.2135/cropsci2000.4061803x | |
| dc.relation | Singh D.B., Roshan R.K., Pebam N. 2010. Effect of different spacings on growth, yield and yield characteristics of pawpaw (Carica papaya L.) cv. Coorg Honer Dew, 851, 291-294. https://doi.org/10.17660/ActaHortic.2010.851.44 | |
| dc.relation | Singh, J., and Thakur, J. K. 2018. Photosynthesis and abiotic stress in plants. In Biotic and abiotic stress tolerance in plants (pp. 27-46). Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_2 | |
| dc.relation | Stevens, W. D., Ulloa, C., Pool, A. and Montiel, O. M. 2001. Flora de Nicaragua (Vol. 85, No. 1, p. 943). St. Louis: Missouri Botanical Garden Press. Disponible en: http://legacy.tropicos.org/Name/6100032?projectid=7andlangid=66 Consultado: Mayo 2019 | |
| dc.relation | Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany, 63(1), 25-31. https://doi.org/10.1093/jxb/err269 | |
| dc.relation | Thani, Q.A., Schaffer, B., Liu, G., Vargas, A.I., Crane, J.H., 2016. Chemical oxygen fertilization reduces stress and increases recovery and survival of flooded papaya (Carica papaya L.) plants. Sci. Hortic. 202, 173–183. https://doi.org/10.1016/j.scienta.2016.03.004. | |
| dc.relation | Vallejo, G.G. 1999. Efectos de la fertilización con nitrógeno en la producción de papaya (Carica papaya L.) y en la incidencia de virosis. Revista Facultad Nacional de Agronomía Medellín, 52(1), 515-526. https://revistas.unal.edu.co/index.php/refame/article/view/23786 | |
| dc.relation | Vincent, C., Rowland, D.L. and Schaffer, B. 2015. The potential for primed acclimation in papaya (Carica papaya L.): Determination of critical water deficit thresholds and physiological response variables. Scientia Horticulturae, 194, 344-352. http://dx.doi.org/10.1016/j.scienta.2015.08.032 | |
| dc.relation | Wang, R. H., Chang, J. C., Li, K. T., Lin, T. S. and Chang, L. S. 2014. Leaf age and light intensity affect gas exchange parameters and photosynthesis within the developing canopy of field net-house-grown papaya trees. Scientia Horticulturae, 165, 365-373. https://doi.org/10.1016/j.scienta.2013.11.035 | |
| dc.relation | Warschefsky, E.J., Klein, L.L., Frank, M.H., Chitwood, D.H., Londo, J.P., von Wettberg, E.J. and Miller, A.J. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science. 21(5), 418-437. https://doi.org/10.1016/j.tplants.2015.11.008 | |
| dc.relation | Yanthan, J. L., Vasugi, C., Dinesh, M. R., Reddy, M. K. and Das, R. 2017. Evaluation of F6 intergeneric population of papaya (Carica papaya L) for resistance to papaya ring spot virus (PRSV). Int. J. Curr. Microbiol. App. Sci, 6(5), 289-298. http://krishi.icar.gov.in/jspui/handle/123456789/19858 | |
| dc.relation | Zainal-Abidin, R.-A.; Ruhaizat-Ooi, I.-H.; Harun, S. 2021. A Review of omics technologies and bioinformatics to accelerate improvement of papaya traits. Agronomy 11(7):1356. https://doi.org/10.3390/agronomy11071356 | |
| dc.relation | Zhou, L., Christopher, D. A. and Paull, R. E. 2000. Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. J. Amer. Soc. for Hortic. Sci., 125(5), 644-652. https://doi.org/10.21273/JASHS.125.5.644 | |
| dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.title | Caracterización morfo-fisiológica, de la variedad de papaya UN Cotové (Carica papaya L.) en el bosque seco tropical | |
| dc.type | Tesis | |