dc.contributor | Echeverry Gaitán, María Clara | |
dc.contributor | Saavedra, Carlos Humberto | |
dc.creator | Pazmiño, Fredy Alexander | |
dc.date.accessioned | 2020-09-04T20:43:29Z | |
dc.date.available | 2020-09-04T20:43:29Z | |
dc.date.created | 2020-09-04T20:43:29Z | |
dc.date.issued | 2020-08-26 | |
dc.identifier | Pazmiño, FA. (2020). Determinación de la asociación entre la presencia del Leishmaniavirus 1 (LRV-1) en parásitos infectantes de Leishmania spp y el desarrollo de la leishmaniasis mucosa en pacientes diagnosticados de leishmaniasis cutánea en Colombia (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá D. C. Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78395 | |
dc.description.abstract | Introduction
Mucosal leishmaniasis (ML) is a severe clinical form of leishmaniasis characterized by destruction of the oral, nasal mucosas or both. The risk factors associated with the development of ML are not entirely clear, but the presence of an RNA virus in the cytoplasm of the infected parasite known as leishmania RNA virus (LRV1) has been postulated to exacerbate the host's immune response and may contribute to severe forms of leishmaniasis. The aim of this work was to establish whether an association exists between the presence of LRV1 and the occurrence of LM, using a case-control study.
Methods
A case-control study was carried out where cases were defined as patients with ML (n = 33) treated at the Federico Lleras Acosta Dermatological Center (CDFLLA) between the period 2007-2017 and control patients with cutaneous Leishmaniasis (CL) without ML (n = 71) attending at the same institution between 1997 - 2010. 19 of 71 controls were contacted and clinically evaluated to determine their health status with respect to ML. The study had informed consent. Demographic, epidemiological variables and response to treatment were recorded by reviewing the medical records. The CDFLLA biobank had cryopreserved skin and mucosal lesion biopsies of the patients that were processed in the parasitology laboratory of the National University of Colombia for the confirmation of Leishmania spp infection and detection of LRV1 by RT -qPCR. The distribution of frequencies and statistical significance were determined for each variable and group using X2, Fisher's exact test, or Mann-Whitney test. Variables with statistical significance or biological plausibility in the bivariate analysis were analyzed using multiple logistic regression.
Results
Of the cases, 71.7% were male and the mean age at which they developed LM was 40 years, while for controls 73.2% were male and the mean age at which they presented with CL was 27.5 years. The general frequency of LRV1 was 16.3%, for cases it was 33.3% and in controls 8.5%. The presence of LRV1 was determined as an exposure factor associated with the occurrence of mucosal leishmaniasis: OR = 6.32 (95% CI: 1.48 - 27.00, p = 0.013) and incomplete treatment for CL with an OR = 4.63 (95% CI: 1.13 - 18.97, p = 0.033). No correlation was observed between the clinical stage of the ML and the presence of the LRV1.
Conclusion
The presence of LRV1 was higher in patients with mucosal leishmaniasis and was found to be associated with this clinical form of the disease. In addition, an association found for the variable incomplete treatment supply, could suggest that incomplete treatment may act as a risk factor for the occurrence of the mucous event. | |
dc.description.abstract | Introducción
La leishmaniasis mucosa (LM) es una forma clínica severa de la leishmaniasis caracterizada por destrucción de la mucosa oral, nasal o ambas. Los factores de riesgo asociados con la aparición de la LM no son del todo claros, pero se ha postulado que la presencia de un virus RNA presente en el citoplasma del parásito infectante conocido como RNA leishmaniavirus (LRV1) exacerba la respuesta inmune del hospedero y puede contribuir a las formas severas de la leishmaniasis. El presente trabajo pretendió conocer si existe asociación entre la presencia del LRV1 y la ocurrencia de la LM, mediante un diseño de casos y controles.
Métodos
Se realizó un estudio de casos y controles donde los casos fueron definidos como pacientes con LM (n=33) atendidos en el Centro Dermatológico Federico Lleras Acosta (CDFLLA) entre el periodo 2007 – 2017 y los controles pacientes con Leishmaniasis cutánea (LC) sin LM (n=71) atendidos en la misma institución entre 1997 – 2010. 19 de 71 controles fueron contactados y evaluados clínicamente para determinar su estado de salud con respecto a la LM. El estudio contó con consentimiento informado. Mediante la revisión de las historias clínicas se registraron las variables demográficas, epidemiológicas y de respuesta al tratamiento. El biobanco del CDFLLA contaba con especímenes criopreservados correspondientes a biopsias de las lesiones cutáneas y mucosas de los pacientes que fueron procesadas en el laboratorio de parasitología de la Universidad Nacional de Colombia para la confirmación de la infección por Leishmania spp y la detección de LRV1 mediante RT-qPCR. La distribución de frecuencias y significancia estadística fue analizada para cada variable y grupo mediante X2, test exacto de Fisher o test de Mann-Whitney, las variables con significancia estadística o plausibilidad biológica en el análisis bivariado fueron analizadas mediante regresión logística múltiple.
Resultados
Entre los casos 71.7% fueron del género masculino y la media de edad a la cual desarrollaron la LM fue de 40 años, mientras que para los controles el 73.2% correspondieron al género masculino y la media de edad a la cual presentaron la LC fue de 27.5 años. La frecuencia general del LRV1 fue de 16.3%, para los casos fue de 33.3% y en los controles del 8.5%. Como factor de exposición asociado con la ocurrencia de la leishmaniasis mucosa se determinó la presencia del LRV1: OR=6.32 (IC95%: 1.48 - 27.00, p= 0.013) y el tratamiento incompleto para la LC con un OR= 4.63 (IC95%: 1.13 – 18.97, p= 0.033). No se observó ninguna correlación entre el estadio clínico de la LM y la presencia del LRV1.
Conclusión
La presencia del LRV1 fue mayor en los pacientes afectados de leishmaniasis mucosa y se encontró asociado con esta forma clínica de la enfermedad. La asociación hallada para la variable suministro de tratamiento incompleto, podría sugerir que el tratamiento incompleto puede actuar como un factor de riesgo para la ocurrencia del evento mucoso. | |
dc.language | spa | |
dc.publisher | Bogotá - Medicina - Maestría en Infecciones y Salud en el Trópico | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agudelo Chivatá NJ. LEISHMANIASIS COLOMBIA 2017. Instituto Nacional de Salud. Colombia; 2017. | |
dc.relation | Mignogna MD, Celentano A, Leuci S, Cascone M, Adamo D, Ruoppo E, et al. Mucosal leishmaniasis with primary oral involvement: A case series and a review of the literature. Oral Dis. 2015;21: e70–e78. doi:10.1111/odi.12268 | |
dc.relation | Bourreau E, Ginouves M, Prévot G, Hartley MA, Gangneux JP, Robert-Gangneux F, et al. Presence of leishmania RNA virus 1 in leishmania guyanensis increases the risk of first-line treatment failure and symptomatic relapse. J Infect Dis. 2016;213: 105–111. doi:10.1093/infdis/jiv355 | |
dc.relation | Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392: 951–970. doi:10.1016/S0140-6736(18)31204-2 | |
dc.relation | Cincurá C, De Lima CMF, Machado PRL, Oliveira-Filho J, Glesby MJ, Lessa MM, et al. Mucosal leishmaniasis: A retrospective study of 327 cases from an endemic area of Leishmania (Viannia) braziliensis. Am J Trop Med Hyg. 2017;97: 761–766. doi:10.4269/ajtmh.16-0349 | |
dc.relation | Hartley MA, Drexler S, Ronet C, Beverley SM, Fasel N. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol. 2014;30: 412–422. doi:10.1016/j.pt.2014.05.006 | |
dc.relation | Marsden PD. Mucosal leishmaniasis (“espundia” escomel, 1911). Trans R Soc Trop Med Hyg. 1986;80: 859–876. doi:10.1016/0035-9203(86)90243-9 | |
dc.relation | Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017;11: e0006052. doi:10.1371/journal.pntd.0006052 | |
dc.relation | Grybchuk D, Kostygov AY, Macedo DH, d’Avila-Levy CM, Yurchenko V. RNA viruses in trypanosomatid parasites: A historical overview. Mem Inst Oswaldo Cruz. 2018;113: 1–7. doi:10.1590/0074-02760170487 | |
dc.relation | Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A. 1989;86: 5979–5982. doi:10.1073/pnas.86.15.5979 | |
dc.relation | Widmer G, Keenan MC, Patterson JL. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis. J Virol. 1990;64: 3712–5. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=249665&tool=pmcentrez&rendertype=abstract | |
dc.relation | Strazzulla A, Cocuzza S, Pinzone MR, Postorino MC, Cosentino S, Serra A, et al. Mucosal leishmaniasis: An underestimated presentation of a neglected disease. Biomed Res Int. 2013;2013: 1–8. doi:10.1155/2013/805108 | |
dc.relation | Kariyawasam R, Grewal J, Lau R, Purssell A, Valencia BM, Llanos-Cuentas A, et al.
Influence of Leishmania RNA Virus 1 on Proinflammatory Biomarker Expression in a Human Macrophage Model of American Tegumentary Leishmaniasis. J Infect Dis. 2017;216: 877–886. doi:10.1093/infdis/jix416 | |
dc.relation | Adaui V, Lye LF, Akopyants NS, Zimic M, Llanos-Cuentas A, Garcia L, et al. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by leishmania braziliensis in Peru and Bolivia. J Infect Dis. 2015;213: 112–121. doi:10.1093/infdis/jiv354 | |
dc.relation | Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes- S, Schutz F, et al. Leishmania RNA Virus Controls the Severity of Mucocutaneous Leishmaniasis. Science (80- ). 2011;331: 775–778. doi:10.1126/science.1199326.Leishmania | |
dc.relation | Ronet C, Beverley SM, Fasel N. Muco-cutaneous leishmaniasis in the New World-The ultimate subversion. Virulence. 2011; 547–552. | |
dc.relation | Rossi M, Fasel N. The criminal association of Leishmania parasites and viruses. Curr Opin Microbiol. Elsevier Ltd; 2018;46: 65–72. doi:10.1016/j.mib.2018.07.005 | |
dc.relation | Conceição-Silva F, Leite-Silva J, Morgado FN. The binomial parasite-host immunity in the healing process and in reactivation of human Tegumentary leishmaniasis. Front Microbiol. 2018;9: 1–17. doi:10.3389/fmicb.2018.01308 | |
dc.relation | Rossi M, Castiglioni P, Hartley M-A, Eren RO, Prével F, Desponds C, et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci. 2017;114: 4987–4992. doi:10.1073/pnas.1621447114 | |
dc.relation | Cantanhêde LM, da Silva Júnior CF, Ito MM, Felipin KP, Nicolete R, Salcedo JMV, et al. Further Evidence of an Association between the Presence of Leishmania RNA Virus 1 and the Mucosal Manifestations in Tegumentary Leishmaniasis Patients. PLoS Negl Trop Dis. 2015;9: 1–11. doi:10.1371/journal.pntd.0004079 | |
dc.relation | Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, et al. Global distribution maps of the Leishmaniases. Elife. 2014;2014: 1–21. doi:10.7554/eLife.02851.001 | |
dc.relation | WHO. Leishmaniasis. World Heal Organ. 2019; Available: http://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/3.01.11_Leishmaniosis.pdf | |
dc.relation | OPS/OMS OP de la S. Leishmaniasis Informe Epidemiológico de las Américas-Diciembre. Organ Panam la Salud. 2019;8: 1–10. | |
dc.relation | Amato VS, Tuon FF, Bacha HA, Neto VA, Nicodemo AC. Mucosal leishmaniasis. Current scenario and prospects for treatment. Acta Trop. 2008;105: 1–9. doi:10.1016/j.actatropica.2007.08.003 | |
dc.relation | Instituto Nacional de Salud de Colombia. Leishmaniasis cutánea. Periodo epidemiológico XIII. Colombia, 2019. 2019. | |
dc.relation | Instituto Nacional de Salud de Colombia. Leishmaniasis mucosa. Periodo epidemiológico XIII. Colombia, 2019. 2019; | |
dc.relation | Instituto Nacional de Salud de Colombia. Informe de evento leishmaniasis cutanea, mucosa y visceral, Colombia, 2018. 2018; 1–28. Available: https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMANIASIS_2018.pdf | |
dc.relation | Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016;10: 1–40. doi:10.1371/journal.pntd.0004349 | |
dc.relation | de Mendonça SCF, Cysne-Finkelstein L, Matos DC de S. Kinetoplastid membrane protein-11 as a vaccine candidate and a virulence factor in Leishmania. Front Immunol. 2015;6: 1–6. doi:10.3389/fimmu.2015.00524 | |
dc.relation | Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, et al. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S A. 2008;105: 10125–10130. doi:10.1073/pnas.0802331105 | |
dc.relation | Nathan C. Peters1, Jackson G. Egen, Nagila Secundino, Alain Debrabant, Nicola Kimblin et al. In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science (80- ). 2008;321: 970–975. | |
dc.relation | Cortázar TM, Hernández J, Echeverry MC, Camacho M. Papel de la vacuola parasitófora de macrófagos de ratón infectados por Leishmania amazonensis en la adquisición de moléculas. Biomédica. 2006;26: 26–37. doi:10.7705/biomedica.v26i1.1497 | |
dc.relation | Zuzarte-Luís V, Mota MM. Parasite Sensing of Host Nutrients and Environmental Cues. Cell Host Microbe. 2018;23: 749–758. doi:10.1016/j.chom.2018.05.018 | |
dc.relation | Muñoz DMP. DETERMINACIÓN DE LEISHMANIAVIRUS EN BIOPSIAS Y AISLAMIENTOS DE PACIENTES CON DIAGNOSTICO CONFIRMADO DE LEISHMANIASIS MUCOSA Y DE PACIENTES CON DIAGNÓSTICO DE LEISHMANIASIS CUTÁNEA EN FALLA TERAPÉUTICA [Internet]. Universidad Nacional de Colombia Facultad de Medicina, Departamento de Salud Pública. Universidad Nacional de Colombia. 2017. Available: http://www.bdigital.unal.edu.co/57365/ | |
dc.relation | Goto H, Lindoso JAL. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev Anti Infect Ther. 2010;8: 419–433. doi:10.1586/eri.10.19 | |
dc.relation | Teixeira DE, Benchimol M, Rodrigues JCF, Crepaldi PH, Pimenta PFP, de Souza W. The Cell Biology of Leishmania: How to Teach Using Animations. PLoS Pathog. 2013;9: 8–11. doi:10.1371/journal.ppat.1003594 | |
dc.relation | Lukes J, Guilbride DL, Voty J, Zíkova A, Benne R, Englund PT. Kinetoplast DNA Network : Evolution of an Improbable Structure. Eukaryot Cell. 2002;1: 495–502. doi:10.1128/EC.1.4.495 | |
dc.relation | Stuart K, Feagin JE. Mitochondrial DNA of Kinetoplastids. Int Rev Cytol. 1992;141: 65–88. doi:10.1016/S0074-7696(08)62063-X | |
dc.relation | Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. Leishmania virulence factors: Focus on the metalloprotease GP63. Microbes Infect. Elsevier Masson SAS; 2012;14: 1377–1389. doi:10.1016/j.micinf.2012.05.014 | |
dc.relation | Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, et al. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol. Elsevier Inc.; 2016;309: 7–18. doi:10.1016/j.cellimm.2016.07.013 | |
dc.relation | LE M. Phlebotomine sand flies. Biology of diseases vectors. Elsevier Acad Press Burlingt 2004. 2004;2ed: 141–150. | |
dc.relation | Burgess CDN. Why do insects bite? A review of blood sucking behaviour. J R Army Med Corps. 1995;141: 151–156. doi:10.1136/jramc-141-03-05 | |
dc.relation | Pace D. Leishmaniasis. J Infect. 2014;69: 1–9. doi:10.1016/S0140-6736(18)31204-2 | |
dc.relation | González U, Pinart M, Sinclair D, Firooz A, Enk C, Vélez ID, Esterhuizen TM, Tristan M AJ. Vector and reservoir control for preventing leishmaniasis. Cochrane Database Syst Rev. 2015; 1–103. doi:10.1002/14651858.cd008736.pub2 | |
dc.relation | Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145: 430–442. doi:10.1017/S0031182016002092 | |
dc.relation | Bañuls AL, Hide M, Prugnolle F. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Adv Parasitol. 2007;64. doi:10.1016/S0065-308X(06)64001-3 | |
dc.relation | Dostálová A, Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites and Vectors. 2012;5: 1–12. doi:10.1186/1756-3305-5-276 | |
dc.relation | Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22: 439–445. doi:10.1016/j.pt.2006.06.012 | |
dc.relation | Muskus CE, Marín Villa M. Metaciclogénesis: un proceso fundamental en la biología de Leishmania. Biomédica. 2002;22: 167–177. doi:10.7705/biomedica.v22i2.1156 | |
dc.relation | Mendes BP, Da Silva IA, Damata JP, Castro-Gomes T, Vieira LQ, Ribeiro-Dias F, et al. Metacyclogenesis of Leishmania (Viannia) guyanensis: A comprehensive study of the main transformation features in axenic culture and purification of metacyclic promastigotes by negative selection with Bauhinia purpurea lectin. Parasitology. 2018;27: 1–12. doi:10.1017/S0031182018002111 | |
dc.relation | Grybchuk D, MacEdo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, et al. The first Non-LRV RNA virus in leishmania. Viruses. 2020;12: 1–16. doi:10.3390/v12020168 | |
dc.relation | Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27: 123–147. doi:10.1111/j.1365-2915.2012.01034. | |
dc.relation | Tarr PI, Aline RF, Smiley BL, Scholler J, Keithly J, Stuart K. LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A. 1988;85: 9572–5. doi:10.1073/pnas.85.24.9572 | |
dc.relation | Maria Clara Echeverry, Jenny Gaona Narváez SMGT. Guía de atención de la leishmaniasis. Guías de promoción de la salud y prevención de enfermedades en la salud pública. 2007. pp. 175–210. | |
dc.relation | Goto H, Lauletta Lindoso JA. Cutaneous and Mucocutaneous Leishmaniasis. Infect Dis Clin North Am. 2012;26: 293–307. doi:10.1016/j.idc.2012.03.001 | |
dc.relation | Lessa MM, Lessa HA, Castro TWN, Oliveira A, Scherifer A, Machado P, et al. Mucosal leishmaniasis: Epidemiological and clinical aspects. Braz J Otorhinolaryngol. Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial; 2007;73: 843–847. doi:10.1016/S1808-8694(15)31181-2 | |
dc.relation | Figueroa RA, Lozano LE, Romero IC, Teresa M, Prager M, Pacheco R, et al. Detection of Leishmania in Unaffected Mucosal Tissues of Patients with Cutaneous Leishmaniasis Caused by Leishmania. J Infect Dis. 2009;200: 638–646. doi:10.1086/600109. | |
dc.relation | Muvdi-Arenas S, Ovalle-Bracho C. Mucosal leishmaniasis: A forgotten disease. Description and identification of species in 50 Colombian cases. Biomedica. 2019;39: 58–65. doi:10.7705/biomedica.v39i3.4347 | |
dc.relation | Tuon FF, Gomes-Silva A, Da-Cruz AM, Duarte MIS, Neto VA, Amato VS. Local immunological factors associated with recurrence of mucosal leishmaniasis. Clin Immunol. 2008;128: 442–446. doi:10.1016/j.clim.2008.05.007 | |
dc.relation | Oliveira AGL, Brito PD, Schubach AO, Oliveira RVC, Saheki MN, Lyra MR, et al. Influence of the nutritional status in the clinical and therapeutical evolution in adults and elderly with American Tegumentary Leishmaniasis. Acta Trop. Elsevier B.V.; 2013;128: 36–40. doi:10.1016/j.actatropica.2013.06.005 | |
dc.relation | Hélio A. Lessa;Marcus M. Lessa;Luiz Henrique Guimarães;Clara Mônica F. Lima; Sergio Arruda; Paulo R. Machado;Paulo R. Machado. A proposed new clinical staging system for patients with mucosal leishmaniasis. Trans R Soc Trop Med Hyg. 2012;106: 376–381. | |
dc.relation | Reithinger R, Dujardin J, Louzir H, Pirmez C, Alexander B, Brooker S, et al. Cutaneous leishmaniasis. Clin Dermatol. 2007;25: 203–11. doi:10.1016/j.clindermatol.2006.05.008 | |
dc.relation | Haldar AK, Sen P, Roy S. Use of Antimony in the Treatment of Leishmaniasis : Current Status and Future Directions. Mol Biol Int. 2011;2011: 23 pages. doi:10.4061/2011/571242 | |
dc.relation | Shyam S. Leishmaniosis. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson J LJ, editor. Harrison Principios de Medicina Interna. 19th ed. McGrawHill; 2017. Available: http://accessmedicina.mhmedical.com.ezproxy.unal.edu.co/content.aspx?bookid=1717§ionid=114925781. Accessed septiembre 29, 2018. | |
dc.relation | McCall LI, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol. Elsevier Ltd; 2014;30: 342–349. doi:10.1016/j.pt.2014.05.001 | |
dc.relation | Cocuzza S, Strazzulla A, Pinzone MR, Cosentino S, Serra A, Caltabiano R, et al. Isolated laryngeal leishmaniasis in immunocompetent patients: an underdiagnosed disease. Case Rep Infect Dis. 2013;2013: 1–7. doi:10.1155/2013/165409 | |
dc.relation | Oryan A, Shirian S, Tabandeh MR, Hatam GR, Kalantari M, Daneshbod Y. Molecular, cytological, and immunocytochemical study and kDNA sequencing of laryngeal Leishmania infantum infection. Parasitol Res. 2013;112: 1799–1804. doi:10.1007/s00436-012-3240-z | |
dc.relation | Shirian S, Oryan A, Hatam GR, Daneshbod Y. Mixed mucosal leishmaniasis infection caused by Leishmania tropica and leishmania major. J Clin Microbiol. 2012;50: 3805–3808. doi:10.1128/JCM.01469-12 | |
dc.relation | Faucher B, Pomares C, Fourcade S, Benyamine A, Marty P, Pratlong L, et al. Mucosal Leishmania infantum leishmaniasis: Specific pattern in a multicentre survey and historical cases. J Infect. 2011;63: 76–82. doi:10.1016/j.jinf.2011.03.012 | |
dc.relation | Van Griensven J, Carrillo E, López-Vélez R, Lynen L, Moreno J. Leishmaniasis in immunosuppressed individuals. Clin Microbiol Infect. 2014;20: 286–299. doi:10.1111/1469-0691.12556 | |
dc.relation | Olıvia Bacellar, Helio Lessa, Albert Schriefer,Paulo Machado, Amelia Ribeiro de Jesus, Walderez O. Dutra, Kenneth J. Gollob and EMC. Up-Regulation of Th1-Type Responses in Mucosal Leishmaniasis Patients. Infect Immun. 2002;70: 6734–6740. doi:10.1016/j.cyto.2015.01.025 | |
dc.relation | Weinkopff T, Mariotto A, Simon G, Torre YH La, Auderset F, Schuster S, et al. Role of toll-like receptor 9 signaling in experimental leishmania braziliensis infection. Infect Immun. 2013;81: 1575–1584. doi:10.1128/IAI.01401-12 | |
dc.relation | Almeida TFA, da Silveira EM, dos Santos CRR, León JE, Mesquita ATM. Exclusive Primary Lesion of Oral Leishmaniasis with Immunohistochemical Diagnosis. Head Neck Pathol. 2016;10: 533–537. doi:10.1007/s12105-016-0732-7 | |
dc.relation | Oliveira M, Macêdo V, Carvalho E, Barral A, Marotti J, Bittencourt A, et al. ESTUDO EVOLUTIVO DA LEISHMANIOSE MUCOSA (7 A 17 ANOS DE SEGUIMENTO) CAUSADA POR (VIANNIA) BRAZIUENSIS EM TRÊS BRAÇOS, BAHIA LEIS. Rev Soc Bras Med Trop. 1995;28: 325–332. | |
dc.relation | Muñoz G, Davies CR. Leishmania panamensis transmission in the domestic environment: the results of a prospective epidemiological survey in Santander, Colombia. Biomedica. 2006;26 Suppl 1: 131–144. | |
dc.relation | Camuset G, Remy V, Hansmann Y, Christmann D, Gomes de Albuquerque C, Sena Casseb GA. Leishmaniose cutanéomuqueuse en Amazonie brésilienne. Med Mal Infect. 2007;37: 343–346. doi:10.1016/j.medmal.2007.03.012 | |
dc.relation | de Oliveira Guerra JA, Prestes SR, Silveira H, Coelho LI de ARC, Gama P, Moura A, et al. Mucosal leishmaniasis caused by leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis. 2011;5: 1–5. doi:10.1371/journal.pntd.0000980 | |
dc.relation | Ito MM, Catanhêde LM, Katsuragawa TH, da Silva Junior CF, Camargo LMA, Mattos R de G, et al. Correlation between presence of Leishmania RNA virus 1 and clinical characteristics of nasal mucosal leishmaniosis. Braz J Otorhinolaryngol. Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial; 2015;81: 533–540. doi:10.1016/j.bjorl.2015.07.014 | |
dc.relation | Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366: 1561–1577. doi:10.1016/S0140-6736(05)67629-5 | |
dc.relation | Travi BL, Osorio Y, Saravia NG. The inflammatory response promotes cutaneous metastasis in hamsters infected with Leishmania (Viannia) panamensis. J Parasitol. 1996;82: 454–457. doi:10.2307/3284085 | |
dc.relation | Novais FO, Carvalho LP, Graff JW, Beiting DP, Ruthel G, Roos DS, et al. Cytotoxic T Cells Mediate Pathology and Metastasis in Cutaneous Leishmaniasis. PLoS Pathog. 2013;9. doi:10.1371/journal.ppat.1003504 | |
dc.relation | Carvalho LP, Passos S, Bacellar O, Lessa M, Almeida RP, Magalhães A, et al. Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis. Parasite Immunol. 2007;29: 251–258. doi:10.1111/j.1365-3024.2007.00940.x | |
dc.relation | Faria DR, Gollob KJ, Jr JB, Machado PRL, Lessa H, Lucas P, et al. Decreased In Situ Expression of Interleukin-10 Receptor Is Correlated with the Exacerbated Inflammatory and Cytotoxic Responses Observed in Mucosal Leishmaniasis Decreased In Situ Expression of Interleukin-10 Receptor Is Correlated with the Exacerbated In. Infect Immun. 2005;73: 7853–7859. doi:10.1128/IAI.73.12.7853 | |
dc.relation | Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL. Cytokine patterns in the pathogenesis of human Leishmaniasis. J Clin Invest. 1993;91: 1390–1395. doi:10.1172/JCI116341 | |
dc.relation | Bourreau E, Pascalis H, Prévot G, Kariminia a, Jolly N, Milon G, et al. Increased production of interferon-gamma by Leishmania homologue of the mammalian receptor for activated C kinase-reactive CD4+ T cells among human blood mononuclear cells: an early marker of exposure to Leishmania? Scand J Immunol. 2003;58: 201–10. doi:1280 [pii] | |
dc.relation | Campos MB, Do Rêgo Lima LV, De Lima ACS, Dos Santos TV, Ramos PKS, De Castro Gomes CM, et al. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania (V.) braziliensis and Leishmania (L.) amazonensis. PLoS One. 2018;13: 1–22. doi:10.1371/journal.pone.0194383 | |
dc.relation | Bittencourt AL, Barral A. Evaluation of the histopathological classifications of American cutaneous and mucocutaneous leishmaniasis. Memórias do Instituto Oswaldo Cruz. 1991. pp. 51–56. doi:10.1590/S0074-02761991000100009 | |
dc.relation | Cheng SSIG. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit Rev Immunol. 2012;32: 23–63. | |
dc.relation | Hartley M-A, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol. 2012;2: 1–15. doi:10.3389/fcimb.2012.00099 | |
dc.relation | Gaze ST, Dutra WO, Lessa M, Lessa H, Guimarães LH, De Jesus AR, et al. Mucosal leishmaniasis patients display an activated inflammatory T-cell phenotype associated with a nonbalanced monocyte population. Scand J Immunol. 2006;63: 70–78. doi:10.1111/j.1365-3083.2005.01707.x | |
dc.relation | Boaventura VS, Santos CS, Cardoso CR, De Andrade J, Dos Santos WLC, Clarêncio J, et al. Human mucosal leishmaniasis: Neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol. 2010;40: 2830–2836. doi:10.1002/eji.200940115 | |
dc.relation | Palmeiro MR, Morgado FN, Valete-Rosalino CM, Martins AC, Moreira J, Quintella LP, et al. Comparative study of the in situ immune response in oral and nasal mucosal leishmaniasis. Parasite Immunol. 2012;34: 23–31. doi:10.1111/j.1365-3024.2011.01343.x | |
dc.relation | Machado-Coelho GLL, Caiaffa WT, Genaro O, Magalhães PA, Mayrink W. Risk factors for mucosal manifestation of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2005;99: 55–61. doi:10.1016/j.trstmh.2003.08.001 | |
dc.relation | Carvalho AM, Amorim CF, Barbosa JLS, Lago AS, Carvalho EM. Age modifies the immunologic response and clinical presentation of American tegumentary leishmaniasis. Am J Trop Med Hyg. 2015;92: 1173–1177. doi:10.4269/ajtmh.14-0631 | |
dc.relation | Canário A, Queiroz M, Cunha G, Cavalcante T, Riesz V, Sharma R, et al. Presence of parasite DNA in clinically unaffected nasal mucosa during cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. Clin Microbiol Infect. 2019;25: 515.e5-515.e7. doi:10.1016/j.cmi.2018.12.027 | |
dc.relation | Martínez-Valencia AJ, Daza-Rivera CF, Rosales-Chilama M, Cossio A, Casadiego Rincón EJ, Desai MM, et al. Clinical and parasitological factors in parasite persistence after treatment and clinical cure of cutaneous leishmaniasis. PLoS Negl Trop Dis. 2017;11: 1–15. doi:10.1371/journal.pntd.0005713 | |
dc.relation | E A Llanos-Cuentas, P D Marsden, C C Cuba, A C Barreto MC. POSSIBLE RISK FACTORS IN DEVELOPMENT OF MUCOSAL LESIONS IN LEISHMANIASIS. Lancet. 1984;2: 295. | |
dc.relation | Alcais A, Abel L, David C, Torrez ME, Flandre P, Dedet JP. Risk factors for onset of cutaneous and mucocutaneous leishmaniasis in Bolivia. Am J Trop Med Hyg. 1997;57: 79–84. doi:10.4269/ajtmh.1997.57.79 | |
dc.relation | Jirmanus L, Glesby MJ, Guimarat̃es LH, Lago E, Rosa ME, Machado PR, et al. Epidemiological and clinical changes in American tegumentary leishmaniasis in an area of Leishmania (viannia) braziliensis transmission over a 20-year period. Am J Trop Med Hyg. 2012;86: 426–433. doi:10.4269/ajtmh.2012.11-0378 | |
dc.relation | Anderson B. Nutrition and wound healing: the necessity of assessment. Br J Nurs. 2005;14: 1–5. | |
dc.relation | Pérez H, Malavé I, Arredondo B. The effects of protein malnutrition on the course of Leishmania mexicana infection in C57Bl/6 mice: nutrition and susceptibility to leishmaniasis. Clin Exp Immunol. 1979;38: 453–460. | |
dc.relation | Guerra JAO, Coelho LIRC, Pereira FR, Siqueira AM, Ribeiro RL, Almeida TML, et al. American tegumentary leishmaniasis and HIV-AIDS association in a tertiary care center in the Brazilian Amazon. Am J Trop Med Hyg. 2011;85: 524–527. doi:10.4269/ajtmh.2011.11-0075 | |
dc.relation | Lindoso JAL, Barbosa RN, Posada-Vergara MP, Duarte MIS, Oyafuso LK, Amato VS, et al. Unusual manifestations of tegumentary leishmaniasis in AIDS patients from the New World. Br J Dermatol. 2009;160: 311–318. doi:10.1111/j.1365-2133.2008.08908.x | |
dc.relation | Schmitt BH, Meyer TL, Roiko MS, Davis TE, Relich RF, Zhang S. An unusual presentation of leishmaniasis in a human immunodeficiency virus-positive individual. JMM Case Reports. 2016;3: 10–13. doi:10.1099/jmmcr.0.005011 | |
dc.relation | Da-Cruz AM, Machado ES, Menezes JA, Rutowitsch MS, Coutinho SG. Cellular and humoral immune responses of a patient with american cutaneous leishmaniasis and aids. Trans R Soc Trop Med Hyg. 1992;86: 511–512. doi:10.1016/0035-9203(92)90089-U | |
dc.relation | Rathnayake D, Ranawake RR, Sirimanna G, Siriwardhane Y, Karunaweera N, De Silva R. Co-infection of mucosal leishmaniasis and extra pulmonary tuberculosis in a patient with inherent immune deficiency. Int J Dermatol. 2010;49: 549–551. doi:10.1111/j.1365-4632.2010.04376.x | |
dc.relation | Hkima Abou Fakher F, Rachinel N, Klimczak M, Louis J, Doyen N. TLR9-Dependent Activation of Dendritic Cells by DNA from Leishmania major Favors Th1 Cell Development and the Resolution of Lesions. J Immunol. 2009;182: 1386–1396. doi:10.4049/jimmunol.182.3.1386 | |
dc.relation | Cabrera M, Shaw MA, Sharples C, Williams H, Castes M, Convit J, et al. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med. 1995;182: 1259–64. doi:10.1084/jem.182.5.1259 | |
dc.relation | Castellucci L, Menezes E, Oliveira J, Magalhaes a, Guimaraes LH, Lessa M, et al. IL6 -174 G/C promoter polymorphism influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. J Infect Dis. 2006;194: 519–527. doi:10.1086/505504 | |
dc.relation | Rajendranath Ramasawmy, Eliane Menezes, Andrea Magalhães, Joyce Oliveira, Léa Castellucci et al. The -2518 bp promoter polymorphism at CCL2/MCP1 influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. Infect Genet Evol. 2010;10: 607–613. | |
dc.relation | FLANDERS ABRARAFKC. Smad3: A Key Player in Pathogenetic Mechanisms Dependent on TGF‐β. Ann N Y Acad Sci. 2003;995: 1–10. | |
dc.relation | Itoh S, Landström M, Hermansson A, Itoh F, Heldin CH, Heldin NE, et al. Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J Biol Chem. 1998;273: 29195–29201. doi:10.1074/jbc.273.44.29195 | |
dc.relation | Castellucci L, Jamieson SE, Almeida L, Oliveira J, Guimarães LH, Lessa M, et al. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil. Infect Genet Evol. 2012;12: 1102–10. doi:10.1016/j.meegid.2012.03.017 | |
dc.relation | Fischer J, Koukoulioti E, Schott E, Fülöp B, Heyne R, Berg T, et al. Polymorphisms in the Toll-like receptor 3 (TLR3) gene are associated with the natural course of hepatitis B virus infection in Caucasian population. Sci Rep. 2018;8: 4–11. doi:10.1038/s41598-018-31065-6 | |
dc.relation | Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev. 2008;21: 13–25. doi:10.1128/CMR.00022-07 | |
dc.relation | Camilla NO Santos , Danielle R Ribeiro, Juliana Cardoso Alves, Rodrigo A Cazzaniga LSM. Association between Zika virus microcephaly in the newborn with the rs3775291 variant in Toll-Like receptor 3 and rs1799964 variant at TNFα gene Authors. J Infect Dis. 2019;220: 1797–1801. doi:10.1093/ofid/ofy092/4987343 | |
dc.relation | Svensson A, Tunbäck P, Nordström I, Padyukov L, Eriksson K. Polymorphisms in Toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection. J Gen Virol. 2012;93: 1717–1724. doi:10.1099/vir.0.042572-0 | |
dc.relation | Alagarasu K, Bachal R V., Memane RS, Shah PS, Cecilia D. Polymorphisms in RNA sensing toll like receptor genes and its association with clinical outcomes of dengue virus infection. Immunobiology. Elsevier GmbH.; 2015;220: 164–168. doi:10.1016/j.imbio.2014.09.020 | |
dc.relation | Mcgwire BS, Chang K, Engman DM. Migration through the Extracellular Matrix by the Parasitic Protozoan. Infect Immun. 2003;71: 1008–1010. doi:10.1128/IAI.71.2.1008 | |
dc.relation | Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, Olivier M. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell Rep. The Authors; 2015;13: 957–967. doi:10.1016/j.celrep.2015.09.058 | |
dc.relation | Martinez JE, Valderrama L, Gama V, Leiby DA, Saravia NG. Clonal Diversity in the Expression and Stability of the Metastatic Capability of Leishmania guyanensis in the Golden Hamster. J Parasitol. 2000;86: 792–799. doi:10.2307/3284966 | |
dc.relation | Scheffter SM, Ro YT, Chung IK, Patterson JL. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. [Internet]. Virology. 1995. pp. 84–90. doi:10.1590/S0074-02762012000500014 | |
dc.relation | Glick M. A cause célèbre: Can we agree on a common definition or model for causation? J Am Dent Assoc. 2017;148: 863–865. doi:10.1016/j.adaj.2017.10.005 | |
dc.relation | Romero I, Téllez J, Suárez Y, Cardona M, Figueroa R, Zelazny A, et al. Viability and burden of Leishmania in extralesional sites during human dermal leishmaniasis. PLoS Negl Trop Dis. 2010;4: 1–5. doi:10.1371/journal.pntd.0000819 | |
dc.relation | Gordis L. Epidemiología. 5 ta edici. Elsevier Saunders. 2014. doi:10.1177/1742766510373715 | |
dc.relation | Kariyawasam R, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Leishmania RNA Virus 1 (LRV-1) in Leishmania (Viannia) braziliensis Isolates from Peru: A Description of Demographic and Clinical Correlates. Am J Trop Med Hyg. 2020;102: 280–285. doi:10.4269/ajtmh.19-0147 | |
dc.relation | Rodríguez-Villamizar LA. Inferencia causal en epidemiología. Rev Salud Pública. 2017;19: 409–415. doi:10.15446/rsap.v19n3.66180 | |
dc.relation | Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95: 144–150. doi:10.2105/AJPH.2004.059204 | |
dc.relation | Molyneux D. Virus-like particles in Leishmania parasites. Nature. 1974;249: 588. | |
dc.relation | Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A. 1992;89: 8596–600. doi:10.1073/pnas.89.18.8596 | |
dc.relation | Guilbride L, Myler PJ, Stuart K. Distribution and sequence divergence of LRV1-related viruses among different Leishmania species. Mol Biochem Parasitol. 1992;54: 101–104. doi:0166-6851(92)90099-6 [pii] | |
dc.relation | Ghabrial S a. Totiviruses. Encycl Virol (Third Ed. 2008; 163–174. | |
dc.relation | Family Totiviridae. Virus Taxon Ninth Rep Int Comm Taxon Viruses. 2012; 639–650. doi:10.1016/B978-0-12-384684-6.00052-5 | |
dc.relation | Tirera S, Ginouves M, Donato D, Caballero IS, Bouchier C, Lavergne A, et al. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana. PLoS Negl Trop Dis. 2017;11: 1–20. doi:10.1371/journal.pntd.0005764 | |
dc.relation | R Carrion Jr., Y-T Ro JLP. Leishmaniavirus. Encycl Virol (Third Ed. 2008; 220–224. doi:10.1017/CBO9781316090978.013 | |
dc.relation | Scheffter S, Widmer G, Patterson JL. Complete Sequence of Leishmania RNA Virus 1-4 and Identification of Conserved Sequences. Virology. 1994. pp. 479–483. doi:10.1006/viro.1994.1149 | |
dc.relation | Beverley MLNSAGJLPNFSM. Leishmaniavirus. Int Comm Taxon Viruses. 2013;39: 1–9. Available: https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/fungal-official/4817 | |
dc.relation | Zamora M, Guilbride L, Sacks L, Stuart K. Phylogenetic analysis of the 5’ subterminal region of isolates of Leishmania RNA virus-1. Ann Trop Med Parasitol. 2000;94: 123–133. doi:10.1080/00034980057464 | |
dc.relation | Kim SN, Choi JH, Park MW, Jeong SJ, Han KS, Kim HJ. Identification of the +1 ribosomal frameshifting site of LRV1–4 by mutational analysis. Arch Pharm Res. 2005;28: 956–962. doi:10.1007/BF02973883 | |
dc.relation | Carrion R, Ro Y-T, Patterson JL. Purification, identification, and biochemical characterization of a host-encoded cysteine protease that cleaves a leishmaniavirus gag-pol polyprotein. J Virol. 2003;77: 10448–55. doi:10.1128/JVI.77.19.10448 | |
dc.relation | MacBeth KJ, Patterson JL. Overview of the Leishmaniavirus endoribonuclease and functions of other endoribonucleases affecting viral gene expression. J Exp Zool. 1998;282: 254–260. | |
dc.relation | Chung IK, Armstrong TC, Scheffter SM, Lee JH, Kim YM, Patterson JL. Generation of the short RNA transcript in Leishmaniavirus correlates with the growth of its parasite host, Leishmania. Mol Cells. 1998;8: 54–61. Available: http://www.ncbi.nlm.nih.gov/pubmed/9571632 | |
dc.relation | MacBeth KJ, Patterson JL. Single-site cleavage in the 5’-untranslated region of Leishmaniavirus RNA is mediated by the viral capsid protein. Proc Natl Acad Sci U S A. 1995;92: 8994–8. doi:10.1073/pnas.92.19.8994 | |
dc.relation | Sarah F. Mitchell, Sarah E. Walker, Mikkel A. Algire, Eun-Hee Park, Alan G. Hinnebusch JRL. The 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and block an alternative pathway. Mol Cell. 2010;39: 950–962. | |
dc.relation | Maga J a, Widmer G, LeBowitz JH. Leishmania RNA virus 1-mediated cap-independent translation. Mol Cell Biol. 1995;15: 4884–9. doi:10.1128/MCB.15.9.4884 | |
dc.relation | Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM. Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A. 2017;114: E811–E819. doi:10.1073/pnas.1619114114 | |
dc.relation | Atayde VD, da Silva Lira Filho A, Chaparro V, Zimmermann A, Martel C, Jaramillo M, et al. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol. Springer US; 2019;4: 714–723. doi:10.1038/s41564-018-0352-y | |
dc.relation | Parra-Muñoz, Marcela; Aponte, Samanda; Ovalle-Bracho, Clemencia; Saavedra, Carlos; Echeverry M. Detection of Leishmania RNA virus (LRV) in clinical samples from cutaneous leishmaniasis patients varies according to the type of sample Journal: Am J Trop Med Hyg Detect. 2020; | |
dc.relation | Herrer A. Hertigi Sp . N ., From the Tropical Porcupine , Coendou Rothschildi. 1971;57: 626–629. | |
dc.relation | Kostygov AY, Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol (Praha). Folia Parasitologica; 2017;64: 1–5. doi:10.14411/fp.2017.020 | |
dc.relation | Marcela Parra Muñoz, Samanda Aponte, Clemencia Ovalle Bracho, Carlos H. Saavedra MCE. RT-PCR detection of Leishmania RNA virus (LRV) in clinical samples from patients with different outcomes of cutaneous leishmaniasis varies according to the source of sample. Ann Clin Med Microbiol. 2017; | |
dc.relation | Borges AF, Gomes RS, Ribeiro-Dias F. Leishmania (Viannia) guyanensis in tegumentary leishmaniasis. Pathog Dis. 2018;76: 1–10. doi:10.1093/femspd/fty025 | |
dc.relation | Cantanhêde LM, Fernandes FG, Eduardo Melim Ferreira G, Porrozzi R, De Godoi Mattos Ferreira R, Cupolillo E. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites. PLoS One. 2018;13: 1–16. doi:10.1371/journal.pone.0198727 | |
dc.relation | Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO, Prevel F, et al. Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A. PLoS Pathog. 2016;12: 1–19. doi:10.1371/journal.ppat.1005852 | |
dc.relation | Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA: Role of TLR3. Cytokine Growth Factor Rev. 2005;16: 1–14. doi:10.1016/j.cytogfr.2005.01.006 | |
dc.relation | Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nat Immunol. 2003;4: 161–167. doi:10.1038/ni886 | |
dc.relation | Matsumoto M, Seya T. TLR3: Interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008;60: 805–812. doi:10.1016/j.addr.2007.11.005 | |
dc.relation | Faria MS, Reis FCG, Lima APCA. Toll-like receptors in Leishmania infections: Guardians or promoters? J Parasitol Res. 2012;2012. doi:10.1155/2012/930257 | |
dc.relation | Eren RO, Reverte M, Rossi M, Hartley MA, Castiglioni P, Prevel F, Martin R, Desponds C, Lye LF, Drexler SK, Reith W, Beverley SM, Ronet C FN. Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host Microbe. 2016;20: 318–328. doi:10.1016/j.bbi.2015.08.015.Chronic | |
dc.relation | Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol. 2018;30: 103–111. doi:10.1093/intimm/dxx075 | |
dc.relation | de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta C V., et al. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun. Springer US; 2019;10: 1–17. doi:10.1038/s41467-019-13356-2 | |
dc.relation | Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, et al. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep. 2020;30: 1870-1882.e4. doi:10.1016/j.celrep.2020.01.030 | |
dc.relation | Hartley MA, Ronet C, Fasel N. Backseat drivers: The hidden influence of microbial viruses on disease. Curr Opin Microbiol. Elsevier Ltd; 2012;15: 538–545. doi:10.1016/j.mib.2012.05.011 | |
dc.relation | de Oliveira Ramos Pereira L, Maretti-Mira AC, Rodrigues KM, Lima RB, de Oliveira-Neto MP, Cupolillo E, et al. Severity of tegumentary leishmaniasis is not exclusively associated with Leishmania RNA virus 1 infection in Brazil. Mem Inst Oswaldo Cruz. 2013;108: 665–667. doi:10.1590/0074-0276108052013021 | |
dc.relation | Alves-Ferreira EVC, Toledo JS, De Oliveira AHC, Ferreira TR, Ruy PC, Pinzan CF, et al. Differential Gene Expression and Infection Profiles of Cutaneous and Mucosal Leishmania braziliensis Isolates from the Same Patient. PLoS Negl Trop Dis. 2015;9: 1–19. doi:10.1371/journal.pntd.0004018 | |
dc.relation | Saberi R, Fakhar M, Mohebali M, Anvari D, Gholami S. Global status of synchronizing Leishmania RNA virus in Leishmania parasites: A systematic review with meta-analysis. Transbound Emerg Dis. 2019;66: 2244–2251. doi:10.1111/tbed.13316 | |
dc.relation | Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, Hartley MA, et al. Detection of Leishmania RNA Virus in Leishmania Parasites. PLoS Negl Trop Dis. 2013;7: 1–11. doi:10.1371/journal.pntd.0002006 | |
dc.relation | Macedo DH, Menezes-neto A, Rugani JM, Rocha AC, Silva O, Melo MN, et al. Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. 2016;210: 50–54. doi:10.1016/j.molbiopara.2016.08.005.Low | |
dc.relation | Ginouvès M, Simon S, Bourreau E, Lacoste V, Ronet C, Couppié P, et al. Prevalence and distribution of leishmania RNA virus 1 in leishmania parasites from French Guiana. Am J Trop Med Hyg. 2016;94: 102–106. doi:10.4269/ajtmh.15-0419 | |
dc.relation | Salinas G, Zamora M, Stuart K, Saravia N. Leishmania RNA viruses in Leishmania of the Viannia subgenus. Am J Trop Med Hyg. 1996;54: 425–429. | |
dc.relation | Saiz M, Llanos-Cuentas A, Echevarria J, Roncal N, Cruz M, Tupayachi Muniz M, et al. Short report: Detection of Leishmaniavirus in human biopsy samples of leishmaniasis from Peru. Am J Trop Med Hyg. 1998;58: 192–194. doi:10.4269/ajtmh.1998.58.192 | |
dc.relation | Ogg MM, Carrion R, Botelho AC de C, Mayrink W, Correa-Oliveira R, Patterson JL. Short report: quantification of leishmaniavirus RNA in clinical samples and its possible role in pathogenesis. Am J Trop Med Hyg. 2003;69: 309–313. doi:http://dx.doi.org/10.1016/S1995-7645(14)60201-7 | |
dc.relation | Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, et al. Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine Response. PLoS Negl Trop Dis. 2014;8: 1–10. doi:10.1371/journal.pntd.0002836 | |
dc.relation | Hajjaran H, Mahdi M, Mohebali M, Samimi-Rad K, Ataei-Pirkooh A, Kazemi-Rad E, et al. Detection and molecular identification of leishmania RNA virus (LRV) in Iranian Leishmania species. Arch Virol. Springer Vienna; 2016;161: 3385–3390. doi:10.1007/s00705-016-3044-z | |
dc.relation | Ovalle-Bracho C, Díaz-Toro YR, Muvdi-Arenas S. Polymerase chain reaction-miniexon: A promising diagnostic method for mucocutaneous leishmaniasis. Int J Dermatol. 2015;55: 531–539. doi:10.1111/ijd.12910 | |
dc.relation | Van den Bogaart E, Schoone GJ, Adams ER, Schallig HDFH. Duplex quantitative Reverse-Transcriptase PCR for simultaneous assessment of drug activity against Leishmania intracellular amastigotes and their host cells. Int J Parasitol Drugs Drug Resist. Australian Society for Parasitology; 2014;4: 14–19. doi:10.1016/j.ijpddr.2013.11.001 | |
dc.relation | Diaz Pertegas S, Pita Fernandez S. Cálculo del poder estadístico de un estudio. WwwFisterraCom. 2003; 1–7. Available: http://www.fisterra.com/mbe/investiga/poder_estadistico/poder_estadistico2.pdf | |
dc.relation | SHAPIRO SS, WILK MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52: 591–611. doi:10.2307/2333709 | |
dc.relation | Sterne, Betty R. Kirkwood JA. Essential Medical Statistics. 2nd ed. Journal of Experimental Psychology: General. Blackwell; 2006. | |
dc.relation | Kleinbaum DG. Logistic Regression-A Self-Learning Text. 3rd ed. Springer is part of Springer Science; 2010. doi:10.1007/978-1-4419-1742-3 | |
dc.relation | Miguel Ángel Martínez González Almudena Sánchez Villegas Estefanía Toledo Atucha Javier Faulin Fajardo. Bioestadística amigable. 3rd ed. Fajardo MÁMGASVETAJF, editor. Elsevier España. 2014. doi:10.4324/9781315853178 | |
dc.relation | Ovalle-Bracho C, Londoño-Barbosa D, Salgado-Almario J, González C. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS One. 2019;14: 1–16. doi:10.1371/journal.pone.0214124 | |
dc.relation | Zhou P, Fan L, Yu K, Zhao M, Li X. Toll‐like receptor 3 C1234T may protect against geographic atrophy through decreased dsRNA binding capacity. FASEB J. 2011;25: 3489–3495. doi:10.1096/fj.11-189258 | |
dc.relation | El-Bendary M, Neamatallah M, Elalfy H, Besheer T, Elkholi A, El-Diasty M, et al. The association of single nucleotide polymorphisms of Toll-like receptor 3, Toll-like receptor 7 and Toll-like receptor 8 genes with the susceptibility to HCV infection. Br J Biomed Sci. Taylor & Francis; 2018;75: 175–181. doi:10.1080/09674845.2018.1492186 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Determinación de la asociación entre la presencia del Leishmaniavirus 1 (LRV-1) en parásitos infectantes de Leishmania spp y el desarrollo de la leishmaniasis mucosa en pacientes diagnosticados de leishmaniasis cutánea en Colombia | |
dc.type | Otro | |