dc.contributorRamos Rodriguez, Freddy Alejandro
dc.contributorSuárez Moreno, Zulma Rocío
dc.contributorEstudio y aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.creatorVinchira Villarraga, Diana Marcela
dc.date.accessioned2021-01-22T16:11:19Z
dc.date.available2021-01-22T16:11:19Z
dc.date.created2021-01-22T16:11:19Z
dc.date.issued2020-11-24
dc.identifierVinchira-Villarraga Diana Marcela (2020). Bioprospección de bacterias aisladas de ambientes marinos con actividad biocontroladora frente a Fusarium oxysporum f. sp. lycopersici. Tesis de doctorado. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78875
dc.description.abstractla marchitez vascular, causada por el hongo fitopatógeno Fusarium oxysporum f. sp. lycopersici (FOL), es una limitante importante en la productividad de los cultivos de tomate (Solanum lycopersicum). Las bacterias derivadas de ambientes marinos producen metabolitos activos estructuralmente diversos. Estos compuestos han sido usados para el control de fitopatógenos, y recientemente, se ha propuesto evaluarlos junto con las bacterias que los producen como potenciales agentes de control biológico. En la presente investigación, se propuso usar bacterias derivadas de ambientes marinos como posibles biocontroladores de FOL. Para ello, este estudio se dividió en tres fases: (I) La selección y caracterización de bacterias con actividad antifúngica frente a FOL, (II) El análisis de competencia rizosférica y la evaluación de actividad antifúngica in vivo de las bacterias activas, y, (III) El análisis metabolómico no dirigido de la interacción tomate-Paenibacillus sp.-FOL59 bajo condiciones de invernadero y la interacción Paenibacillus sp.-FOL59 en co-cultivo. En la fase I, se llevó a cabo el tamizaje primario de actividad antifúngica con una colección de bacterias obtenidas de ambientes marinos compuesta por 152 aislamientos. De estas, 28 bacterias fueron seleccionadas con base en su actividad antifúngica in vitro contra nueve aislamientos de F. oxysporum y el fitopatógeno control FOL59. La caracterización fenotípica y la identificación molecular de estas bacterias se obtuvo con el fin de priorizar las cepas que deberían ser avaluadas en los ensayos de la fase II. Este proceso condujo a la selección de nueve aislamientos de bacterias pertenecientes al orden Bacillales, que presentaron la mayor actividad antifúngica contra FOL. A partir de los resultados obtenidos en la fase II, la bacteria Paenibacillus sp. PNM200 se seleccionó como el candidato más apropiado para el control de FOL. Paenibacillus PNM200 colonizó el sistema radicular de dos variedades de tomate (Milano y Santa Cruz Kada) bajo condiciones de invernadero, y generó un efecto positivo sobre el crecimiento de las plantas tratadas (Santa Cruz Kada) a los 30 días post inoculación. Este efecto fue correlacionado con la capacidad de Paenibacillus sp. PNM200 de producir Ácido indolacético y solubilizar fosfatos. En un esfuerzo por caracterizar la interacción tripartita tomate-Paenibacillus PNM200-FOL59, en la fase III se llevó a cabo un perfilado metabólico por LCMS bajo condiciones controladas. En los experimentos de perfilado metabólico de la interacción tomate-FOL59, se observó la acumulación de los glicoalcaloides esteroidales α-tomatina, hidroxitomatina, tomatidina tetrahexósido, y la aglicona tomatidina en las raíces de la planta. Sin embargo, este efecto no se observó en la interacción tripartita tomate-Paenibacillus sp. PNM200-FOL59, ni en el perfil metabólico de las raíces de plantas de tomate tratadas solo con Paenibacillus sp. PNM200. En ensayos metabolómicos adicionales, que pretendían caracterizar la interacción Paenibacillus sp. PNM200, se observó la producción diferencial de metabolitos en ambos microorganismos en mono y co-cultivo. Se evidenció también que la adición de tejido vascular de tomate genera cambios significativos en el perfil metabólico de ambos microorganismos. Al ser cultivado en un medio suplementado con tejido de tomate, el fitopatógeno FOL59 induce la síntesis de ácido fusárico, beauvericina J, y al menos cinco depsipéptidos estructuralmente relacionados a la beauvericina. Estos metabolitos son bien conocidos por su rol en la patogenicidad de Fusarium en plantas de tomate. Sin embargo, en co-cultivo con Paenibacillus sp. PNM200, se observó una reducción en la producción de estos metabolitos. Esta respuesta podría estar correlacionada con la disminución en la patogenicidad de FOL59 contra tomate en la interacción tripartita. Por otra parte, los cambios más relevantes en el perfil metabólico de Paenibacillus sp. PNM200 en su interacción con FOL59 se asociaron a la producción de una familia de nueve péptidos, con pesos moleculares entre 1100-1600 Da, que se relacionan estructuralmente con los lipopéptidos Pelgipeptina B y Paneipaptina C. Tres de los péptidos se produjeron exclusivamente en el co-cultivo en medio suplementado con tomate. Los demás péptidos detectados en el co-cultivo presentaron un incremento de entre 2 y 56 veces en su abundancia relativa en comparación con el monocultivo. Los extractos etanólicos enriquecidos en esta familia de péptidos mostraron actividad antifúngica contra la cepa tipo FOL CBS 164.85, con un valor de IC50 de 125 μg·mL-1, confirmando su rol como antibióticos frente a FOL. Ninguno de estos péptidos fue identificado por derreplicación usando bases de datos y fuentes bibliográficas, lo que permite sugerir que pueden tratarse de metabolitos nuevos. En este contexto, se propone que la actividad antifúngica in vivo de Paenibacillus sp. PNM200 está asociada a la síntesis de esta familia de péptidos, y que su producción es modificada (inducida o sobre-expresada) en respuesta a la presencia de FOL59. Esta hipótesis debe ser confirmada con nuevos experimentos dirigidos a evaluar la producción de los péptidos de interés bajo condiciones in vivo.
dc.description.abstractVascular wilt (VW), caused by the phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici (FOL), is a significant disease that limits the yield in tomato crop (Solanum lycopersicum). Marine-derived bacteria produce structurally diverse bioactive metabolites. These compounds have been used for phytopathogens control, and recently, alongside marine-derived bacteria proposed as biological control candidates. In the present research, the use of marine-derived bacteria, isolated from the Colombian Caribbean Sea as biocontrol agents for FOL was proposed. The study was developed in three phases: (I) the selection and characterization of bacteria with antifungal activity against FOL, (II) the analysis of rhizospheric competence and in vivo antifungal activity of the active bacteria, and (III) the untargeted-metabolomic analysis of the interaction between tomato – Paenibacillus sp. - FOL under controlled greenhouse conditions and Paenibacillus sp. PNM200 - FOL by co-cultivation. In phase I, primary screening was carried out with a marine -derived bacterial collection composed of 152 isolates. Twenty-eight bacterial strains were selected based on in vitro antifungal activity test against nine F. oxysporum isolates and one control pathogen FOL59. The phenotypical characterization and molecular identification of these isolates were done aiming to prioritize the better candidates to be tested on phase II. These processes lead to the selection of nine bacteria belonging to the Bacillales order, which presented the higher antifungal activity against FOL. From phase II, isolate Paenibacillus sp. PNM200 was selected as a potential biocontrol strain. Paenibacillus sp. PNM200 colonized the root system of the tomato cultivars Milano and Santa Cruz Kada under greenhouse conditions and generated a positive effect on the growth of the treated plants after 30 days inoculation (Santa Cruz Kada tomato cultivar). This effect was correlated with the ability of Paenibacillus sp. PNM200 to produce IAA (Indoleacetic acid) and solubilize phosphates. These results are one of the first evidence of marine-derived bacteria’s rhizospheric competence of for its use as biocontrol agents. As an effort to characterize the tripartite tomato plant-Paenibacillus sp. PNM200-FOL59 interaction, a LCMS metabolic profiling approach was developed as part of phase III. A significant accumulation of the steroidal glycoalkaloids (SGA) α-tomatine, hydroxytomatine, tomatidine tetrahexoside, and the aglycone tomatidine on the plant's root of was observed in the metabolic profiling experiments to characterize the tomato-FOL59 interaction. However, this effect was not detected in the tripartite tomato-Paenibacillus sp. PNM200-FOL59 interaction, nor in the metabolic profiles of the tomato root system treated with Paenibacillus sp. PNM200. In other metabolomic experiments aimed at characterizing Paenibacillus sp. PNM200-FOL59 interaction, differential production of metabolites could be observed in the mono- and co-cultivation metabolic profiles of both microorganisms. Moreover, the addition of tomato vascular tissue also generated significant changes in the metabolic profile of both microorganisms. The pathogenic strain FOL59, when cultured in a growth medium supplemented with tomato plant tissue, induced the synthesis of fusaric acid, beauvericin J, and at least five additional depsipeptides structurally related to beauvericin. These are well-known metabolites related to the pathogenic effect of Fusarium against plants. However, in co-cultivation with Paenibacillus sp. PNM200, a reduction in the production of these metabolites was observed. This response could be related to the decrease of FOL59 pathogenicity against the tomato. On the other hand, the most relevant changes in the metabolic profiles of Paenibacillus sp. PNM200 were associated to the production of a family of nine peptides, with molecular weights between 1100-1600 Da, and structurally related to the peptide pelgipeptine B and paenipeptin C. Three of these peptides were produced exclusively in the co-culture when the growth medium was supplemented with tomato plant tissue. The other peptides detected in the co-culture showed a significant increase in their abundance compared to the monoculture (2 to 56-fold change), suggesting their role in the biocontrol of FOL59. The ethanolic extracts enriched in this family of peptides showed antifungal activity against FOL CBS 164.85, with an IC50 of 125 μg·mL-1, confirming the role mentioned above as antibiotics against FOL. None of these peptides could be identified by dereplication using databases and literature sources, suggesting that they may be new metabolites. In this context, it is proposed that the in vivo antifungal activity of Paenibacillus sp. PNM200 is associated with the synthesis of this family of peptides, and its production is modified (triggered and enhanced) in response to the presence of FOL59. This hypothesis must be confirmed by new experiments aimed at evaluating the peptides' production under in vivo conditions.
dc.languageeng
dc.publisherBogotá - Ciencias - Doctorado en Biotecnología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationKimura S, Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. . Cold Spring Harb Prot. 2008;3(11).
dc.relationCosta JM, Heuvelink E. The global tomato industry. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388
dc.relationValue of Agricultural Production [Internet]. 2019 [cited 05 September 2019]. Available from: http://www.fao.org/faostat/en/#data/QC/visualize.
dc.relationResearch&Markets. Tomato - Market Analysis, Forecast, Size, Trends and Insights. Research & Markets; 2019.
dc.relationAlseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. 2015;27(3):485-512.
dc.relationKoenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110(28):E2655-62.
dc.relationLi H, Qi M, Sun M, Liu Y, Liu Y, Xu T, et al. Tomato Transcription Factor SlWUS Plays an Important Role in Tomato Flower and Locule Development. Front Plant Sci. 2017;8:457.
dc.relationTomato Genome C. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635-41.
dc.relationArie T, Takahashi H, Kodama M, Teraoka T. Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology. 2007;24(1):135-47.
dc.relationHusaini AM, Sakina A, Cambay SR. Host-Pathogen Interaction in Fusarium oxysporum Infections: Where Do We Stand? Mol Plant Microbe Interact. 2018;31(9):889-98.
dc.relationJashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. 2015;6(584).
dc.relationTakken F, Rep M. The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol. 2010;11(2):309-14.
dc.relationMa LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013;67:399-416.
dc.relationRampersad SN. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. 2020;9(5).
dc.relationMcGovern RJ. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015;73:78-92.
dc.relationNirmaladevi D, Venkataramana M, Srivastava RK, Uppalapati SR, Gupta VK, Yli-Mattila T, et al. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci Rep. 2016;6:21367.
dc.relationAkhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406(1):425-40.
dc.relationDi X, Takken FL, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Frontiers in plant science. 2016;7.
dc.relationTurra D, El Ghalid M, Rossi F, Di Pietro A. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature. 2015;527(7579):521-4.
dc.relationvanderDoes HC, Constantin ME, Houterman PM, Takken FLW, Cornelissen BJC, Haring MA, et al. Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European Journal of Plant Pathology. 2019;154(1):55-65.
dc.relationRaza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol. 2017;37(2):202-12.
dc.relationSchreiter S, Sandmann M, Smalla K, Grosch R. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce. PLOS ONE. 2014;9(8):e103726.
dc.relationGómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. Current insights into the role of rhizosphere bacteria in disease suppressive soils. J Frontiers in Microbiology. 2017;8:2529.
dc.relationRodríguez MA, Rothen C, Lo TE, Cabrera GM, Godeas AM. Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. J Biocontrol science technology. 2015;25(12):1388-409.
dc.relationDe Carvalho CC, Fernandes P. Production of metabolites as bacterial responses to the marine environment. J Marine drugs. 2010;8(3):705-27.
dc.relationBetancur LA, Forero AM, Romero-Otero A, Sepulveda LY, Moreno-Sarmiento NC, Castellanos L, et al. Cyclic tetrapeptides from the marine strain Streptomyces sp. PNM-161a with activity against rice and yam phytopathogens. J Antibiot (Tokyo). 2019;72(10):744-51.
dc.relationBetancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, et al. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLOS ONE. 2017;12(2):e0170148.
dc.relationBlunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2018;35(1):8-53.
dc.relationEl-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, et al. Antifungal potential of marine natural products. Eur J Med Chem. 2017;126:631-51.
dc.relationFudou R, Iizuka T, Sato S, Ando T, Shimba N, Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J Antibiot (Tokyo). 2001;54(2):153-6.
dc.relationReyes-Perez JJ, Hernandez-Montiel LG, Vero S, Noa-Carrazana JC, Quiñones-Aguilar EE, Rincón-Enríquez G. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology. 2019;56(11):4992-9.
dc.relationTareq FS, Lee HS, Lee YJ, Lee JS, Shin HJ. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23. Lipids. 2015;50(5):513-9.
dc.relationTareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, et al. Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A-D from a Bacillus strain 109GGC020. J Agric Food Chem. 2014;62(24):5565-72.
dc.relationHernandez Montiel LG, Zulueta Rodriguez R, Angulo C, Rueda Puente EO, Quiñonez Aguilar EE, Galicia R. Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Journal of Phytopathology. 2017;165(11-12):833-40.
dc.relationOrtega-Morales BO, Ortega-Morales FN, Lara-Reyna J, De la Rosa-Garcia SC, Martinez-Hernandez A, Montero MJ. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. Mar Biotechnol (NY). 2009;11(3):375-83
dc.relationEscudero N, Marhuenda-Egea FC, Ibanco-Cañete R, Zavala-Gonzalez EA, Lopez-Llorca LV. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics. 2014;10(5):788-804.
dc.relationMatilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, et al. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environmental Microbiology Reports. 2010;2(3):381-8.
dc.relationScherling C, Ulrich K, Ewald D, Weckwerth W. A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. Isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe In. 2009;22(8):1032-7.
dc.relationvan de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, et al. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant physiology. 2012:pp. 112.207324.
dc.relationWalker V, Bertrand C, Bellvert F, Moënne‐Loccoz Y, Bally R, Comte G. Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum. New Phytologist. 2011;189(2):494-506.
dc.relationKiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, et al. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microbial ecology. 2006;51(3):257-66.
dc.relationvan Dam NM, Bouwmeester HJ. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends Plant Sci. 2016;21(3):256-65.
dc.relationAliferis KA, Jabaji S. Deciphering plant-pathogen interactions applying metabolomics: principles and applications. Can J Plant Pathol. 2012;34(1):29-33.
dc.relationWolfender JL, Rudaz S, Choi YH, Kim HK. Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem. 2013;20(8):1056-90.
dc.relationSärkinen T, Bohs L, Olmstead RG, Knapp S. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology. 2013;13(1):214.
dc.relationWeese TL, Bohs L. A three-gene phylogeny of the genus Solanum (Solanaceae). Systematic Botany. 2007;32(2):445-63.
dc.relationSpooner DM, Anderson GJ, Jansen RK. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). American Journal of Botany. 1993;80(6):676-88.
dc.relationPeralta IE, Spooner DM, Knapp S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic botany monographs. 2008;84.
dc.relationBlanca J, Canizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One. 2012;7(10):e48198.
dc.relationLin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46(11):1220-6.
dc.relationRazifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ, et al. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol Biol Evol. 2020;37(4):1118-32.
dc.relationPeralta IE, Spooner DM. History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK, editors. Genetic improvement of solanaceous crops. 2. New Hampshire, USA: Science Publishers; 2006. p. 1-27.
dc.relationRothan C, Diouf I, Causse M. Trait discovery and editing in tomato. The Plant Journal. 2019;97(1):73-90.
dc.relationSalehi B, Sharifi-Rad R, Sharopov F, Namiesnik J, Roointan A, Kamle M, et al. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition. 2019;62:201-8.
dc.relationKhachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D-Y, Katz NB. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. J Experimental biology medicine. 2002;227(10):845-51.
dc.relationFriedman M. Anticarcinogenic, Cardioprotective, and Other Health Benefits of Tomato Compounds Lycopene, α-Tomatine, and Tomatidine in Pure Form and in Fresh and Processed Tomatoes. Journal of Agricultural and Food Chemistry. 2013;61(40):9534-50.
dc.relationKubatka P, Liskova A, Kello M, Mojzis J, Solar P, Solarova Z, et al. Plant-derived functional foods with chemopreventive and therapeutic potential against breast cancer: A review of the preclinical and clinical data. In: Kabir Y, editor. Functional Foods in Cancer Prevention and Therapy: Academic Press; 2020. p. 283-314.
dc.relationSant’Ana, Parrine DV, Lefsrud M. Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae. 2018;239:224-33.
dc.relationMoco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 2006;141(4):1205-18.
dc.relationPentimone I, Colagiero M, Rosso LC, Ciancio A. Omics applications: towards a sustainable protection of tomato. Appl Microbiol Biotechnol. 2020;104(10):4185-95.
dc.relationSant’Ana DVP, Lefsrud M. Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae. 2018;239:224-33.
dc.relationBarone A, Chiusano ML, Ercolano MR, Giuliano G, Grandillo S, Frusciante L. Structural and functional genomics of tomato. Int J Plant Genomics. 2008;2008:820274.
dc.relationGao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51(6):1044-51.
dc.relationPesaresi P, Mizzotti C, Colombo M, Masiero S. Genetic regulation and structural changes during tomato fruit development and ripening. Front Plant Sci. 2014;5:124.
dc.relationBallester AR, Tikunov Y, Molthoff J, Grandillo S, Viquez-Zamora M, de Vos R, et al. Identification of Loci Affecting Accumulation of Secondary Metabolites in Tomato Fruit of a Solanum lycopersicum x Solanum chmielewskii Introgression Line Population. Front Plant Sci. 2016;7:1428
dc.relationPanthee DR, Chen F. Genomics of fungal disease resistance in tomato. Curr Genomics. 2010;11(1):30-9.
dc.relationHanson P, Lu S-F, Wang J-F, Chen W, Kenyon L, Tan C-W, et al. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae. 2016;201:346-54.
dc.relationde Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv. 2016:064824.
dc.relationPrihatna C, Barbetti MJ, Barker SJ. A Novel Tomato Fusarium Wilt Tolerance Gene. Front Microbiol. 2018;9:1226.
dc.relationHu X, Puri KD, Gurung S, Klosterman SJ, Wallis CM, Britton M, et al. Proteome and metabolome analyses reveal differential responses in tomato -Verticillium dahliae-interactions. J Proteomics. 2019;207:103449.
dc.relationManzo D, Ferriello F, Puopolo G, Zoina A, D’Esposito D, Tardella L, et al. Fusarium oxysporum f. sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biology. 2016;16(1):53.
dc.relationPetrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, et al. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. Front Plant Sci. 2019;10:223.
dc.relationChen F, Ma R, Chen X-L. Advances of metabolomics in fungal pathogen–plant interactions. Metabolites. 2019;9(8):169.
dc.relationFriedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem. 2009;57(13):5727-33.
dc.relationLiu J, Kanetake S, Wu YH, Tam C, Cheng LW, Land KM, et al. Antiprotozoal Effects of the Tomato Tetrasaccharide Glycoalkaloid Tomatine and the Aglycone Tomatidine on Mucosal Trichomonads. J Agric Food Chem. 2016;64(46):8806-10.
dc.relationShamshiri R, Jones J, Thorp K, Ahmad D, Che Man H, Taheri S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics. 2018;32:287-302.
dc.relationJones J. Instructions for growing tomatoes in the garden and green-house. SC, USA: GroSystems, Anderson; 2013.
dc.relationHeuvelink E, Okello CO. Developmental processes. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.
dc.relationSantos BM, Torres-Quezada EA. Irrigation and fertilization In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.
dc.relationHeuvelink E, Li T, Dorais M. Crop growth and yield. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.
dc.relationBaudoin W, Nersisyan A, Shamilov A, Hodder A, Gutierrez D, Nicola S, et al. Good Agricultural Practices for greenhouse vegetable production in the South East European countries-Principles for sustainable intensification of smallholder farms. Duffy R, editor. Rome, Italy: FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS; 2017.
dc.relationWang X, Xing Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: a principal component analysis. Scientific Reports. 2017;7(1):350.
dc.relationChen J, Kang S, Du T, Qiu R, Guo P, Chen R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management. 2013;129:152-62.
dc.relationPark Y, Na MH, Cho W. Determination on environmental factors and growth factors affecting tomato yield using pattern recognition techniques. Multimedia Tools and Applications. 2019;78(20):28815-34.
dc.relationSilva RS, Kumar L, Shabani F, PicanÇO MC. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3·0 global climate model. The Journal of Agricultural Science. 2017;155(3):407-20.
dc.relationBarrientos-Fuentes JC, Torrico-Albino JC. Socio-economic perspectives of family farming in South America: cases of Bolivia, Colombia and Peru. Agronomía Colombiana. 2014;32(2):266-75.
dc.relationSchneider S. Family farming in Latin America and the Caribbean: looking for new paths of rural development and food security. Brasilia, Brazil: FAO; IPC-IG; 2016.
dc.relationUlrichs C, Fischer G, Büttner C, Mewis I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronomía Colombiana. 2008;26(1):40-6.
dc.relationDANE. Encuesta Nacional Agropecuaria (ENA) 2019. In: DANE, editor. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena2019. p. 31.
dc.relationFIRA. Panorama agroalimentario. Tomate rojo 2019. In: sectorial Ddiyeey, editor. México: FIRA; 2019. p. 26.
dc.relationAgronet. Colombian Ministry of Agriculture and Rural Development Statistics for the Agricultural Sector: AGRONET; 2010 [Available from: http://www.agronet.gov.co
dc.relationMiranda D, Fischer G, Carranza C, Rodríguez M, Lanchero O, Barrientos J. Characterization of productive systems of tomato (Solanum lycopersicum L.) in producing zones of Colombia. Acta Hort. 2009;821:35-46.
dc.relationBojacá CR, Arias LA, Ahumada DA, Casilimas HA, Schrevens E. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control. 2013;30(2):400-3.
dc.relationGil R, Bojacá CR, Schrevens E. Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences. 2019;88:1-9.
dc.relationGil R, Bojacá C, Schrevens E. A tailor-made crop growth model for the tomato production systems in Colombia. Agronomia Colombiana. 2018;35:301-13.
dc.relationSingh VK, Singh AK, Kumar A. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech. 2017;7(4):255.
dc.relationGary E. Vallad, Messelink G, Smith HA. Crop protection. Pest and disease management. In: Heuvelink E, editor. Tomatoes, 2nd Edition. Oxfordshire, UK: CABI; 2018. p. 388.
dc.relationDesneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science. 2010;83(3):197-215.
dc.relationDesneux N, Luna MG, Guillemaud T, Urbaneja A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science. 2011;84(4):403-8.
dc.relationChailleux A, Desneux N, Seguret J, Do Thi Khanh H, Maignet P, Tabone E. Assessing European Egg Parasitoids as a Mean of Controlling the Invasive South American Tomato Pinworm Tuta absoluta. PLOS ONE. 2012;7(10):e48068
dc.relationGiorgini M, Guerrieri E, Cascone P, Gontijo L. Current strategies and future outlook for managing the Neotropical tomato pest Tuta absoluta (Meyrick) in the Mediterranean Basin. Neotropical entomology. 2019;48(1):1-17.
dc.relationHanssen IM, Lapidot M, Thomma BP. Emerging viral diseases of tomato crops. Mol Plant Microbe In. 2010;23(5):539-48.
dc.relationKil E-J, Kim S, Lee Y-J, Byun H-S, Park J, Seo H, et al. Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Scientific Reports. 2016;6(1):19013.
dc.relationShattock RC. Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manag Sci. 2002;58(9):944-50.
dc.relationFoolad MR, Merk HL, Ashrafi H. Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato. Critical Reviews in Plant Sciences. 2008;27(2):75-107.
dc.relationNowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. Plant Dis. 2012;96(1):4-17.
dc.relationHausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant disease. 2004;88(12):1292-303.
dc.relationNaveed ZA, Ali GS. Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to Phytophthora parasitica. International Journal of Molecular Sciences. 2018;19(12).
dc.relationJupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley PE, et al. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology. 2013;14(6):R63.
dc.relationCamaradecomerciodeBogotá. Manual de tomate. agroindustrial Pdaay, editor. Bogotá, Colombia: Camara de comercio de Bogotá; 2015. 56 p.
dc.relationMontenegro I, Madrid A, Cuellar M, Seeger M, Alfaro JF, Besoain X, et al. Biopesticide Activity from Drimanic Compounds to Control Tomato Pathogens. Molecules. 2018;23(8).
dc.relationBawa I. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici(Sacc.) A Review. Int J Adv Acad Res. 2016;2(5).
dc.relationApodaca-Sánchez MA, Zavaleta ME, Osada KS, García ER. Hospedantes asintomáticos de Fusarium oxysporum Schlechtend. f. sp. radicis-lycopersici WR Jarvis y Shoemaker en Sinaloa, México. . Rev Mex Fitopatol. 2004;22(1):7-13
dc.relationEnespa, Dwivedi SK. Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting brinjal and tomato plants. Asian J Plant Pathol. 2014;8(1):18-25.
dc.relationCarmona SL, Burbano-David D, Gómez MR, Lopez W, Ceballos N, Castaño-Zapata J, et al. Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens. 2020;9(1).
dc.relationSingh VK, Singh HB, Upadhyay RS. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemistry. 2017;118:320-32.
dc.relationSrinivas C, Nirmala Devi D, Narasimha Murthy K, Mohan CD, Lakshmeesha TR, Singh B, et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences. 2019;26(7):1315-24.
dc.relationSuga H, Hyakumachi M. Genomics of Phytopathogenic Fusarium. Applied Mycology and Biotechnology. 2004;4:161-89.
dc.relationWatanabe M, Yonezawa T, Lee K-i, Kumagai S, Sugita-Konishi Y, Goto K, et al. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC evolutionary biology. 2011;11:322-.
dc.relationEdel-Hermann V, Lecomte C. Current Status of Fusarium oxysporum Formae Speciales and Races. Phytopathology. 2019;109(4):512-30.
dc.relationBiju VC, Fokkens L, Houterman PM, Rep M, Cornelissen BJC. Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol. 2017;83(4).
dc.relationGonçalves A, Costa H, Fonseca M, Boiteux L, Lopes C, Reis A, editors. Variability and geographical distribution of Fusarium oxysporum f. sp. lycopersici physiological races and field performance of resistant sources in Brazil. V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection 1207; 2016.
dc.relationSepúlveda-Chavera G, Huanca W, Salvatierra-Martínez R, Latorre BA. First Report of Fusarium oxysporum f. sp. lycopersici Race 3 and F. oxysporum f. sp. radicis-lycopersici in Tomatoes in the Azapa Valley of Chile. Plant Disease. 2014;98(10):1432-.
dc.relationReis A, Costa H, Boiteux LS, Lopes CA. First report of Fusarium oxysporum f. sp. lycopersici race 3 on tomato in Brazil. Fitopatologia Brasileira. 2005;30(4):426-8
dc.relationde Sain M, Rep M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Int J Mol Sci. 2015;16(10):23970-93.
dc.relationDi XT, Takken FLW, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Frontiers in Plant Science. 2016;7
dc.relationGordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23-39.
dc.relationPietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MI. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol. 2003;4(5):315-25.
dc.relationAgrios GN. chapter eleven - PLANT DISEASES CAUSED BY FUNGI. In: Agrios GN, editor. Plant Pathology (Fifth Edition). San Diego: Academic Press; 2005. p. 385-614.
dc.relationBravo Ruiz G, Di Pietro A, Roncero MI. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum. Mol Plant Pathol. 2016;17(3):339-53.
dc.relationIto S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett. 2004;571(1-3):31-4.
dc.relationIto S, Kawaguchi T, Nagata A, Tamura H, Matsushita H, Takahara H, et al. Distribution of the FoToml gene encoding tomatinase in formae speciales of Fusarium oxysporum and identification of a novel tomatinase from F. oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato. Journal of General Plant Pathology. 2004;70(4):195-201.
dc.relationKang S, Demers J, Jimenez-Gasco MdM, Rep M. Fusarium oxysporum. In: Dean RA, Kole C, Lichens-Park A, editors. Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Berlin Heidelberg: Springer-Verlag; 2014. p. 244.
dc.relationKatan T, Shlevin E, Katan J. Sporulation of Fusarium oxysporum f. sp. lycopersici on Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum. Phytopathology. 1997;87(7):712-9.
dc.relationGale LR, Katan T, Kistler HC. The Probable Center of Origin of Fusarium oxysporum f. sp. lycopersici VCG 0033. Plant Dis. 2003;87(12):1433-8.
dc.relationGonzalez-Cendales Y, Catanzariti AM, Baker B, McGrath DJ, Jones DA. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol. 2016;17(3):448-63.
dc.relationMata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, et al. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research. 2020;7(1):66.
dc.relationEl Mohtar CA, Atamian HS, Dagher RB, Abou-Jawdah Y, Salus MS, Maxwell DP. Marker-Assisted Selection of Tomato Genotypes with the I-2 Gene for Resistance to Fusarium oxysporum f. sp. lycopersici Race 2. Plant Dis. 2007;91(6):758-62.
dc.relationSegal G, Sarfatti M, Schaffer MA, Ori N, Zamir D, Fluhr R. Correlation of genetic and physical structure in the region surrounding the I2 Fusarium oxysporum resistance locus in tomato. Molecular and General Genetics MGG. 1992;231(2):179-85.
dc.relationBournival BL, Vallejos CE, Scott JW. Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theoretical and Applied Genetics. 1990;79(5):641-5.
dc.relationMandal S, Mallick N, Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem. 2009;47(7):642-9.
dc.relationBenhamou N, Lafontaine P, Nicole M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology. 1994;84(12):1432-44.
dc.relationElmer WH, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano. 2016;3(5):1072-9.
dc.relationKumar A, Biswas S. Biochemical evidences of induced resistance in tomato plant against Fusarium with through inorganic chemicals. Journal of Mycopathological Research. 2010;48(2):213-9.
dc.relationChakraborty N, Chandra S, Acharya K. Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl2. Physiology and Molecular Biology of Plants. 2017;23(3):581-96.
dc.relationSong W, Zhou L, Yang C, Cao X, Zhang L, Liu X. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot. 2004;23(3):243-7.
dc.relationChen C, Wang J, Luo Q, Yuan S, Zhou M. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci. 2007;63(12):1201-7.
dc.relationLiu S, Fu L, Wang S, Chen J, Jiang J, Che Z, et al. Carbendazim Resistance of Fusarium graminearum From Henan Wheat. Plant Dis. 2019:PDIS02190391RE.
dc.relationYin Y, Liu X, Li B, Ma Z. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology. 2009;99(5):487-97.
dc.relationAmini J, Sidovich D. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J Plant Prot Res. 2010;50(2):172-8.
dc.relationShoaib A, Dliferoze A, Khan A, Khurshid S, Akhtar S. Effect of Fungicides on the Morphology, Physiology and Biochemistry of Tomato Seedlings Infected with Fusarium oxysporum f. sp lycopersici. Philipp Agric Sci. 2014;97(4):416-21.
dc.relationArias LA, Bojacá CR, Ahumada DA, Schrevens E. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control. 2014;35(1):213-7.
dc.relationBonanomi G, Antignani V, Pane C, Scala F. Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology. 2007;89(3):311-24.
dc.relationStevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, et al. Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil. 2003;253(2):493-506.
dc.relationBarakat RM, Al-Masri MI. Enhanced Soil Solarization against Fusarium oxysporum f. sp. lycopersici in the Uplands. International Journal of Agronomy. 2012;2012:368654.
dc.relationYücel S, Ozarslandan A, Colak A, Ay T. Methyl bromide alternatives for controlling Fusarium wilt and root knot nematodes in tomatoes in Turkey. Acta Horticulturae. 2009;808:381-6.
dc.relationXie H, Yan D, Mao L, Wang Q, Li Y, Ouyang C, et al. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. PloS one. 2015;10(2):e0117980-e.
dc.relationRosskopf EN, Chellemi DO, Kokalis-Burelle N, Church GT. Alternatives to methyl bromide: A Florida perspective. Plant Health Progress. 2005;6(1):19.
dc.relationIoannou N. Soil solarization as a substitute for methyl bromide fumigation in greenhouse tomato production in Cyprus. Phytoparasitica. 2000;28(3):248-56.
dc.relationPaudel BR, Di Gioia F, Zhao X, Ozores-Hampton M, Hong JC, Kokalis-Burelle N, et al. Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renewable Agriculture and Food Systems. 2020;35(3):274-85.
dc.relationAjilogba C, Babalola O. Integrated Management Strategies for Tomato Fusarium Wilt. Biocontrol science. 2013;18:117-27.
dc.relationCary LR, Frank JL. Grafting to Manage Soilborne Diseases in Heirloom Tomato Production. HortScience horts. 2008;43(7):2104-11.
dc.relationSyed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018;267:102-11.
dc.relationCha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. The ISME Journal. 2016;10(1):119-29.
dc.relationKöhl J, Kolnaar R, Ravensberg WJ. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. 2019;10(845).
dc.relationOrozco-Mosqueda MdC, Rocha-Granados MdC, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research. 2018;208:25-31.
dc.relationWallenstein MD. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere. 2017;3:230-2.
dc.relationKoch E, Ole Becker J, Berg G, Hauschild R, Jehle J, Köhl J, et al. Biocontrol of plant diseases is not an unsafe technology! Journal of Plant Diseases and Protection. 2018;125(2):121-5.
dc.relationHeimpel GE, Mills NJ. Biological control: Cambridge University Press; 2017.
dc.relationFravel D. Commercialization and implementation of biocontrol. Annu Rev Phytopathol. 2005;43:337-59.
dc.relationBrodeur J, Abram PK, Heimpel GE, Messing RH. Trends in biological control: public interest, international networking and research direction. BioControl. 2018;63(1):11-26.
dc.relationKöhl J, Postma J, Nicot P, Ruocco M, Blum B. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control. 2011;57(1):1-12.
dc.relationGardener BBM, Fravel DRJPHP. Biological control of plant pathogens: research, commercialization, and application in the USA. 2002;3(1):17.
dc.relationEl-Mohamedy RSR. Efficiency of different application methods of biocontrol agents and biocides in control of Fusarium root rot on some citrus rootstocks. Archives of Phytopathology Plant Protection. 2009;42(9):819-28.
dc.relationHinarejos E, Castellano M, Rodrigo I, Bellés JM, Conejero V, López-Gresa MP, et al. Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology. 2016;146(3):597-608.
dc.relationJang Y, Kim SG, Kim YH. Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathol J. 2011;27(333):e41.
dc.relationWei Z, Huang J, Yang T, Jousset A, Xu Y, Shen Q, et al. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J Appl Ecol. 2017;54(5):1440-8.
dc.relationJacobsen BJ, Zidack NK, Larson BJ. The Role of Bacillus-Based Biological Control Agents in Integrated Pest Management Systems: Plant Diseases. Phytopathology®. 2004;94(11):1272-5.
dc.relationSchisler DA, Slininger PJ, Behle RW, Jackson MA. Formulation of Bacillus spp. for Biological Control of Plant Diseases. Phytopathology®. 2004;94(11):1267-71.
dc.relationFira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology. 2018;285:44-55.
dc.relationRybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016;405(1):125-40.
dc.relationGrady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15(1):203.
dc.relationLaw JW-F, Ser H-L, Khan TM, Chuah L-H, Pusparajah P, Chan K-G, et al. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). 2017;8(3).
dc.relationSchrey SD, Tarkka MT. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek. 2008;94(1):11-9.
dc.relationPanpatte DG, Jhala YK, Shelat HN, Vyas RV. Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. Microbial inoculants in sustainable agricultural productivity: Springer; 2016. p. 257-70.
dc.relationMark GL, Morrissey JP, Higgins P, O'Gara F. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiology Ecology. 2006;56(2):167-77.
dc.relationVerma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal. 2007;37(1):1-20.
dc.relationSharma A. Fungi as Biological Control Agents. In: Giri B, Prasad R, Wu Q, Varma A, editors. Biofertilizers for Sustainable Agriculture and Environment: Springer; 2019. p. 395-411.
dc.relationDatnoff LE, Nemec S, Pernezny K. Biological Control of Fusarium Crown and Root Rot of Tomato in Florida Using Trichoderma harzianum and Glomus intraradices. Biol Control. 1995;5(3):427-31.
dc.relationOmar I, O'Neill TM, Rossall S. Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 2006;55(1):92-9.
dc.relationFravel DR, Deahl KL, Stommel JR. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol Control. 2005;34(2):165-9
dc.relationSomeya N, Tsuchiya K, Yoshida T, Noguchi MT, Sawada H. Combined use of the biocontrol bacterium Pseudomonas fluorescens strain LRB3W1 with reduced fungicide application for the control of tomato Fusarium wilt. Biocontrol science. 2006;11(2):75-80.
dc.relationMinuto A, Spadaro D, Garibaldi A, Gullino ML. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot. 2006;25(5):468-75.
dc.relationJayaraj J, Radhakrishnan NV. Enhanced activity of introduced biocontrol agents in solarized soils and its implications on the integrated control of tomato damping-off caused by Pythium spp. Plant Soil. 2008;304(1):189-97.
dc.relationSpadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 2005;24(7):601-13.
dc.relationDukare AS, Prasanna R, Chandra Dubey S, Nain L, Chaudhary V, Singh R, et al. Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot. 2011;30(4):436-42.
dc.relationJi P, Wilson M. Enhancement of Population Size of a Biological Control Agent and Efficacy in Control of Bacterial Speck of Tomato through Salicylate and Ammonium Sulfate Amendments. Applied and Environmental Microbiology. 2003;69(2):1290.
dc.relationArseneault T, Filion M. Biocontrol through antibiosis: exploring the role played by subinhibitory concentrations of antibiotics in soil and their impact on plant pathogens. Canadian Journal of Plant Pathology. 2017;39(3):267-74.
dc.relationNguvo KJ, Gao X. Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. Journal of Plant Diseases and Protection. 2019;126(3):177-90.
dc.relationBakker PAHM, Ran LX, Pieterse CMJ, van Loon LC. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology. 2003;25(1):5-9.
dc.relationBais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology. 2004;134(1):307.
dc.relationSegarra G, Casanova E, Avilés M, Trillas I. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial ecology. 2010;59(1):141-9.
dc.relationBardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci. 2015;6(566).
dc.relationLiu P, Luo L, Long C-a. Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biol Control. 2013;67(2):157-62.
dc.relationElad Y, Chet I. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology. 1987;77(2):190-5.
dc.relationVero S, Mondino P, Burgueño J, Soubes M, Wisniewski M. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology. 2002;26(1):91-8.
dc.relationBencheqroun SK, Bajji M, Massart S, Labhilili M, Jaafari SE, Jijakli MH. In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology and Technology. 2007;46(2):128-35.
dc.relationSayyed R, Chincholkar S, Reddy M, Gangurde N, Patel P. Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: D. M, editor. Bacteria in Agrobiology: Disease Management. Berlin, Heidelberg: Springer; 2013. p. 449-71.
dc.relationMoretti M, Gilardi G, Gullino ML, Garibaldi A. Biological control potential of Achromobacter xylosoxydans for suppressing Fusarium wilt of tomato. J Int J Bot. 2008;4(4):369-75.
dc.relationGoudjal Y, Zamoum M, Sabaou N, Mathieu F, Zitouni A. Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Science and Technology. 2016;26(12):1691-705.
dc.relationDhouib H, Zouari I, Ben Abdallah D, Belbahri L, Taktak W, Triki MA, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control. 2019;139:104092.
dc.relationRojas-Rojas FU, Salazar-Gómez A, Vargas-Díaz ME, Vásquez-Murrieta MS, Hirsch AM, De Mot R, et al. Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. 2018;164(9):1072-86.
dc.relationGautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microbial Pathogenesis. 2019;130:196-203.
dc.relationPandin C, Le Coq D, Canette A, Aymerich S, Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotechnology. 2017;10(4):719-34.
dc.relationHaggag WM, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol. 2008;104(4):961-9.
dc.relationDi Francesco A, Ugolini L, D'Aquino S, Pagnotta E, Mari M. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. International Journal of Food Microbiology. 2017;248:32-8.
dc.relationTan S, Gu Y, Yang C, Dong Y, Mei X, Shen Q, et al. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology Fertility of Soils. 2016;52(3):341-51.
dc.relationDefoirdt T, Boon N, Bossier P. Can Bacteria Evolve Resistance to Quorum Sensing Disruption? PLOS Pathogens. 2010;6(7):e1000989.
dc.relationRodríguez M, Torres M, Blanco L, Béjar V, Sampedro I, Llamas I. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Scientific Reports. 2020;10(1):4121.
dc.relationFetzner S. Quorum quenching enzymes. Journal of biotechnology. 2015;201:2-14.
dc.relationGutiérrez-Pacheco MM, Bernal-Mercado AT, Vázquez-Armenta FJ, Mart ínez-Tellez MA, González-Aguilar GA, Lizardi-Mendoza J, et al. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiological and Molecular Plant Pathology. 2019;106:281-91.
dc.relationvon Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annual review of phytopathology. 2003;41(1):455-82.
dc.relationHelman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. 2015;16(3):316-29.
dc.relationKatoch S, Kumari N, Salwan R, Sharma V, Sharma PN. Recent developments in social network disruption approaches to manage bacterial plant diseases. Biol Control. 2020;150:104376.
dc.relationKumar Jayanna S, Umesha S. Quorum quenching activity of rhizosphere bacteria against Ralstonia solanacearum. Rhizosphere. 2017;4:22-4.
dc.relationFan X, Ye T, Li Q, Bhatt P, Zhang L, Chen S. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum. Front Microbiol. 2020;11(898).
dc.relationPieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology. 2014;52(1):347-75.
dc.relationTakahashi H, Nakaho K, Ishihara T, Ando S, Wada T, Kanayama Y, et al. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant Cell Reports. 2014;33(1):99-110.
dc.relationNawrocka J, Małolepsza U. Diversity in plant systemic resistance induced by Trichoderma. Biol Control. 2013;67(2):149-56.
dc.relationFatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. Front Plant Sci. 2017;8(848).
dc.relationChoudhary DK, Johri BN. Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research. 2009;164(5):493-513.
dc.relationCouillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology. 2009;48(5):505-12.
dc.relationTakishita Y, Charron J-B, Smith DLJFim. Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. 2018;9:2119.
dc.relationBenítez T, Rincón AM, Limón MC, Codon AC. Biocontrol mechanisms of Trichoderma strains. International microbiology. 2004;7(4):249-60.
dc.relationOmann M, Zeilinger S. How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma. Journal of Signal Transduction. 2010;2010:123126.
dc.relationMonteiro VN, do Nascimento Silva R, Steindorff AS, Costa FT, Noronha EF, Ricart CAO, et al. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current microbiology. 2010;61(4):298-305.
dc.relationSteindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Jr., Ulhoa CJ, et al. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics. 2014;15:204-.
dc.relationOjha S, Chatterjee NC. Mycoparasitism of Trichoderma spp. in biocontrol of fusarial wilt of tomato. Archives of Phytopathology and Plant Protection. 2011;44(8):771-82.
dc.relationEl Komy MH, Saleh AA, Eranthodi A, Molan YY. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. Plant Pathol J. 2015;31(1):50-60.
dc.relationIida Y, Ikeda K, Sakai H, Nakagawa H, Nishi O, Higashi Y. Evaluation of the potential biocontrol activity of Dicyma pulvinata against Cladosporium fulvum, the causal agent of tomato leaf mould. Plant Pathol. 2018;67(9):1883-90.
dc.relationRaaijmakers JM, Vlami M, de Souza JT. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek. 2002;81(1):537.
dc.relationThomashow L, Bonsall R, Weller D. Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst C, Knudsen G, McInerney M, Stetzenbach L, Walter M, editors. Manual of Environmental Microbiology. Washington, DC: ASM Press; 1997. p. 493–99.
dc.relationRaaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol. 2012;50:403-24.
dc.relationOkada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017;41(1):19-33.
dc.relationPishchany G, Kolter R. On the possible ecological roles of antimicrobials. Molecular Microbiology. 2020;113(3):580-7.
dc.relationCochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Medicinal Research Reviews. 2016;36(1):4-31.
dc.relationMavrodi DV, Blankenfeldt W, Thomashow LS. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol. 2006;44:417-45.
dc.relationFickers P. Antibiotic compounds from Bacillus: why are they so amazing. American Journal of Biochemistry Biotechnology. 2012(8):38-43.
dc.relationChater KF. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci. 2006;361(1469):761-8.
dc.relationDanaei M, Baghizadeh A, Pourseyedi S, Amini J, Yaghoobi MM. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Eur J Exp Biol. 2014;4(1):334-9.
dc.relationDeryabin DG, Inchagova KS. Inhibitory effect of aminoglycosides and tetracyclines on quorum sensing in Chromobacterium violaceum. Microbiology. 2018;87(1):1-8.
dc.relationOlivain C, Humbert C, Nahalkova J, Fatehi J, L'Haridon F, Alabouvette C. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol. 2006;72(2):1523-31.
dc.relationAimé S, Alabouvette C, Steinberg C, Olivain C. The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots. Molecular Plant-Microbe Interactions. 2013;26(8):918-26.
dc.relationConstantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. 2019;10(979).
dc.relationShcherbakova LA, Odintsova TI, Stakheev AA, Fravel DR, Zavriev SK. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato. Front Plant Sci. 2016;6(1207).
dc.relationSingh P, Singh J, Ray S, Rajput RS, Vaishnav A, Singh RK, et al. Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research. 2020;237:126482.
dc.relationJangir M, Pathak R, Sharma S, Sharma S. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control. 2018;123:60-70.
dc.relationPatel S, Saraf M. Interaction of root colonizing biocontrol agents demonstrates the antagonistic effect against Fusarium oxysporum f. sp. lycopersici on tomato. European Journal of Plant Pathology. 2017;149(2):425-33.
dc.relationWan T, Zhao H, Wang W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. Journal of Phytopathology. 2018;166(5):324-32.
dc.relationElanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, et al. Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology. 2018;103:92-101.
dc.relationKamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol. 2005;7(11):1809-17.
dc.relationArya N, Rana A, Rajwar A, Sahgal M, Sharma AK. Biocontrol Efficacy of Siderophore Producing Indigenous Pseudomonas Strains Against Fusarium Wilt in Tomato. National Academy Science Letters. 2018;41(3):133-6.
dc.relationNaing KW, Anees M, Kim SJ, Nam Y, Kim YC, Kim KY. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Annals of Microbiology. 2014;64(1):55-63.
dc.relationNaing KW, Nguyen XH, Anees M, Lee YS, Kim YC, Kim SJ, et al. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38. World J Microbiol Biotechnol. 2015;31(1):165-74.
dc.relationKim YH, Park SK, Hur JY, Kim YC. Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73. Plant Pathol J. 2017;33(3):318-28.
dc.relationLee YS, Nguyen XH, Cho JY, Moon JH, Kim KY. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microb Pathog. 2017;106:139-45.
dc.relationMei L, Liang Y, Zhang L, Wang Y, Guo Y. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Annals of Applied Biology. 2014;165(2):270-9.
dc.relationAl-Askar AA, Baka ZA, Rashad YM, Ghoneem KM, Abdulkhair WM, Hafez EE, et al. Evaluation of Streptomyces griseorubens E44G for the biocontrol of Fusarium oxysporum f. sp. lycopersici: ultrastructural and cytochemical investigations. Annals of Microbiology. 2015;65(4):1815-24
dc.relationRashad YM, Al-Askar AA, Ghoneem KM, Saber WIA, Hafez EE. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 2017;45(2):227-37
dc.relationAbbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms. 2019;10(1505).
dc.relationAntoniou A, Tsolakidou M-D, Stringlis IA, Pantelides IS. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Front Plant Sci. 2017;8(2022).
dc.relationZhao F, Zhang Y, Dong W, Zhang Y, Zhang G, Sun Z, et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil. 2019;440(1):491-505.
dc.relationDe Corato U, Patruno L, Avella N, Salimbeni R, Lacolla G, Cucci G, et al. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Applied Soil Ecology. 2020;154:103601.
dc.relationDe Cal A, Melgarejo P. Repeated applications of Penicillium oxalicum prolongs biocontrol of fusarium wilt of tomato plants. European journal of plant pathology. 2001;107(8):805-11.
dc.relationDubey SC, Tripathi A, Tak R, Devi SI. Evaluation of bio-formulations of fungal and bacterial biological control agents in combination with fungicide in different mode of application for integrated management of tomato wilt. Indian Phytopathology. 2020.
dc.relationZhang J, Chen J, Jia R, Ma Q, Zong Z, Wang Y. Suppression of plant wilt diseases by nonpathogenic Fusarium oxysporum Fo47 combined with actinomycete strains. Biocontrol Science and Technology. 2018;28(6):562-73.
dc.relationMwangi MW, Muiru WM, Narla RD, Kimenju JW, Kariuki GM. Management of Fusarium oxysporum f. sp. lycopersici and root-knot nematode disease complex in tomato by use of antagonistic fungi, plant resistance and neem. Biocontrol Science and Technology. 2019;29(3):229-38.
dc.relationMazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. The ISME Journal. 2009;3(8):977-91.
dc.relationKinkel LL, Schlatter DC, Bakker MG, Arenz BE. Streptomyces competition and co-evolution in relation to plant disease suppression. Research in microbiology. 2012;163(8):490-9.
dc.relationZhao M, Yuan J, Zhang R, Dong M, Deng X, Zhu C, et al. Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. Applied Soil Ecology. 2018;132:83-90.
dc.relationFrederiks C, Wesseler JHH. A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Management Science. 2019;75(1):87-103
dc.relationICA. Productos y bioinsumos registrados. Diciembre 2019. In: Agricultura Md, editor. Bogotá, Colombia: Intituto Colombiano Agropecuario; 2019.
dc.relationWeert Sd, Bloemberg GV. Rhizosphere competence and the role of root colonization in biocontrol. . In: Gnanamanickam SS, editor. Plant-Associated Bacteria Dordrecht: Springer; 2007.
dc.relationHu HQ, Li XS, He H. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control. 2010;54(3):359-65.
dc.relationRadovanović N, Milutinović M, Mihajlovski K, Jović J, Nastasijević B, Rajilić-Stojanović M, et al. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Microbial Pathogenesis. 2018;120:71-8.
dc.relationPatel KB, Thakker JN. Growth promotion and biocontrol activity of Nocardiopsis dassonvillei strain YM12: an isolate from coastal agricultural land of Khambhat. Vegetos. 2019;32(4):571-82.
dc.relationRaymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA. Screening for novel biocontrol agents applicable in plant disease management – A review. Biol Control. 2020;144:104240.
dc.relationDeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science. 2006;311(5760):496-503.
dc.relationSimon C, Daniel R. Metagenomic analyses: past and future trends. Applied and environmental microbiology. 2011;77(4):1153-61.
dc.relationFenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nature chemical biology. 2006;2(12):666-73.
dc.relationPenesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Marine drugs. 2010;8(3):438-59.
dc.relationEgan S, Thomas T, Kjelleberg S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current opinion in microbiology. 2008;11(3):219-25.
dc.relationSmith DC, Simon M, Alldredge AL, Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 1992;359(6391):139-42.
dc.relationPeixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Frontiers in Microbiology. 2017;8.
dc.relationRosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology. 2007;5(5):355-62
dc.relationHarder T. Marine epibiosis: concepts, ecological consequences and host defence. 2008.
dc.relationSharp KH, Eam B, Faulkner DJ, Haygood MG. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and Environmental Microbiology. 2007;73(2):622-9.
dc.relationOrtega-Morales BO, Chan-Bacab MJ, De la Rosa SdC, Camacho-Chab JC. Valuable processes and products from marine intertidal microbial communities. Current opinion in biotechnology. 2010;21(3):346-52.
dc.relationCarroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Natural Product Reports. 2020;37(2):175-223
dc.relationEl-Hossary EM, Cheng C, Hamed MM, Hamed ANE-S, Ohlsen K, Hentschel U, et al. Antifungal potential of marine natural products. European Journal of Medicinal Chemistry. 2016.
dc.relationLara-Capistran L, Zulueta-Rodriguez R, Castellanos-Cervantes T, Reyes-Perez JJ, Preciado-Rangel P, Hernandez-Montiel LG. Efficiency of Marine Bacteria and Yeasts on the Biocontrol Activity of Pythium ultimum in Ancho-Type Pepper Seedlings. Agronomy. 2020;10(3):408.
dc.relationTareq FS, Hasan CM, Lee H-S, Lee Y-J, Lee JS, Surovy MZ, et al. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020. Bioorganic & medicinal chemistry letters. 2015;25(16):3325-9.
dc.relationTareq FS, Kim JH, Lee MA, Lee H-S, Lee J-S, Lee Y-J, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. Journal of agricultural and food chemistry. 2013;61(14):3428-34.
dc.relationXue C, Tian L, Xu M, Deng Z, Lin W. A New 24-membered Lactone and a New Polyene [delta]-Lactone from the Marine Bacterium Bacillus marinus. Journal of antibiotics. 2008;61(11):668.
dc.relationElkahoui S, Djébali N, Tabbene O, Hadjbrahim A, Mnasri B, Mhamdi R, et al. Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology. 2012;11(18):4196-201.
dc.relationKong Q, Shan S, Liu Q, Wang X, Yu F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International journal of food microbiology. 2010;139(1):31-5.
dc.relationDhinakaran A, Rajasekaran R, Jayalakshmi S. Antiphytopathogenic activity of bacterial protein of a marine Corynebacterium sp. isolated from Mandapam, Gulf of Mannar. Journal of Biopesticides. 2012;5(17):2012.
dc.relationEl-Gendy MM, Hawas UW, Jaspars M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. Journal of Antibiotics. 2008;61(6):379.
dc.relationKathiresan K, Balagurunathan R, Selvam MM. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian journal of Biotechnology. 2005;4(2):271-6.
dc.relationJianyou L, Jianrong X, Yongheng C. Isolation and identification of two marine-derived Streptomyces from marine mud of coast and offshore Zhuhai, and bioactive potential for plant pathogenic fungi. African Journal of Biotechnology. 2011;10(56):11855-60.
dc.relationRivas-Garcia T, Murillo-Amador B, Nieto-Garibay A, Rincon-Enriquez G, Chiquito-Contreras RG, Hernandez-Montiel LG. Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biology and Technology. 2019;151:61-7.
dc.relationManwar A, Khandelwal S, Chaudhari B, Meyer J, Chincholkar S. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied biochemistry and biotechnology. 2004;118(1-3):243-51.
dc.relationJayaprakashvel M, Sharmika N, Vinothini S, Muthezhilan MVR, Hussain AJ. Biological Control of Sheath Blight of Rice using Marine Associated Fluorescent pseudomonads. 2014.
dc.relationHuang C-Y, Ho C-H, Lin C-J, Lo C-C. Exposure effect of fungicide kasugamycin on bacterial community in natural river sediment. Journal of Environmental Science and Health, Part B. 2010;45(5):485-91.
dc.relationLeal MC, Sheridan C, Osinga R, Dionísio G, Rocha RJM, Silva B, et al. Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Marine drugs. 2014;12(7):3929-52.
dc.relationPiel J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Current medicinal chemistry. 2006;13(1):39-50.
dc.relationPiel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annual review of microbiology. 2011;65:431-53.
dc.relationRadjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG, et al. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorganic & medicinal chemistry. 2011;19(22):6658-74.
dc.relationMayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in pharmacological sciences. 2010;31(6):255-65.
dc.relationWilkinson B, Micklefield J. Mining and engineering natural-product biosynthetic pathways. Nature chemical biology. 2007;3(7):379-86.
dc.relationDevi N, Balakrishnan K, Gopal R, Padmavathy S. Bacillus clausii MB9 from the east coast regions of India: Isolation, biochemical characterization and antimicrobial potentials. Current Science (00113891). 2008;95(5).
dc.relationAllwood JW, Ellis DI, Goodacre R. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant. 2008;132(2):117-35.
dc.relationYandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol. 2015;31(8):1217-25.
dc.relationTabares P, Pimentel-Elardo SM, Schirmeister T, Hunig T, Hentschel U. Anti-protease and immunomodulatory activities of bacteria associated with Caribbean sponges. Mar Biotechnol (NY). 2011;13(5):883-92.
dc.relationQuintero M, Velásquez A, Jutinico LM, Jiménez-Vergara E, Blandón LM, Martinez K, et al. Bioprospecting from marine coastal sediments of Colombian Caribbean: screening and study of antimicrobial activity. Journal of Applied Microbiology. 2018;125(3):753-65.
dc.relationBlandón L, Alvarado-Campo KL, Patiño AD, Jiménez-Vergara E, Quintero M, Montoya-Giraldo M, et al. Polyhydroxyalkanoate Production from Two Species of Marine Bacteria: A Comparative Study. Journal of Polymers and the Environment. 2020;28(9):2324-34.
dc.relationMartínez-Buitrago PA, Ramos FA, Castellanos L. Binary co-culture selection from marine-derived microorganisms for differential production of specialized metabolites. J Química Nova. 2019;42(7):713-9.
dc.relationRomero-Otero A. Búsqueda de compuestos con actividad antimicrobiana a partir de hongos aislados de ambientes marinos. Fase I. Bogotá, Colombia: Universidad Nacional de Colombia 2016.
dc.relationCárdenas-Martinez JD. Evaluación de la producción metabolica de un aislamiento bacteriano obtenido de ambientes marinos para el control de fitopatógenos. Bogotá D.C, Colombia: Universidad Nacional de Colombia; 2019.
dc.relationBetancur LA, Forero AM, Vinchira-Villarraga DM, Cárdenas-Martinez JD, Romero-Otero A, Chagas FO, et al. NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiological research. 2020;239:126507.
dc.relationDeketelaere S, Tyvaert L, Franca SC, Hofte M. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front Microbiol. 2017;8:1186.
dc.relationKarthika S, Varghese S, Jisha MS. Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech. 2020;10(7):320
dc.relationMahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of Applied Microbiology. 2008;104(6):1539-51.
dc.relationHandelsman J. Future trends in biocontrol. In: Gnanamanickam SS, editor. Biological control of crop diseases. New York: Marcel Dekker; 2002. p. 443-8.
dc.relationDeising HB, Gase I, Kubo Y. The unpredictable risk imposed by microbial secondary metabolites: how safe is biological control of plant diseases? Journal of Plant Diseases and Protection. 2017;124(5):413-9.
dc.relationBalouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9.
dc.relationDas P, Chatterjee S, Behera BK, Dangar TK, Das BK, Mohapatra T. Isolation and characterization of marine bacteria from East Coast of India: functional screening for salt stress tolerance. Heliyon. 2019;5(6):e01869.
dc.relationRöthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Molecular Ecology. 2016;25(6):1308-23.
dc.relationChiquito-Contreras RG, Murillo-Amador B, Carmona-Hernandez S, Chiquito-Contreras CJ, Hernandez-Montiel LG. Effect of Marine Bacteria and Ulvan on the Activity of Antioxidant Defense Enzymes and the Bio-Protection of Papaya Fruit against Colletotrichum gloeosporioides. Antioxidants (Basel). 2019;8(12).
dc.relationWu S, Liu G, Zhou S, Sha Z, Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar Drugs. 2019;17(4).
dc.relationZhang L, Sun C. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Applied and Environmental Microbiology. 2018;84(18):e00445-18.
dc.relationChakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory Effects of Linear Lipopeptides From a Marine Bacillus subtilis on the Wheat Blast Fungus Magnaporthe oryzae Triticum. Front Microbiol. 2020;11(665).
dc.relationGurjar G, Barve M, Giri A, Gupta V. Identification of Indian pathogenic races of Fusarium oxysporum f. sp. ciceris with gene specific, ITS and random markers. Mycologia. 2009;101(4):484-95.
dc.relationCowan ST, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria. 3 ed. Cambridge: Cambridge University Press; 1993.
dc.relationPierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494-500.
dc.relationGoswami D, Parmar S, Vaghela H, Dhandhukia P, Thakker JN. Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). J Cogent Food Agriculture. 2015;1(1):1000714.
dc.relationBudi S, Van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. J Applied Soil Ecology. 2000;15(2):191-9.
dc.relationSingh A, Mehta G, Chhatpar H. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Letters in applied microbiology. 2009;49(6):708-14.
dc.relationClarke JD. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. 2009;2009(3):pdb prot5177.
dc.relationAw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity. Front Microbiol. 2016;7:219.
dc.relationCole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(Database issue):D633-42.
dc.relationKim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62(Pt 3):716-21.
dc.relationKumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-4.
dc.relationBuijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, et al. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep. 2019;36(9):1333-50.
dc.relationCarroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2019;36(1):122-73.
dc.relationPetersen L-E, Kellermann MY, Schupp PJ. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In: Jungblut S, Liebich V, Bode-Dalby M, editors. YOUMARES 9 - The Oceans: Our Research, Our Future: Proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Cham: Springer International Publishing; 2020. p. 159-80.
dc.relationXue Q-Y, Ding G-C, Li S-M, Yang Y, Lan C-Z, Guo J-H, et al. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains – an improved strategy for selecting biocontrol agents. Applied Microbiology and Biotechnology. 2013;97(3):1361-71.
dc.relationYu Y-Y, Jiang C-H, Wang C, Chen L-J, Li H-Y, Xu Q, et al. An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiological Research. 2017;203:1-9
dc.relationAlgam SAE, Xie G, Li B, Yu S, Su T, Larsen J. Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology. 2010;92(3):593-600.
dc.relationSon SH, Khan Z, Kim SG, Kim YH. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J Appl Microbiol. 2009;107(2):524-32.
dc.relationXu SJ, Kim BS. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology. 2014;42(2):158-66.
dc.relationJeon SW, Naing KW, Lee YS, Nguyen XH, Kim SJ, Kim KY. Promotion of growth and biocontrol of brown patch disease by inoculation of Paenibacillus ehimensis KWN38 in bentgrass. Horticulture, Environment, and Biotechnology. 2015;56(2):263-71.
dc.relationJeong H, Choi SK, Ryu CM, Park SH. Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Front Microbiol. 2019;10:467.
dc.relationShi L, Du N, Shu S, Sun J, Li S, Guo S. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci Rep. 2017;7:41234.
dc.relationDas SN, Dutta S, Kondreddy A, Chilukoti N, Pullabhotla SVSRN, Vadlamudi S, et al. Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation. 2010;29(4):409-18.
dc.relationAktuganov G, Jokela J, Kivela H, Khalikova E, Melentjev A, Galimzianova N, et al. Isolation and identification of cyclic lipopeptides from Paenibacillus ehimensis, strain IB-X-b. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;973C:9-16.
dc.relationWu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett. 2010;310(1):32-8.
dc.relationAktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production. Can J Microbiol. 2008;54(7):577-87.
dc.relationSeo DJ, Lee YS, Kim KY, Jung WJ. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb Pathog. 2016;96:10-4.
dc.relationKim D-S, Rae C-Y, Chun S-J, Kim D-H, Choi S-W, Choi K-H. Paenibacillus elgii SD17 as a biocontrol agent against soil-borne turf diseases. J The Plant Pathology Journal. 2005;21(4):328-33.
dc.relationKim J, Le KD, Yu NH, Kim JI, Kim JC, Lee CW. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi. Pestic Biochem Physiol. 2020;163:154-63.
dc.relationVater J, Herfort S, Doellinger J, Weydmann M, Dietel K, Faetkeb S, et al. Fusaricidins from Paenibacillus polymyxa M-1, a family of lipohexapeptides of unusual complexity—a mass spectrometric study. J Mass Spectrom. 2017;52:7-15.
dc.relationHollensteiner J, Wemheuer F, Harting R, Kolarzyk AM, Diaz Valerio SM, Poehlein A, et al. Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Front Microbiol. 2016;7:2171.
dc.relationMorris JJ. What is the hologenome concept of evolution? F1000Res. 2018;7:F1000 Faculty Rev-664.
dc.relationCarrier TJ, Reitzel AM. The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Front Microbiol. 2017;8:802.
dc.relationOffret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs. 2016;14(7).
dc.relationEngel S, Jensen PR, Fenical W. Chemical ecology of marine microbial defense. J Chem Ecol. 2002;28(10):1971-85.
dc.relationTianero MD, Balaich JN, Donia MS. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat Microbiol. 2019;4(7):1149-59.
dc.relationRojas EC, Jensen B, Jørgensen HJL, Latz MAC, Esteban P, Ding Y, et al. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control. 2020;144:104222.
dc.relationWeng J, Wang Y, Li J, Shen Q, Zhang R. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotechnol. 2013;97(19):8823-30.
dc.relationBarret M, Morrissey JP, O’Gara F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils. 2011;47(7):729.
dc.relationKravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich IA. Root Exudates of Tomato Plants and Their Effect on the Growth and Antifungal Activity of Pseudomonas Strains. Microbiology. 2003;72(1):37-41.
dc.relationCanarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front Plant Sci. 2019;10:157.
dc.relationVenturi V, Keel C. Signaling in the Rhizosphere. Trends Plant Sci. 2016;21(3):187-98.
dc.relationRaguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A, Poveda K, et al. The raison d'etre of chemical ecology. Ecology. 2015;96(3):617-30.
dc.relationRudrappa T, Czymmek KJ, Pare PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008;148(3):1547-56.
dc.relationTan S, Yang C, Mei X, Shen S, Raza W, Shen Q, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology. 2013;64:15-22.
dc.relationBi S, Sourjik V. Stimulus sensing and signal processing in bacterial chemotaxis. Current opinion in microbiology. 2018;45:22-9
dc.relationScharf BE, Hynes MF, Alexandre GM. Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol Biol. 2016;90(6):549-59.
dc.relationChen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15(3):848-64.
dc.relationAydi Ben Abdallah R, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control. 2016;97:80-8.
dc.relationDebbi A, Boureghda H, Monte E, Hermosa R. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Front Microbiol. 2018;9(282).
dc.relationAkhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406(1):425-40.
dc.relationJelinski NA, Broz K, Jonkers W, Ma L-J, Kistler HC. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato. Phytopathology®. 2017;107(7):842-51.
dc.relationRocha FYO, Oliveira CMd, da Silva PRA, Melo LHVd, Carmo MGFd, Baldani JI. Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Applied Soil Ecology. 2017;120:8-19.
dc.relationManikandan R, Harish S, Karthikeyan G, Raguchander T. Comparative Proteomic Analysis of Different Isolates of Fusarium oxysporum f.sp. lycopersici to Exploit the Differentially Expressed Proteins Responsible for Virulence on Tomato Plants. Front Microbiol. 2018;9(420).
dc.relationTimmusk S, Grantcharova N, Wagner EG. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol. 2005;71(11):7292-300.
dc.relationPark SY, Kim R, Ryu CM, Choi SK, Lee CH, Kim JG, et al. Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa. FEMS Microbiol Ecol. 2008;65(2):229-37.
dc.relationTan S, Yang C, Mei X, Shen S, Raza W, Shen Q, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. J Applied Soil Ecology. 2013;64:15-22.
dc.relationYang G, Zhou B, Zhang X, Zhang Z, Wu Y, Zhang Y, et al. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS One. 2016;11(4):e0154675.
dc.relationGrattidge R, O'Brien R. Occurrence of a third race of Fusarium wilt of tomatoes in Queensland. J Plant Disease. 1982;66(2):165-6.
dc.relationMadden LV, A Hughes G, A van den Bosch F. The Study of Plant Disease Epidemics. Minnesota, USA: The American Phytopathological Society; 2007.
dc.relationQiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 2017;17(1):131.
dc.relationHassen A, Labuschagne N. Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World Journal of Microbiology and Biotechnology. 2010;26:1837-46.
dc.relationLi P, Ma L, Feng YL, Mo MH, Yang FX, Dai HF, et al. Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. J Ind Microbiol Biotechnol. 2012;39(10):1495-505.
dc.relationChin AWTF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact. 2000;13(12):1340-5.
dc.relationZheng XY, Sinclair JB. The effects of traits of Bacillus megaterium onseed and root colonization and their correlation withthe suppression of Rhizoctonia root rot of soybean. BioControl. 2000;45(2):223-43.
dc.relationSalvatierra‐Martinez R, Arancibia W, Araya M, Aguilera S, Olalde V, Bravo J, et al. Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J Journal of Phytopathology. 2018;166(9):601-12.
dc.relationBarahona E, Navazo A, Martinez-Granero F, Zea-Bonilla T, Perez-Jimenez RM, Martin M, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol. 2011;77(15):5412-9.
dc.relationAkköprü A, Demir S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Journal of Phytopathology. 2005;153(9):544-50.
dc.relationRaza W, Yuan J, Wu YC, Rajer FU, Huang Q, Qirong S. Biocontrol traits of two Paenibacillus polymyxa strains SQR-21 and WR-2 in response to fusaric acid, a phytotoxin produced by Fusarium species. Plant Pathol. 2015;64(5):1041-52.
dc.relationRybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G. Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa. 2017;8(1294).
dc.relationOppong-Danquah E, Parrot D, Blumel M, Labes A, Tasdemir D. Molecular Networking-Based Metabolome and Bioactivity Analyses of Marine-Adapted Fungi Co-cultivated With Phytopathogens. Front Microbiol. 2018;9:2072.
dc.relationRybakova D, Cernava T, Koberl M, Liebminger S, Etemadi M, Berg G. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016;405(1-2):125-40.
dc.relationKim B, Song GC, Ryu CM. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility. J Microbiol Biotechn. 2016;26(3):549-57.
dc.relationLing N, Huang QW, Guo SW, Shen QR. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp niveum. Plant Soil. 2011;341(1-2):485-93.
dc.relationLing N, Raza W, Ma JH, Huang QW, Shen QR. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47(6):374-9.
dc.relationDu N, Shi L, Yuan Y, Li B, Shu S, Sun J, et al. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation. Front Plant Sci. 2016;7:1859
dc.relationKwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, et al. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics. 2016;16(1):122-35.
dc.relationScherling C, Ulrich K, Ewald D, Weckwerth W. A Metabolic Signature of the Beneficial Interaction of the Endophyte Paenibacillus sp Isolate and In Vitro-Grown Poplar Plants Revealed by Metabolomics. Mol Plant Microbe In. 2009;22(8):1032-7.
dc.relationKim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol. 2011;29(6):267-75.
dc.relationFiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1-2):155-71.
dc.relationKumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. Front Plant Sci. 2017;8:1302
dc.relationTohge T, Fernie AR. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc. 2010;5(6):1210-27.
dc.relationCamanes G, Scalschi L, Vicedo B, Gonzalez-Bosch C, Garcia-Agustin P. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Plant J. 2015;84(1):125-39.
dc.relationLopez-Gresa MP, Maltese F, Belles JM, Conejero V, Kim HK, Choi YH, et al. Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochem Anal. 2010;21(1):89-94.
dc.relationZeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Comparative Metabolic Phenotyping of Tomato (Solanum lycopersicum) for the Identification of Metabolic Signatures in Cultivars Differing in Resistance to Ralstonia solanacearum. Int J Mol Sci. 2018;19(9).
dc.relationZeiss DR, Mhlongo MI, Tugizimana F, Steenkamp PA, Dubery IA. Metabolomic Profiling of the Host Response of Tomato (Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci. 2019;20(16).
dc.relationWojciechowska E, Weinert CH, Egert B, Trierweiler B, Schmidt-Heydt M, Horneburg B, et al. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. European Journal of Plant Pathology. 2014;139(4):735-47.
dc.relationShinde BA, Dholakia BB, Hussain K, Panda S, Meir S, Rogachev I, et al. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta). Plant Mol Biol. 2017;95(4-5):411-23.
dc.relationGaleano Garcia P, Neves Dos Santos F, Zanotta S, Eberlin MN, Carazzone C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules. 2018;23(12).
dc.relationAkram W, Anjum T, Ali B. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt. Front Plant Sci. 2016;7:498.
dc.relationAnjum T, Akram W, Shafique S, Shafique S, Ahmad A. Metabolomic Analysis Identifies Synergistic Role of Hormones Biosynthesis and Phenylpropenoid Pathways during Fusarium Wilt Resistance in Tomato Plants. Int J Agric Biol. 2017;19(5):1073-8
dc.relationNebbioso A, De Martino A, Eltlbany N, Smalla K, Piccolo A. Phytochemical profiling of tomato roots following treatments with different microbial inoculants as revealed by IT-TOF mass spectrometry. Chem Biol Technol Ag. 2016;3.
dc.relationKamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact. 2006;19(10):1121-6
dc.relationRivero J, Gamir J, Aroca R, Pozo MJ, Flors V. Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology. 2015;6.
dc.relationManganiello G, Sacco A, Ercolano MR, Vinale F, Lanzuise S, Pascale A, et al. Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Front Microbiol. 2018;9(1966).
dc.relationFatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. Front Plant Sci. 2017;8:848.
dc.relationDebois D, Ongena M, Cawoy H, De Pauw E. MALDI-FTICR MS Imaging as a Powerful Tool to Identify Paenibacillus Antibiotics Involved in the Inhibition of Plant Pathogens. J Am Soc Mass Spectr. 2013;24(8):1202-13.
dc.relationDu X, Smirnov A, Pluskal T, Jia W, Sumner S. Metabolomics Data Preprocessing Using ADAP and MZmine 2. Methods Mol Biol. 2020;2104:25-48.
dc.relationOlivon F, Grelier G, Roussi F, Litaudon M, Touboul D. MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal Chem. 2017;89(15):7836-40.
dc.relationPluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.
dc.relationWorley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics. 2016;4(2):97-103.
dc.relationIijima Y, Watanabe B, Sasaki R, Takenaka M, Ono H, Sakurai N, et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry. 2013;95:145-57.
dc.relationFernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, et al. Recommendations for reporting metabolite data. Plant Cell. 2011;23(7):2477-82.
dc.relationGhosh S, Narula K, Sinha A, Ghosh R, Jawa P, Chakraborty N, et al. Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia. J Proteomics. 2016;143:242-53.
dc.relationMhlongo MI, Piater LA, Steenkamp PA, Labuschagne N, Dubery IA. Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites. 2020;10(5).
dc.relationOburger E, Jones DL. Sampling root exudates – Mission impossible? Rhizosphere. 2018;6:116-33.
dc.relationPetriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J. Metabolite profiling of non-sterile rhizosphere soil. Plant J. 2017;92(1):147-62.
dc.relationMimmo T, Hann S, Jaitz L, Cesco S, Gessa CE, Puschenreiter M. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiology and Biochemistry. 2011;49(11):1272-8.
dc.relationTavakkoli E, Rengasamy P, McDonald GK. The response of barley to salinity stress differs between hydroponic and soil systems. J Functional Plant Biology. 2010;37(7):621-33.
dc.relationFischer H, Ingwersen J, Kuzyakov Y. Microbial uptake of low‐molecular‐weight organic substances out‐competes sorption in soil. J European Journal of Soil Science. 2010;61(4):504-13.
dc.relationItkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell. 2011;23(12):4507-25.
dc.relationSchwahn K, de Souza LP, Fernie AR, Tohge T. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. J Integr Plant Biol. 2014;56(9):864-75.
dc.relationMilner SE, Brunton NP, Jones PW, O'Brien NM, Collins SG, Maguire AR. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem. 2011;59(8):3454-84.
dc.relationFriedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002;50(21):5751-80.
dc.relationCardenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun. 2019;10(1):5169.
dc.relationDzakovich MP, Hartman JL, Cooperstone JL. A High-Throughput Extraction and Analysis Method for Steroidal Glycoalkaloids in Tomato. J bioRxiv. 2019.
dc.relationZhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell. 2018;172(1):249-61.e12.
dc.relationSandrock RW, Vanetten HD. Fungal Sensitivity to and Enzymatic Degradation of the Phytoanticipin alpha-Tomatine. Phytopathology. 1998;88(2):137-43.
dc.relationIto S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, et al. alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett. 2007;581(17):3217-22.
dc.relationOka K, Okubo A, Kodama M, Otani H. Detoxification of α-tomatine by tomato pathogens Alternaria alternata tomato pathotype and Corynespora cassiicola and its role in infection. J Journal of general plant pathology. 2006;72(3):152-8.
dc.relationOsbourn A. Saponins and plant defence; a soap story. Trends in Plant Science. 1996;1(1):4-9.
dc.relationÖkmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, et al. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytologist. 2013;198(4):1203-14.
dc.relationPareja-Jaime Y, Roncero MIG, Ruiz-Roldán MC. Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. J Molecular plant-microbe interactions. 2008;21(6):728-36.
dc.relationMajumdar S, Pal S. Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal. 2018;12(2):491-502.
dc.relationHennessy RC, Glaring MA, Olsson S, Stougaard P. Transcriptomic profiling of microbe–microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani. BMC Research Notes. 2017;10(1):376.
dc.relationTomada S, Sonego P, Moretto M, Engelen K, Pertot I, Perazzolli M, et al. Dual RNA-Seq of Lysobacter capsici AZ78 – Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. Environ Microbiol. 2017;19(10):4113-25.
dc.relationBarret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, et al. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol. 2009;181(2):435-47.
dc.relationBenoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, et al. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol. 2015;17(6):2099-113.
dc.relationFeussner I, Polle A. What the transcriptome does not tell—Proteomics and metabolomics are closer to the plants’ patho-phenotype. Current Opinion in Plant Biology. 2015;26.
dc.relationArora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. Biotechnology Advances. 2020;40:107521.
dc.relationMarmann A, Aly AH, Lin W, Wang B, Proksch P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs. 2014;12(2):1043-65.
dc.relationWu Q, Ni M, Dou K, Tang J, Ren J, Yu C, et al. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microbial Cell Factories. 2018;17(1):155.
dc.relationKombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. The ISME Journal. 2019;13(3):588-602.
dc.relationVinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA, Marra R, et al. Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. Scientific Reports. 2017;7(1):14330.
dc.relationWakefield J, Hassan HM, Jaspars M, Ebel R, Rateb ME. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Front Microbiol. 2017;8(1284).
dc.relationShank EA. Using coculture to detect chemically mediated interspecies interactions. J Vis Exp. 2013(80):e50863-e.
dc.relationShin D, Byun WS, Moon K, Kwon Y, Bae M, Um S, et al. Coculture of Marine Streptomyces sp. With Bacillus sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide. Front Chemistry. 2018;6(498).
dc.relationHuang S, Ding W, Li C, Cox DG. Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn Mag. 2014;10(40):410-4.
dc.relationOppong-Danquah E, Budnicka P, Blumel M, Tasdemir D. Design of Fungal Co-Cultivation Based on Comparative Metabolomics and Bioactivity for Discovery of Marine Fungal Agrochemicals. Mar Drugs. 2020;18(2).
dc.relationWang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-37.
dc.relationGuthals A, Watrous JD, Dorrestein PC, Bandeira N. The spectral networks paradigm in high throughput mass spectrometry. Mol Biosyst. 2012;8(10):2535-44.
dc.relationDa Silva RR, Wang M, Nothias L-F, van der Hooft JJ, Caraballo-Rodríguez AM, Fox E, et al. Propagating annotations of molecular networks using in silico fragmentation. J PLoS computational biology. 2018;14(4):e1006089.
dc.relationErnst M, Kang KB, Caraballo-Rodriguez AM, Nothias LF, Wandy J, Chen C, et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites. 2019;9(7).
dc.relationGarg N, Kapono CA, Lim YW, Koyama N, Vermeij MJ, Conrad D, et al. Mass spectral similarity for untargeted metabolomics data analysis of complex mixtures. J International Journal of Mass Spectrometry. 2015;377:719-27.
dc.relationvan Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent Sci. 2019;5(11):1824-33.
dc.relationNothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based Molecular Networking in the GNPS Analysis Environment. bioRxiv. 2019:812404
dc.relationShannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.
dc.relationYun Y, Zhou X, Yang S, Wen Y, You H, Zheng Y, et al. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Current Genetics. 2019;65(3):773-83.
dc.relationSondergaard TE, Fredborg M, Oppenhagen Christensen A-M, Damsgaard SK, Kramer NF, Giese H, et al. Fast Screening of Antibacterial Compounds from Fusaria. Toxins. 2016;8(12).
dc.relationSon SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, et al. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. Journal of Applied Microbiology. 2008;104(3):692-8.
dc.relationBohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, et al. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures. Molecules. 2016;21(3):370.
dc.relationWang X, Gong X, Li P, Lai D, Zhou L. Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules. 2018;23(1).
dc.relationPaciolla C, Dipierro N, Mule G, Logrieco A, Dipierro S. The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. J Physiological Molecular Plant Pathology. 2004;65(1):49-56.
dc.relationPaciolla C, Ippolito MP, Logrieco A, Dipierro N, Mule G, Dipierro SJP, et al. A different trend of antioxidant defence responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. 2008;72(1-3):3-9.
dc.relationWang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules. 2012;17(3):2367-77.
dc.relationBarenstrauch M, Mann S, Jacquemin C, Bibi S, Sylla OK, Baudouin E, et al. Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum - Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol. 2020;139:103383.
dc.relationWang Q-X, Li S-F, Zhao F, Dai H-Q, Bao L, Ding R, et al. Chemical constituents from endophytic fungus Fusarium oxysporum. J Fitoterapia. 2011;82(5):777-81.
dc.relationBreinhold J, Ludvigsen S, Rassing BR, Rosendahl CN, Nielsen SE, Olsen CE. Oxysporidinone: a novel, antifungal N-methyl-4-hydroxy-2-pyridone from Fusarium oxysporum. J Nat Prod. 1997;60(1):33-5.
dc.relationMoon SH, Zhang X, Zheng G, Meeker DG, Smeltzer MS, Huang E. Novel Linear Lipopeptide Paenipeptins with Potential for Eradicating Biofilms and Sensitizing Gram-Negative Bacteria to Rifampicin and Clarithromycin. Journal of Medicinal Chemistry. 2017;60(23):9630-40.
dc.relationTakeuchi Y, Murai A, Takahara Y, Kainosho M. The structure of permetin A, a new polypeptin type antibiotic produced by Bacillus circulans. J Antibiot (Tokyo). 1979;32(2):121-9.
dc.relationHuang E, Yang X, Zhang L, Moon SH, Yousef AE. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol Lett. 2017;364(8).
dc.relationDing R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49(6):942-9.
dc.relationMoon SH, Huang E. Lipopeptide Paenipeptin Analogues Potentiate Clarithromycin and Rifampin against Carbapenem-Resistant Pathogens. Antimicrob Agents Chemother. 2018;62(8).
dc.relationMoon SH, Huang E. Novel linear lipopeptide paenipeptin C' binds to lipopolysaccharides and lipoteichoic acid and exerts bactericidal activity by the disruption of cytoplasmic membrane. BMC Microbiol. 2019;19(1):6.
dc.relationMoon SH, Kaufmann Y, Huang E. Paenipeptin Analogues Potentiate Clarithromycin and Rifampin against mcr-1-Mediated Polymyxin-Resistant Escherichia coli In Vivo. Antimicrob Agents Chemother. 2020;64(4).
dc.relationCarmona SL, Burbano-David D, Gomez MR, Lopez W, Ceballos N, Castano-Zapata J, et al. Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens. 2020;9(1).
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleBioprospection of marine-derived bacteria with biocontrol activity against Fusarium oxysporum f. sp. lycopersici
dc.typeOtro


Este ítem pertenece a la siguiente institución