dc.contributorGranados Oliveros, Gilma
dc.creatorCardona Moreno, Saulo Alejandro
dc.date.accessioned2020-02-26T12:57:44Z
dc.date.available2020-02-26T12:57:44Z
dc.date.created2020-02-26T12:57:44Z
dc.date.issued2020-02-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75746
dc.description.abstractSe sintetizaron cinco fotocatalizadores basados en nanocristales de puntos cuánticos (PCs) de CdSe/ZnS (núcleo/capa), empleando ácido oleico como agente estabilizante, realizando variaciones de tamaño y numero de capas, con el propósito de evaluar su influencia en la capacidad fotocatalítica que presentan, al degradar la molécula 2,4 dinitrofenol (2,4 DNP), estos fotocatalizadores se obtuvieron por el método coloidal de inyección en caliente que ha sido estudiado y utilizado por el grupo de investigación 1 Nanoinorganica en el cual se desarrollo el presente estudio. Las propiedades ópticas de los PCs fueron determinadas a través de espectroscopia UVVis para evaluar el tamaño y coeficiente de extinción molar, encontrando respecto al tamaño valores de 2,2 nm hasta 3,0 nm y para el coeficiente de extinción molar un rango entre 50000 y 111000 (L mol-1 cm-1 ) en un intervalo de 490 hasta 580 nm como longitudes de absorción, posteriormente se estableció el bandgap óptico presentando valores entre 2,1 y 2,7 eV. Adicionalmente haciendo uso de espectroscopia de fluorescencia se determino el rendimiento cuántico de fluorescencia con valores entre el 5 % y un máximo de 70% , las propiedades mencionadas anteriormente posteriormente se relacionaran con la evaluación de la capacidad fotocatalítica. En la caracterización de las propiedades de superficie se utilizaron diferentes técnicas de análisis, dentro de estas al estimar la cristalinidad de los PCs obtenidos, se hizo uso de difracción de rayos X (DRX) encontrando en los difractogramas ensanchamiento de los picos que es característico para nanocristales, y posteriormente a haciendo uso de la ecuación de Scherrer determinar un tamaño aproximado. Adicionalmente se realizo un análisis por microscopia electrónica de transmisión (TEM) que permitió corroborar el tamaño promedio de los fotocatalizadores, así como su dispersión para posteriormente generar un estudio comparativo con las otras técnicas utilizadas que miden este parámetro.
dc.languagespa
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Granados-oliveros, G. Síntesis y caracterización de las propiedades ópticas de puntos cuánticos de CdSe y CdSe / ZnS Revista Colombiana de Quimica. 57–63 (2018). 2. Ritter, L., Solomon, K. R., Forget, J., Stemeroff, M. & O ’leary, C. A Review of Selected Persistent Organic Polluttants DDT,Aldrin,Dieldrin,Endrin,Chlordane Heptachlor, Hexachlorobenzene,Mïrex,Toxaphene, Polychlorinated biphenyls Dioxins and Furans. 1–149 (1995). 3. Shea, P. J., Weber, J. B. & Overcash, M. R. Biological activities of 2,4- dinitrophenol in plant-soil systems. Residue Rev. 87, 1–41 (2012). 4. Toxicological Profile for Dinitrophenols. ATSDR’s Toxicol. Profiles (2010). doi:10.1201/9781420061888_ch78 5. Kandi, D., Martha, S. & Parida, K. M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 42, 9467–9481 (2017). 6. Chiva Vicent, S., Berlanga Clavijo, J. G., Martínez Cuenca, R. & Climent Agustina, J. Procesos de oxidación avanzada en el ciclo integral del agua. Procesos de oxidación avanzada en el ciclo integral del agua (2017). doi:10.6035/uji.facsa.2017.1 7. Forero, J. & Ortiz, O. AplicaciÓn de procesos de oxidaciÓn avanzada como tratamiento de fenol en aguas residuales industriales de refinerÍa. 3, 97–110 (2005). 8. Degradation of 2,4-dinitrophenol by photo fenton process. Asian J. Chem. 22, 1009–1016 (2010). 9. Goi, A. & Trapido, M. Comparison of Advanced Oxidation Processes for the Destruction of 2 , 4-Dinitrophenol. 5–17 (2001). 10. Ikehata, K., El-Din, M. G. & Snyder, S. A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. in Ozone: Science and Engineering 30, 21–26 (2008). 11. Moreira, F. C., Boaventura, R. A. R., Brillas, E. & Vilar, V. J. P. Applied Catalysis B : Environmental Electrochemical advanced oxidation processes : A review on their application to synthetic and real wastewaters. "Applied Catal. B, Environ. 202, 217–261 (2017). 12. Carlos, J., Álvarez, D., Avella, E. & Zanella, R. Descontaminación de agua utilizando nanomateriales y procesos fotocatalíticos. 8, 17–39 (2015). 13. Fernando Garcés Giraldo, L., Alejandro Mejía Franco, E. & Julián Santamaría Arango, J. La fotocatálisis como alternativa para el tratamiento de aguas residuales. Rev. Lasallista Investig. 1, 83–92 (2008). 14. Reddy, C. V., Shim, J. & Cho, M. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles. J. Phys. Chem. Solids 103, 209–217 (2017). 15. Chemical, F. Synthesis of CdSe Quantum-Dots-Sensitized TiO 2 nanocomposites with Visible-Light Photocatalytic Activity. 924, 3–9 (2014). 16. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D. & Pillai, S. C. Visiblelight activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25, 1–29 (2015). 17. Yuan, Y. J. et al. Bandgap-tunable black phosphorus quantum dots: Visible-lightactive photocatalysts. Chem. Commun. 54, 960–963 (2018) 18. Paridah, M. . et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech i, 13 (2016). 19. Grundlingh, J., Dargan, P. I., El-Zanfaly, M. & Wood, D. M. 2,4-Dinitrophenol (DNP): A Weight Loss Agent with Significant Acute Toxicity and Risk of Death. J. Med. Toxicol. 7, 205–212 (2011). 20. Gupta, P. K. Herbicides and fungicides. Biomarkers in Toxicology (Elsevier Inc., 2014). doi:10.1016/B978-0-12-404630-6.00024-5 21. Johns, T. of Uncoupling of Oxidative Phosphorylation. 242, (1967). 22. Geisler, J. 2,4 Dinitrophenol as Medicine. Cells 8, 280 (2019). 23. Thind, P. S., Thomas, S. & John, S. Photolytic Oxidation of Hazardous Organic Compound: Phenol. 1–5 (2015). doi:10.15242/iicbe.c0315027 24. Herrmann, J. Heterogeneous photocatalysis : fundamentals and applications to the removal of various types of aqueous pollutants. 53, 115–129 (1999). 25. Brezová, V., Brandšteterová, E., Čeppan, M. & Pieš, J. Photocatalytic Oxidation of p-Cresol in Aqueous Titanium Dioxide Suspension. Collect. Czechoslov. Chem. Commun. 58, 1285–1293 (2003). 26. Ibhadon, A. & Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 3, 189–218 (2013). 27. Gulyas, H. Solar Heterogeneous Photocatalytic Oxidation for Water and Wastewater Treatment: Problems and Challenges. J. Adv. Chem. Eng. 4, (2016). 28. Zhu, S. & Wang, D. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Advanced Energy Materials 7, 1–24 (2017). 29. Singh, P., Abdullah, M. M. & Ikram, S. Role of nanomaterials and their applications as photo-catalyst and sensors: A review. Nano Res. Appl. 2, 1–10 (2016). 30. Mahajan, S., Rani, M., Dubey, R. B., Mahajan, J. & College, H. Characteristics and Properties of Foodborne Yeasts. in 2, 1–11 (2010). 31. Search, H., Journals, C., Contact, A., Iopscience, M. & Address, I. P. Optical properties of semiconductor quantum dots in glass matrix. Phys. Scr. 1991, 217–222 (1991). 32. Boxberg, F. & Tulkki, J. Quantum Dots: Phenomenology, Photonic and Electronic Properties, Modeling and Technology. in The Handbook of Nanotechnology. Nanometer Structures: Theory, Modeling, and Simulation 107–143 (2010). doi:10.1117/3.537698.ch4 33. Dabbousi, B. O. et al. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997). 34. Brichkin, S. B. & Razumov, V. F. Colloidal quantum dots: synthesis, properties and applications. Russ. Chem. Rev. 85, 1297–1312 (2016). 35. Hu, M. Z. & Zhu, T. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications. Nanoscale Research Letters 10, 1–15 (2015). 36. Dhar, R. Synthesis and Current Applications of Quantum Dots : A review. Nanosci. Nanotechnol. An Int. J. 4, 32–38 (2014). 37. Hühn, J. et al. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem. Mater. 29, 399–461 (2017). 38. Konstantatos, G. & Sargent, E. H. Colloidal quantum dot optoelectronics and photovoltaics. Colloidal Quantum Dot Optoelectronics and Photovoltaics 9780521198, (2010). 39. Sowers, K. L., Swartz, B. & Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chemistry of Materials 25, 1351–1362 (2013). 40. Hines, D. A. & Kamat, P. V. Quantum dot surface chemistry: Ligand effects and electron transfer reactions. J. Phys. Chem. C 117, 14418–14426 (2013). 41. Giansante, C. & Infante, I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. J. Phys. Chem. Lett. 8, 5209–5215 (2017). 42. Inerbaev, T. M. et al. Quantum chemistry of quantum dots: Effects of ligands and oxidation. J. Chem. Phys. 131, (2009). 43. Fernández-Delgado, N. et al. Structural and chemical characterization of CdSe-ZnS core-shell quantum dots. Appl. Surf. Sci. 457, 93–97 (2018). 44. Kilina, S. V, Tamukong, P. K. & Kilin, D. S. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. Acc. Chem. Res. 49, 2127–2135 (2016). 45. AbouElhamd, A. R., Al-Sallal, K. A. & Hassan, A. Review of core/shell quantum dots technology integrated into building’s glazing. Energies 12, (2019). 46. Onyia, A. I., Ikeri, H. I. & Nwobodo, A. N. Theoretical study of the quantum confinement effects on quantum dots using particle in a box model. J. Ovonic Res. 14, 49–54 (2018) 47. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003). 48. Sun, J. & Goldys, E. M. Linear absorption and molar extinction coefficients in direct semiconductor quantum dots. J. Phys. Chem. C 112, 9261–9266 (2008). 49. Novotny, L., Hecht, B., Novotny, L. & Hecht, B. Quantum emitters. in Principles of Nano-Optics 304–334 (2012). doi:10.1017/cbo9780511813535.010 50. Gaponik, N. et al. Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal. Chem. 81, 6285– 6294 (2009). 51. Wang, X., Yu, J. & Chen, R. Optical Characteristics of ZnS Passivated CdSe/CdS Quantum Dots for High Photostability and Lasing. Sci. Rep. 8, 1–7 (2018). 52. Frenette, L. C. & Krauss, T. D. Uncovering active precursors in colloidal quantum dot synthesis. Nat. Commun. 8, 1–8 (2017). 53. Mazing, D. S., Brovko, A. M., Matyushkin, L. B., Aleksandrova, O. A. & Moshnikov, V. A. Preparation of cadmium selenide colloidal quantum dots in noncoordinating solvent octadecene. J. Phys. Conf. Ser. 661, 4–8 (2015). 54. Ma, J. et al. Mechanism of 2,4-dinitrophenol photocatalytic degradation by ζBi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem. Eng. J. 251, 371–380 (2014). 55. Hayyan, M., Hashim, M. A. & Alnashef, I. M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 116, 3029–3085 (2016). 56. Gligorovski, S., Strekowski, R., Barbati, S. & Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 115, 13051–13092 (2015). 57. Kouloumbos, V. N., Tsipi, D. F., Hiskia, A. E., Nikolic, D. & Van Breemen, R. B. Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 803–817 (2003). 58. Tsui, E. Y., Hartstein, K. H. & Gamelin, D. R. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces. J. Am. Chem. Soc. 138, 11105–11108 (2016). 59. Amiri, G. R., Fatahian, S. & Mahmoudi, S. Preparation and Optical Properties Assessment of CdSe Quantum Dots. Mater. Sci. Appl. 04, 134–137 (2013). 60. Zhu, C. Q., Wang, P., Wang, X. & Li, Y. Facile phosphine-free synthesis of CdSe/ZnS core/shell nanocrystals without precursor injection. Nanoscale Res. Lett. 3, 213–220 (2008). 61. Iranmanesh, P., Saeednia, S. & Nourzpoor, M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chinese Phys. B 24, 1–4 (2015). 62. Reghuram, S., Arivarasan, A., Kalpana, R. & Jayavel, R. CdSe and CdSe/ZnS quantum dots for the detection of C-reactive protein. J. Exp. Nanosci. 10, 787–802 (2015). 63. Vo, N. T., Ngo, H. D., Vu, D. L., Duong, A. P. & Lam, Q. V. Conjugation of E. coli O157:H7 Antibody to CdSe/ZnS Quantum Dots. J. Nanomater. 2015, (2015). 64. Niu, J. et al. Synthesis of CdS, ZnS, and CdS/ZnS core/shell nanocrystals using dodecanethiol. Bull. Korean Chem. Soc. 33, 393–397 (2012). 65. Borri, M., Bottasso, C. & Mantegazza, P. Basic features of the time finite element approach for dynamics. Meccanica 27, 119–130 (1992). 66. Zeng, B. et al. Characterization of the Ligand Capping of Hydrophobic CdSe-ZnS Quantum Dots Using NMR Spectroscopy. Chem. Mater. 30, 225–238 (2018). 67. Majetich, S. A., Carter, A. C., Belot, J. & Mccullough, R. D. 0569.J.Phys.Chem.1994,98,13705.pdf. 13705–13710 (1994). 68. Hens, Z. & Martins, J. C. A solution NMR toolbox for characterizing the Surface chemistry of colloidal nanocrystals. Chem. Mater. 25, 1211–1221 (2013). 69. Johnson, C. S. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999). 70. Geru, I. I., Bordian, O. T., Culeac, I. P. & Verlan, V. I. CdSe Quantum Dots and SBMA/CdSe Nanocomposites Characterization by Optical and 2D DOSY NMR Methods. Univers. J. Phys. Appl. 9, 263–272 (2015). 71. Seedhouse, S. J. NMR Diffusion and Relaxation Studies on Surfactant Systems. (2008). 72. Scheerschmidt, K. & Werner, P. Characterization of Structure and Composition of Quantum Dots by Transmission Electron Microscopy. 67–98 (2002). doi:10.1007/978-3-642-56149-8_3 73. Segets, D. Analysis of particle size distributions of quantum dots: From theory to application. KONA Powder Part. J. 2016, 48–62 (2016). 74. Zhang, J. et al. Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. J. Phys. Chem. Lett. 6, 1830–1833 (2015). 75. Narasimha Murthy, T., Suresh, P., Umabala, A. M. & Prasada Rao, A. V. Visible light activated photocatalytic degradation of mono-, di- and tri - nitrophenols using Cu2O. Der Pharma Chem. 8, 228–236 (2016). 76. Bloh, J. Z. A holistic approach to model the kinetics of photocatalytic reactions. Front. Chem. 7, 1–13 (2019). 77. Nosaka, Y. & Nosaka, A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 117, 11302–11336 (2017). 78. Vinayakan, R., Shanmugapriya, T., Nair, P. V., Ramamurthy, P. & Thomas, K. G. An approach for optimizing the shell thickness of core - Shell quantum dots using photoinduced charge transfer. J. Phys. Chem. C 111, 10146–10149 (2007). 79. Pechstedt, K., Whittle, T., Baumberg, J. & Melvin, T. Photoluminescence of colloidal CdSe/ZnS quantum dots: The critical effect of water molecules. J. Phys. Chem. C 114, 12069–12077 (2010). 80. Agrawal, B. & Maity, P. Recent developments for the synthesis of air stable quantum dots. Rev. Adv. Mater. Sci. 49, 189–205 (2017). 81. Li, Y. et al. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on Superoxide radicals. J. Environ. Sci. 23, 1911–1918 (2011). 82. Granados-Oliveros, G., Torres, E., Zambrano, M., Nieto-Camacho, A. & GómezVidales, V. Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation. Res. Chem. Intermed. 44, 3407–3424 (2018). 83. Shen, B., Jensen, R. G. & Bohnert, H. J. Mannitol Protects against Oxidation by Hydroxyl Radicals. Plant Physiol. 115, 527–532 (1997). 84. Duong, H. D., Park, H. & Rhee, J. Il. CdSe/ZnS core/shell quantum dots in cooperation with other materials for direct and indirect production of reactive oxygen species. J. Nanosci. Nanotechnol. 16, 2593–2602 (2016). 85. Pillai, I. M. S. & Gupta, A. K. Batch and continuous flow anodic oxidation of 2,4- dinitrophenol: Modeling, degradation pathway and toxicity. J. Electroanal. Chem. 756, 108–117 (2015). REFERENCIAS DE FIGURAS Figura 1. Smart Materials and Innovative Textile Applications (SMITA), Mechanism of Self cleaning coating. http://www.smita-iitd.com/research-highlights/self-cleaningfinish Figura 2. Geisler, J. 2,4 Dinitrophenol as Medicine. Cells 8, 280 (2019). Figura 3. Toxicological Profile for Dinitrophenols. ATSDR’s Toxicol. Profiles (2010). doi:10.1201/9781420061888_ch78 Figura 4. Leong, K. H., Sim, L. C., Pichiah, S. & Ibrahim, S. Nanoscience in Food and Agriculture 5. 26, (2017). Figura 6. Biju, V., Itoh, T., Anas, A., Sujith, A. & Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 391, 2469–2495 (2008). Figura 7. Sumanth Kumar, D., Jai Kumar, B. & Mahesh, H. M. Quantum Nanostructures (QDs): An Overview. Synthesis of Inorganic Nanomaterials (Elsevier Ltd., 2018). doi:10.1016/b978-0-08-101975-7.00003-8 Figura 8 y 15. Zhao, H. & Rosei, F. Colloidal Quantum Dots for Solar Technologies. Chem 3, 229–258 (2017). Figura 9. Drahansky, M. et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech i, 13 (2016). Figura 12. Liu, H., Owen, J. S. & Alivisatos, A. P. Mechanistic Study of Precursor Evolution in Colloidal Group II−VI Semiconductor Nanocrystal Synthesis. J. Am. Chem. Soc. 129, 305–312 (2007). Figura 13. Zhou, J., Liu, Y., Tang, J. & Tang, W. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Materials Today 20, 360–376 (2017). Figura 14. Scott Wilkinson Electroluminescent Quantum Dots are Coming Sooner Than You Think, April 10, 2019 - Figura 16. Ahar, M. J. A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic. J. Nanomedicine Res. 5, (2017). Figura 17. Fereja, T. H., Hymete, A. & Gunasekaran, T. A Recent Review on Chemiluminescence Reaction, Principle and Application on Pharmaceutical Analysis. ISRN Spectrosc. 2013, 1–12 (2013). Figura 18. Levy, M., Chowdhury, P. P. & Nagpal, P. Quantum dot therapeutics: A new class of radical therapies. J. Biol. Eng. 13, 1–12 (2019)
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDegradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de Cdse/Zns
dc.typeOtro


Este ítem pertenece a la siguiente institución