dc.contributorSánchez Aguilar, John Jairo
dc.creatorClavijo Ramírez, Jorge Enrique
dc.date.accessioned2020-02-25T15:40:09Z
dc.date.available2020-02-25T15:40:09Z
dc.date.created2020-02-25T15:40:09Z
dc.date.issued2018-02-15
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75726
dc.description.abstractDiversos tipos de emisiones electromagnéticas asociadas con terremotos han sido reportados ampliamente en la literatura científica, especialmente durante las últimas dos décadas del siglo XX. Según estos reportes la perturbaciones pueden ir desde variaciones del orden de nT en la magnitud del campo geomagnético, hasta emisiones lumínicas que se extienden varios kilómetros alrededor de la zona del terremoto. Debido a que muchas de estas emisiones se presentan algunas horas o días previos al terremoto, su relevancia como señales precursoras de actividad sísmica ha sido ampliamente debatida en la comunidad científica. Sin embargo, debido a la ausencia de un acuerdo acerca de un único mecanismo físico que permita entender el origen de estas emisiones, el establecimiento de una relación causal (más allá de la correlación temporal) entre las emisiones electromagnéticas y los terremotos es algo que aún no se ha determinado. Con el objetivo de contribuir al entendimiento del origen de estas emisiones, en este trabajo se presenta un estudio teórico-experimental de los mecanismos responsables de la generación de emisiones electromagnéticas durante procesos de fractura y terremotos. Usando como marco teórico la naturaleza crítica del fenómeno de ruptura, se desarrolló un experimento en escala de laboratorio que permitió ver la presencia de emisiones acústicas y electromagnéticas precursoras de la fractura. Las emisiones fueron detectadas durante todo el proceso de carga de muestras de rocas típicas de la corteza terrestre. Los resultados obtenidos permitieron determinar que la electrificación por microfracturamiento es el mecanismo que mejor se ajusta a las características de las emisiones detectadas. El análisis estadístico basado en la entropía de Tsallis y la termodinámica no-extensiva, confirmó la naturaleza crítica del fenómeno y la hipótesis del microfracturamiento como mecanismo fundamental. La extensión a escala geológica se hizo a partir del estudio de la propagación de campos electromagnéticos en medios conductivos. Las microfracturas generadoras de los campos se modelaron como dipolos eléctricos transitorios distribuidos en la región de preparación del sismo. Se usaron dos modelos de distribución: el percolativo clásico y las redes multifractales. Los resultados obtenidos muestran que los valores máximos de las perturbaciones electromagnéticas esperadas se pueden localizar en puntos tan alejados del epicentro como diez veces el tamaño de la falla. Al mismo tiempo se muestra cómo afectan la conductividad del medio y la profundidad de la zona de fractura los valores estimados de la perturbación electromagnética. Finalmente, se combinan la hipótesis de microfracturamiento y el modelo de fibras (Fiber Bundle Model) para estimar el valor de la máxima perturbación electromagnética esperada cuando la falla se acerca a su esfuerzo de ruptura. Se encuentra que, incluso usando un escenario optimista donde algunos parámetros son sobreestimados, la máxima perturbación estimada cae en el rango de los 10^−13 T, valor muy pequeño comparado con los reportados y aún muy por debajo de las capacidades de detección de los magnetómetros usados en el contexto de la geofísica.
dc.description.abstractA wide variaty of electromagnetic perturbations have been reported in relation with earth- quakes. According with these reports the anomalies can be seen as a small variation in the geomagnetic field (∼nT) or strong light emissions that spread several kilometers around the earthquake zone. Many of these perturbations are detected hours or days before the origin of the earthquake and some researchers have suggested that these signals could be used as early warning for the upcoming earthquake. However, the absence of a universal mechanism capable of explaining these emissions does not allow certainty about whether these phenomena is just some type of spurious correlation or if indeed it obeys to causation. With the central idea of clarifying several aspects of this phenomena, in this thesis we present both experimental and theoretical analyses about the physical mechanisms associated with the generation of electromagnetic emissions (EME) during fracture processes and earthquakes. Using the critical phenomena framework we designed an experimental set-up to detect EME and acoustic emissions (AE) during the compression loading of rock samples typical of the crust. The results show that EME and AE are present from the beginning up to the end of the process. Based on the analysis of the duration time of the emissions, we propose the electrification by microfracturing as the more relevant mechanism to understand the origin of EME and its relation with AE. The non-extensive analysis based on Tsallis entropy confirms that our results correspond to a critical phenomena and that the microfracturing hypothesis fits smoothly in this framework. Scaling to earthquakes was done using the propagation of electromagnetic fields in conductive media. The microfractures sources of EME fields were modeled like transient electric dipoles distributed on the preparation area of the earthquake. Classical percolation and multi-fractal networks were used as models of distribution. The results from the simulations show that the maximum value of the EME disturbances can be located at points far away from the fault, at distances as large as ten times the size of the fault. The effects produced by the electrical conductivity of the media and the depth of the fault are also shown. Finally, we merged the microfracturing hypothesis with the Fiber Bundle Model to estimate the order of magnitude of the expected EME perturbation just before the final rupture. We find that, even on a favorable scenario where the physical parameters of the model are overestimated, the maximum expected perturbation does not reach values above 10^-13 T, which are far below the frequently reported perturbations and cannot be detected by most of the currently available magnetometers in geophysical applications.
dc.languagespa
dc.publisherDepartamento de Geociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] H. Kanamori and E. Brodsky. The physics of earthquakes. Reports on Progress in Physics, 67(8):1429, 2004. [2] AA Tronin, OA Molchanov, and PF Biagi. Thermal anomalies and well observations in Kamchatka. International Journal of Remote Sensing, 25(13):2649–2655, 2004. [3] A. Tanakadate and H. Nagaoka. The disturbance of isomagnetics attending the MinoOwari earthquake of 1891. College of Science, Imperial University, 1893. [4] G. C. Omer. Seismic areas and secular magnetic variations. Bulletin of the Seismological Society of America, 36(1):21–29, 1946. [5] MJS Johnston. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in Geophysics, 18(5):441–476, 1997. [6] James W Warwick. Radio astronomical techniques for the study of planetary atmospheres. In Radio Astronomical and Satellite Studies of the Atmosphere, page 400, 1963. [7] Uzi Nitsan. Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophysical Research Letters, 4(8):333–336, 1977. [8] James W Warwick, Carol Stoker, and Thomas R Meyer. Radio emission associated with rock fracture: possible application to the great Chilean earthquake of may 22, 1960. Journal of Geophysical Research: Solid Earth, 87(B4):2851–2859, 1982. [9] Antony C Fraser-Smith, Arman Bernardi, PR McGill, ME Ladd, RA Helliwell, and OG Villard Jr. Low-frequency magnetic field measurements near the epicenter of the Mw 7.1 Loma Prieta earthquake. Geophys. Res. Lett, 17(9):1465–1468, 1990. [10] Yu A Kopytenko, TG Matiashvily, PM Voronov, EA Kopytenko, and OA Molchanov. Discovering of ultra-lowfrequency emissions connected with Spitak earthquake and his aftershock activity on data of geomagnetic pulsations observations at Dusheti and Vardzija. Moscow, Izmiran, 3(888):27, 1990. [11] M Hayakawa, A Rozhnoi, M Solovieva, Y Hobara, K Ohta, A Schekotov, and E Fedorov. The lower ionospheric perturbation as a precursor to the 11 march 2011 Japan earthquake. Geomatics, Natural Hazards and Risk, 4(3):275–287, 2013. [12] Kelin Wang, Qi-Fu Chen, Shihong Sun, and Andong Wang. Predicting the 1975 hai cheng earthquake. Bulletin of the Seismological Society of America, 96(3):757–795, 2006. [13] N Gershenzon and M Gokhberg. On the origin of electrotelluric disturbances prior to an earthquake in kalamata, greece. Tectonophysics, 224(1-3):169–174, 1993. [14] OA Molchanov, Yu A Kopytenko, PM Voronov, EA Kopytenko, TG Matiashvili, AC Fraser-Smith, and A Bernardi. Results of ulf magnetic field measurements near the epicenters of the spitak (ms= 6.9) and loma prieta (ms= 7.1) earthquakes: Comparative analysis. Geophysical Research Letters, 19(14):1495–1498, 1992. [15] Michel Parrot. Statistical study of elf/vlf emissions recorded by a low-altitude satellite during seismic events. Journal of Geophysical Research: Space Physics, 99(A12):23339– 23347, 1994. [16] Masashi Hayakawa, Ryusuke Kawate, Oleg A Molchanov, and Kiyohumi Yumoto. Results of ultra-low-frequency magnetic field measurements during the guam earthquake of 8 august 1993. Geophysical Research Letters, 23(3):241–244, 1996. [17] Koitiro Maeda and Noritaka Tokimasa. Decametric radiation at the time of the hyogoken nanbu earthquake near kobe in 1995. Geophysical research letters, 23(18):2433– 2436, 1996. [18] K Eftaxias, P Kapiris, E Dologlou, J Kopanas, N Bogris, G Antonopoulos, A Peratzakis, and V Hadjicontis. Em anomalies before the kozani earthquake: A study of their behavior through laboratory experiments. Geophysical Research Letters, 29(8), 2002. [19] Yuji Enomoto, Akito Tsutsumi, Fujinawa Yukio, Minoru Kasahara, and Hiroshi Hashimoto. Candidate precursors: pulse-like geoelectric signals possibly related to recent seismic activity in japan. Geophysical Journal International, 131(3):485–494, 1997. [20] K Eftaxias, P Kapiris, J Polygiannakis, N Bogris, J Kopanas, G Antonopoulos, A Peratzakis, and V Hadjicontis. Signature of pending earthquake from electromagnetic anomalies. Geophysical Research Letters, 28(17):3321–3324, 2001. [21] Hironobu Fujiwara, Masashi Kamogawa, M Ikeda, JY Liu, H Sakata, YI Chen, H Ofuruton, S Muramatsu, YJ Chuo, and YH Ohtsuki. Atmospheric anomalies observed during earthquake occurrences. Geophysical Research Letters, 31(17), 2004. [22] M Hayakawa, K Ohta, S Maekawa, T Yamauchi, Y Ida, T Gotoh, N Yonaiguchi, H Sasaki, and T Nakamura. Electromagnetic precursors to the 2004 mid niigata prefecture earthquake. Physics and Chemistry of the Earth, Parts A/B/C, 31(4):356–364, 2006. [23] Qinghua Huang. Retrospective investigation of geophysical data possibly associated with the m s 8.0 wenchuan earthquake in sichuan, china. Journal of Asian Earth Sciences, 41(4):421–427, 2011. [24] K Eftaxias, G Balasis, Y Contoyiannis, C Papadimitriou, M Kalimeri, L Athanasopoulou, S Nikolopoulos, J Kopanas, G Antonopoulos, and C Nomicos. Unfolding the procedure of characterizing recorded ultra low frequency, khz and mhz electromagnetic anomalies prior to the l’aquila earthquake as pre-seismic ones-part 2. Natural Hazards and Earth System Sciences, 10(2):275–294, 2010. [25] Kosuke Heki. Ionospheric electron enhancement preceding the 2011 tohoku-oki earthquake. Geophysical Research Letters, 38(17), 2011. [26] MJS Johnston, Y Sasai, GD Egbert, and RJ Mueller. Seismomagnetic effects from the long-awaited 28 September 2004 m 6.0 Parkfield earthquake. Bulletin of the Seismological Society of America, 96(4B):S206–S220, 2006. [27] Johnston M.J.S. Thomas J., Love J. On the reported magnetic precursor of the 1989 Loma Prieta earthquake. Physics of the Earth and Planetary Interiors, 2008. [28] Wallace H Campbell. Natural magnetic disturbance fields, not precursors, preceding the loma prieta earthquake. Journal of Geophysical Research: Space Physics, 114(A5), 2009. [29] Wallace H Campbell. A misuse of public funds: Un support for geomagnetic forecasting of earthquakes and meteorological disasters. Eos, Transactions American Geophysical Union, 79(39):463–465, 1998. [30] VN Pham, D Boyer, G Chouliaras, JL Le Mouel, JC Rossignol, and GN Stavrakakis. Characteristics of electromagnetic noise in the ioannina region (greece); a possible origin for so called seismic electric signal (ses). Geophysical research letters, 25(12):2229– 2232, 1998. [31] Robert J Geller. Shake-up for earthquake prediction. Nature, 352(6333):275–276, 1991. [32] Robert J Geller, David D Jackson, Yan Y Kagan, and Francesco Mulargia. Earthquakes cannot be predicted. Science, 275(5306):1616–1616, 1997. [33] Susan Elizabeth Hough. Predicting the unpredictable: the tumultuous science of earthquake prediction. Princeton University Press, 2009. [34] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality. Physical review A, 38(1):364, 1988. [35] Per Bak and Chao Tang. Earthquakes as a self-organized critical phenomenon. J. geophys. Res, 94(15):635–15, 1989. [36] Robert D Cicerone, John E Ebel, and James Britton. A systematic compilation of earthquake precursors. Tectonophysics, 476(3):371–396, 2009. [37] F Masci and JN Thomas. Are there new findings in the search for ULF magnetic precursors to earthquakes? Journal of Geophysical Research: Space Physics, 120(12), 2015. [38] V Hadjicontis, C Mavromatou, and D Ninos. Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation. Natural Hazards and Earth System Science, 4(5/6):633–639, 2004. [39] Friedemann Freund. Charge generation and propagation in igneous rocks. Journal of Geodynamics, 33(4):543–570, 2002. [40] Friedemann Freund. Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41(4):383–400, 2011. [41] Retraction Watch. Controversial italian scientist loses 11 papers from journal he used to edit. http://retractionwatch.com/2015/04/16/controversial-italian-scientist-loses11-papers-from-journal-he-used-to-edit/, 2016. [42] BT Brady. Theory of earthquakes. pure and applied geophysics, 112(4):701–725, 1974. [43] D Vere-Jones. A branching model for crack propagation. pure and applied geophysics, 114(4):711–725, 1976. [44] Charles R Kurkjian and UC Paek. Single-valued strength of perfect silica fibers. Applied Physics Letters, 42(3):251–253, 1983. [45] Alexander Blake. Handbook of mechanics, materials, and structures, volume 1. John Wiley & Sons, 1985. [46] Charles Edward Inglis. Stresses in a plate due to the presence of cracks and sharp corners. Spie Milestone series MS, 137:3–17, 1997. [47] Julius Adams Stratton. Electromagnetic theory. John Wiley & Sons, 2007. [48] Alan A Griffith. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221:163–198, 1921. [49] HE Daniels. The statistical theory of the strength of bundles of threads. i. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 183, pages 405–435. The Royal Society, 1945. [50] A Sornette and D Sornette. Self-organized criticality and earthquakes. EPL (Europhysics Letters), 9(3):197, 1989. [51] Didier Sornette. Critical phase transitions made self-organized: a dynamical system feedback mechanism for self-organized criticality. Journal de Physique I, 2(11):2065– 2073, 1992. [52] Américo Tristão Bernardes and JG Moreira. Model for fracture in fibrous materials. Physical Review B, 49(21):15035, 1994. [53] A Corral, J Baro, X Illa, A Planes, EK Salje, W Schranz, DE Soto-Parra, and E Vives. Statistical similarity between the compression of a porous material and earthquakes. In AGU Fall Meeting Abstracts, volume 1, page 02, 2013. [54] Jordi Baró, Álvaro Corral, Xavier Illa, Antoni Planes, Ekhard KH Salje, Wilfried Schranz, Daniel E Soto-Parra, and Eduard Vives. Statistical similarity between the compression of a porous material and earthquakes. Physical Review Letters, 110(8):088702, 2013. 55] Keiiti Aki. 17. maximum likelihood estimate of b in the formula logn= a-bm and its confidence limits. Bull. Earthq. Res. Inst., 43(237), 2008. [56] Stefan Wiemer. A software package to analyze seismicity: Zmap. Seismological Research Letters, 72(3):373–382, 2001. [57] Stefan Wiemer and Max Wyss. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in geophysics, 45:259–V, 2002. [58] Thorne Lay and Terry C Wallace. Modern global seismology, volume 58. Academic press, 1995. [59] Seth Stein and Michael Wysession. An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons, 2009. [60] R Silva, GS França, CS Vilar, and JS Alcaniz. Nonextensive models for earthquakes. Physical Review E, 73(2):026102, 2006. [61] A Sornette and D Sornette. Earthquake rupture as a critical point: Consequences for telluric precursors. Tectonophysics, 179(3):327–334, 1990. [62] Bernard Jaffe. Piezoelectric ceramics, volume 3. Elsevier, 2012. [63] Steven R Pride and Matthijs W Haartsen. Electroseismic wave properties. The Journal of the Acoustical Society of America, 100(3):1301–1315, 1996. [64] Vadim Surkov and Masashi Hayakawa. Electrokinetic effect in water-saturated rock. In Ultra and Extremely Low Frequency Electromagnetic Fields, pages 319–333. Springer, 2014. [65] Naum Gershenzon and Gust Bambakidis. Modeling of seismo-electromagnetic phenomena. Russ. J. Earth Sci, 3(4):247–275, 2001. [66] S Koshevaya, V Grimalsky, N Makarets, A Kotsarenko, J Siquieros-Alatorre, R PerezEnriquez, and D Juarez-Romero. Electromagnetic emission from magnetite plate cracking under seismic processes. Advances in Geosciences, 14:25–28, 2008. [67] Frank D Stacey and Malcolm JS Johnston. Theory of the piezomagnetic effect in titanomagnetite-bearing rocks. Pure and Applied Geophysics, 97(1):146–155, 1972. [68] Mitsuru Utsugi, Yasunori Nishida, and Yoichi Sasai. Piezomagnetic potentials due to an inclined rectangular fault in a semi-infinite medium. Geophysical Journal International, 140(3):479–492, 2000. [69] M. Johnston. Electromagnetic fields generated by earthquakes. International Geophysics Series, 81(A):621–636, 2002. [70] Hisashi Utada, Hisayoshi Shimizu, Tsutomu Ogawa, Takuto Maeda, Takashi Furumura, Tetsuya Yamamoto, Nobuyuki Yamazaki, Yuki Yoshitake, and Shingo Nagamachi. Geomagnetic field changes in response to the 2011 off the pacific coast of tohoku earthquake and tsunami. Earth and Planetary Science Letters, 311(1):11–27, 2011. [71] Akihiro Takeuchi, Bobby WS Lau, and Friedemann T Freund. Current and surface potential induced by stress-activated positive holes in igneous rocks. Physics and Chemistry of the Earth, Parts A/B/C, 31(4):240–247, 2006. [72] John Scoville, Jorge Heraud, and Friedemann Freund. Pre-earthquake magnetic pulses. arXiv preprint arXiv:1405.4482, 2014. [73] Antonio Meloni, Cesidio Bianchi, Giuliana Mele, and Paolo Palangio. Background electromagnetic noise characterization: the role of external and internal Earth sources. Annals of Geophysics, 58(3):G0330, 2015. [74] Vadim V Surkov and Vyacheslav A Pilipenko. Estimate of ulf electromagnetic noise caused by a fluid flow during seismic or volcano activity. Annals of Geophysics, 58(6):S0655, 2016. [75] Yongxin Gao, Jerry M Harris, Jian Wen, Yihe Huang, Cedric Twardzik, Xiaofei Chen, and Hengshan Hu. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake. Geophysical Research Letters, 43(2):620–627, 2016. [76] Hengxin Ren, Jian Wen, Qinghua Huang, and Xiaofei Chen. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals. Geophysical Journal International, 200(2):837–850, 2015. [77] V Jagasivamani and KJL Iyer. Electromagnetic emission during the fracture of heattreated spring steel. Materials Letters, 6(11):418–422, 1988. [78] V Frid, A Rabinovitch, and D Bahat. Fracture induced electromagnetic radiation. Journal of physics D: applied physics, 36(13):1620, 2003. [79] Robert P Dahlgren, Malcolm JS Johnston, Vern C Vanderbilt, and Rebecca N Nakaba. Comparison of the stress-stimulated current of dry and fluid-saturated gabbro samples. Bulletin of the Seismological Society of America, 2014. [80] N Cristescu. Rock dilatancy in uniaxial tests. Rock mechanics, 15(3):133–144, 1982. [81] Y Enomoto and H Hashimoto. Emission of charged particles from indentation fracture of rocks. Nature, 346(6285):641–643, 1990. [82] Y Enomoto, M Akai, H Hashimoto, S Mori, and Y Asabe. Exoelectron emission: Possible relation to seismic geo-electromagnetic activities as a microscopic aspect in geotribology. Wear, 168(1):135–142, 1993. [83] M Miroshnichenko and V Kuksenko. Study of electromagnetic pulses in initiation of cracks in solid dielectrics. Soviet Physics-Solid State, 22(5):895–896, 1980. [84] Steven G O’Keefe and David V Thiel. A mechanism for the production of electromagnetic radiation during fracture of brittle materials. Physics of the Earth and Planetary Interiors, 89(1):127–135, 1995. [85] VF Petrenko. On the nature of electrical polarization of materials caused by cracks application to ice electromagnetic emission. Philosophical Magazine B, 67(3):301–315, 1993. [86] BT Brady. Electrodynamics of rock fracture: implications for models of rock fracture. In Proceedings of the Workshop on Low Frequency Electrical Precursors, Rep, pages 92–15, 1992. [87] BT Brady and Glen A Rowell. Laboratory investigation of the electrodynamics of rock fracture. Nature, 321:488–492, 1986. [88] VM Finkel, Yu I Golovin, VE Sereda, GP KULIKOVA, and LB ZUEV. Electric effects during fracture of lif crystal in connection with problem of crack control. FIZIKA TVERDOGO TELA, 17(3):770–776, 1975. [89] OA Molchanov and M Hayakawa. On the generation mechanism of ULF seismogenic electromagnetic emissions. Physics of the Earth and Planetary Interiors, 105(3):201– 210, 1998. [90] OA Molchanov. Fracturing as an underlying mechanism of seismo-electric signals. Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, pages 349–356, 1999. [91] Christopher H Scholz. Velocity anomalies in dilatant rock. Science, 201(4354):441–442, 1978. [92] Andreas Tzanis and Filippos Vallianatos. A physical model of electric earthquake precursors due to crack propagation and the motion of charged edge dislocations. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, pages 117–130, 2002. [93] Kamel Baddari, Anatoly D Frolov, Victor Tourtchine, and Fayçal Rahmoune. An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks. Rock Mechanics and Rock Engineering, 44(3):269–280, 2011. [94] Ryuta Yoshimatsu, Nuno Araújo, Gerhard Wurm, Hans Herrmann, and Troy Shinbrot. Something from nothing: self-charging of identical grains. arXiv preprint arXiv:1608.03210, 2016. [95] R Burridge and Leon Knopoff. Model and theoretical seismicity. Bulletin of the seismological society of america, 57(3):341–371, 1967. [96] YY Kagan. Statistics of characteristic earthquakes. Bulletin of the Seismological Society of America, 83(1):7–24, 1993. [97] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1-2):479–487, 1988. [98] Constantino Tsallis et al. Introduction to nonextensive statistical mechanics. Springer, 2009. [99] Oscar Sotolongo-Costa and A Posadas. Fragment-asperity interaction model for earthquakes. Physical review letters, 92(4):048501, 2004. [100] Oscar Sotolongo-Costa. Non-extensive framework for earthquakes: The role of fragments. Acta Geophysica, 60(3):526–534, 2012. [101] DL Turcotte. Fractals and fragmentation. Journal of Geophysical Research: Solid Earth, 91(B2):1921–1926, 1986. [102] Anders Meibom and Ivar Balslev. Composite power laws in shock fragmentation. Physical review letters, 76(14):2492, 1996. [103] JA Åström, RP Linna, J Timonen, Peder Friis Møller, and Lene Oddershede. Exponential and power-law mass distributions in brittle fragmentation. Physical Review E, 70(2):026104, 2004. [104] Oscar Sotolongo-Costa, Arezky H Rodriguez, and GJ Rodgers. Dimensional crossover in fragmentation. Physica A: Statistical Mechanics and its Applications, 286(3):638– 642, 2000. [105] Michael Nauenberg. Critique of q-entropy for thermal statistics. Physical Review E, 67(3):036114, 2003. [106] Olivier Bour, Philippe Davy, Caroline Darcel, and Noëlle Odling. A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen basin, Norway). Journal of Geophysical Research: Solid Earth, 107(B6), 2002. [107] Lev Davidovich Landau, JS Bell, MJ Kearsley, LP Pitaevskii, EM Lifshitz, and JB Sykes. Electrodynamics of continuous media, volume 8. elsevier, 2013. [108] GJ Palacky. Resistivity characteristics of geologic targets. SEG, 1:53–129, 1988. [109] Lambert B Freund. Dynamic fracture mechanics. Cambridge university press, 1998. [110] PA Varotsos, NV Sarlis, and ES Skordas. Electric fields that arrive before the time derivative of the magnetic field prior to major earthquakes. Physical review letters, 91(14):148501, 2003. [111] John David Jackson. Classical electrodynamics. John Wiley & Sons, 2007. [112] Ronold WP King, Margaret Owens, and Tai T Wu. Lateral electromagnetic waves: Theory and applications to communications, geophysical exploration, and remote sensing. Springer Science & Business Media, 2012. [113] Eric Bonnet, Olivier Bour, Noelle E Odling, Philippe Davy, Ian Main, Patience Cowie, and Brian Berkowitz. Scaling of fracture systems in geological media. Reviews of geophysics, 39(3):347–383, 2001. [114] Kiyoo Mogi. Earthquakes and fractures. Tectonophysics, 5(1):35–55, 1967. [115] Mikko J Alava, Phani KVV Nukala, and Stefano Zapperi. Statistical models of fracture. Advances in Physics, 55(3-4):349–476, 2006. [116] Jörn Davidsen, Sergei Stanchits, and Georg Dresen. Scaling and universality in rock fracture. Physical Review Letters, 98(12):125502, 2007. [117] Henry Rishbeth. Do earthquake precursors really exist? Eos, Transactions American Geophysical Union, 88(29):296–296, 2007. [118] F Masci. Brief communication on the recent reaffirmation of ulf magnetic earthquakes precursors. Natural Hazards and Earth System Sciences, 2011. [119] F Masci, JN Thomas, Fabio Villani, JA Secan, and N Rivera. On the onset of ionospheric precursors 40 min before strong earthquakes. Journal of Geophysical Research: Space Physics, 120(2):1383–1393, 2015. [120] Didier Sornette. Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools. Springer Science & Business Media, 2006. [121] Geoffrey Grimmett. What is percolation? In Percolation, pages 1–31. Springer, 1999. [122] VE Saouma and G Fava. On fractals and size effects. International journal of fracture, 137(1):231–249, 2006. [123] DL Turcotte. Seismicity and self-organized criticality. Physics of the Earth and Planetary Interiors, 111(3):275–293, 1999. [124] J Bortnik, TE Bleier, C Dunson, and F Freund. Estimating the seismotelluric current required for observable electromagnetic ground signals. In Annales Geophysicae, volume 28, page 1615. Copernicus GmbH, 2010. [125] Jinping Dong, Yougang Gao, and Masashi Hayakawa. Analysis on subaerial electric field radiated by a unit electric current source in the ground. IEEJ Transactions on Fundamentals and Materials, 125(7):591–595, 2005. [126] X Tian. Analysis of seismogenic radiation and transmission mechanisms. J. Atmospheric Electricity, 16(3):227–235, 1996. [127] T Bleier, Clark Dunson, M Maniscalco, N Bryant, R Bambery, and F Freund. Investigation of ulf magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 october alum rock m5. 4 earthquake. Natural Hazards and Earth System Sciences, 9(2):585–603, 2009. [128] Mark A Fenoglio, Malcom JS Johnston, and Jim D Byerlee. Magnetic and electric fields associated with changes in high pore pressure in fault zones: application to the loma prieta ulf emissions. Journal of Geophysical Research: Solid Earth, 100(B7):12951– 12958, 1995. [129] Robert J Geller. Shake-up time for japanese seismology. Nature, 472(7344):407–409, 2011.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleGeneración y Propagación de Perturbaciones Electromagnéticas Asociadas con Terremotos.
dc.typeOtro


Este ítem pertenece a la siguiente institución