dc.contributor | Serna Urán, Conrado Augusto | |
dc.contributor | Arango Serna, Martín Darío | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Logística Industrial-Organizacional \'GICO\' | |
dc.creator | Gómez Marín, Cristian Giovanny | |
dc.date.accessioned | 2020-09-21T19:52:24Z | |
dc.date.available | 2020-09-21T19:52:24Z | |
dc.date.created | 2020-09-21T19:52:24Z | |
dc.date.issued | 2020-07-31 | |
dc.identifier | Gómez-Marín, C. G. (2020). Modelo dinámico multivariable de la distribución urbana de mercancías utilizando microsimulación e inferencia difusa (Tesis de doctorado). Universidad Nacional de Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78481 | |
dc.description.abstract | This doctoral thesis presents an urban goods distribution model that allows to include multiple dynamic variables in the pick-up and delivery processes, which emerge from the processes scenarios where these are performed. The dynamic variables considered are demand and time. The demand variables include new order arrives, orders cancellations, changes in order quantities and time windows, the time variables consider changes in travel and service time. The variables changes can impact the vehicles total tour time and the fulfilment of the time windows constraints.
The proposed model uses the integration between microsimulation and multi-agent systems to represent the decentralized collaboration process for the information management and the coordination and integration process among the stakeholders to respond to the different changes in the analyzed variables and assess the impact of those changes on the final performance of the distribution process in terms of cost and service levels, additionally, it uses fuzzy inference on vehicles behaviors for the different changes in the operation on travel time, service time and time window variables, to decide the answer to those changes and achieve an equilibrium between the service level and the operation cost. | |
dc.description.abstract | En esta tesis doctoral se presenta un modelo de distribución urbana de mercancías que responde al problema de la falta de colaboración, coordinación en integración entre los múltiples actores y sus procesos de comunicación para responder a la incertidumbre y comportamiento dinámico de los procesos de recolección y entrega de mercancía en entornos urbanos. Como parte de la solución se incluyen el proceso de colaboración descentralizada para el manejo de la información en múltiples variables de demanda y de tiempo. Con relación a la demanda se incluyen llegada de órdenes nuevas, cambio de cantidades, cancelación de órdenes de los clientes, ventanas de tiempo para la prestación del servicio y con relación al tiempo se consideran los cambios en los tiempos de viaje y de servicio; los cambios en estas variables pueden afectar los tiempos de ruta de los vehículos y con ello el cumplimiento de las ventanas de tiempo.
El modelo propuesto utiliza la integración entre la microsimulación y los sistemas multi-agente para representar los procesos de colaboración descentralizada para la gestión de la información y de coordinación e integración entre los actores para dar respuesta a los diferentes cambios en las variables analizadas y evaluar el impacto de estos cambios en el desempeño final del proceso de distribución en términos de costos y de nivel de servicio; adicionalmente, la inferencia difusa es utilizada en los comportamientos de los vehículos ante los diferentes cambios que suceden en la operación en las variables de tiempo de viaje, tiempo de servicio, ventanas de tiempo para decidir la respuesta a estos cambios de manera que se logre un equilibrio entre servicio al cliente y costo de operación. | |
dc.language | spa | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones | |
dc.publisher | Departamento de Ingeniería de la Organización | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Comi, A., Buttarazzi, B., Schiraldi, M. M., Innarella, R., Varisco, M., & Rosati, L. (2017). DynaLOAD: a simulation framework for planning, managing and controlling urban delivery bays. Transportation Research Procedia, 22, 335–344. | |
dc.relation | Abed, O., Bellemans, T., Janssens, G., Patil, B., Yasar, A., Janssens, D., & Wets, G. (2013). A micro simulated and demand driven supply chain model to calculate regional production and consumption matrices. Procedia Computer Science, 19(Ant), 404–411. https://doi.org/10.1016/j.procs.2013.06.055 | |
dc.relation | Absalón, C., & Urzúa, C. M. (2012). Modelos de microsimulación para el análisis de las políticas públicas. Gestión y Política Pública, 21(1), 87–106. | |
dc.relation | Comi, A., Site, P. D., & Filippi, F. (2012). Urban freight transport demand modelling : a state of the art. European Transport/Trasporti Europei, 7(51), 1–17. | |
dc.relation | Adewumi, A. O., & Adeleke, O. J. (2018). A survey of recent advances in vehicle routing problems. International Journal of Systems Assurance Engineering and Management, 9(1), 155–172. https://doi.org/10.1007/s13198-016-0493-4 | |
dc.relation | Aditjandra, P. T., Galatioto, F., Bell, M. C., & Zunder, T. H. (2016). Evaluating the impacts of urban freight traffic: Application of micro-simulation at a large establishment. European Journal of Transport and Infrastructure Research, 16(1), 4–22. | |
dc.relation | Ahkamiraad, A., & Wang, Y. (2018). Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Computers and Industrial Engineering, 119(November 2016), 76–84. https://doi.org/10.1016/j.cie.2018.03.007 | |
dc.relation | Akeb, H., Moncef, B., & Durand, B. (2018). Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris. Transportation Research Part E: Logistics and Transportation Review, 119(August 2017), 223–233. https://doi.org/10.1016/j.tre.2018.04.007 | |
dc.relation | Akyuz, G. A., & Gursoy, G. (2019). Strategic management perspectives on supply chain. Management Review Quarterly, (November 2018). https://doi.org/10.1007/s11301-019-00165-6 | |
dc.relation | Allen, J., Piecyk, M., Piotrowska, M., Mcleod, F., Cherrett, T., Ghali, K., … Austwick, M. (2018). Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transportation Research Part D: Transport and Environment, 61(Part B), 325–338. https://doi.org/10.1016/j.trd.2017.07.020 | |
dc.relation | Alvárez, P., Lerga, I., Serrano-Hernandez, A., & Faulin, J. (2018). The impact of traffic congestion when optimising delivery routes in real time. A case study in Spain. International Journal of Logistics Research and Applications, 0(0), 1–13. https://doi.org/10.1080/13675567.2018.1457634 | |
dc.relation | Alves, R., da Silva Lima, R., Custódio de Sena, D., Ferreira de Pinho, A., & Holguín-Veras, . (2019). Agent-Based Simulation Model for Evaluating Urban Freight Policy to E-Commerce. Sustainability, 11(15), 4020. https://doi.org/10.3390/su11154020 | |
dc.relation | Anand, N., Duin, R. Van, & Tavasszy, L. (2019). Carbon credits and urban freight consolidation : An experiment using agent based simulation. Research in Transportation Economics, 100797. https://doi.org/10.1016/j.retrec.2019.100797
Anand, N., Quak, H., van Duin, R., & Tavasszy, L. (2012). City Logistics Modeling Efforts: Trends and Gaps - A Review. Procedia - Social and Behavioral Sciences, 39, 101–115. https://doi.org/10.1016/j.sbspro.2012.03.094
Anand, N., van Duin, R., & Tavasszy, L. (2014). Ontology-based multi-agent system for urban freight transportation. International Journal of Urban Sciences, 18(2), 133–153. https://doi.org/10.1080/12265934.2014.920696 | |
dc.relation | Anderson, P., Farooq, B., Efthymiou, D., & Bierlaire, M. (2014). Associations generation in synthetic population for transportation applications. Transportation Research Record: Journal of the Transportation Research Board, 2429, 38–50. https://doi.org/10.3141/2429-05 | |
dc.relation | Antún, J. P. (2013). Distribución Urbana de Mercancías: Estrategias con Centros Logísticos. In IDB Technical Note. | |
dc.relation | Antunes-Lessa, D., Rodrigues de oliveira, E., Ferreira, B., Calazans, G., & Kelli de Oliveira, L. (2015). Análise da dinâmica da logística urbana ante uma situacao de vulnerabilidade explorando a abordagem multiagente. XXIX Congreso Nacional de Pesquisa Em Transporte Da Anpet, 569–580. Ouro Petro. | |
dc.relation | Arabani, A. ., & Farahani, R. . (2012). Facility location dynamics: an overview of classifications and applications. 62:408–420. Computers and Industrial Engineering, 62, 408:420. | |
dc.relation | Arango-Serna, M. D., Gómez-Marín, C. G., & Serna-Urán, C. A. (2017). Modelos logísticos aplicados a la distribución urbana de mercancías. Revista EIA, 14(28), 57–76. https://doi.org/10.24050/ reia.v14i28.1055 | |
dc.relation | Arango-Serna, M. D., Gómez-Marín, C. G., Serna-Urán, C. A., & Zapata-Cortés, J. A. (2018). Multi-agent model for urban goods distribution. Research in Computing Science, 147(3), 35–44. | |
dc.relation | Arango-Serna, M. D., Romano, C. A., & Zapata-Cortés, J. A. (2016). Distribución colaborativa de mercancías utilizando el modelo IRP. DYNA, 83(196), 204–212. https://doi.org/10.15446/dyna.v83n196.52492
Arango-Serna, M. D., & Serna-Urán, C. A. (2016). Un Nuevo Protocolo de Negociación Basado en Inferencia Difusa Aplicado a la Cadena de Suministros. Universidad, Ciencia y Tecnología, 20(81), 176–187.
Arango-Serna, M. D., Serna-Urán, C. A., & Alvárez-Uribe, K. C. (2012). Collaborative autonomous systems in models of urban logistics. DYNA, 79(172), 171–179.
Arango-Serna, M. D., Serna-Urán, C. A., & Zapata-Cortés, J. A. (2018). Multi-agent system modeling for the coordination of processes of distribution of goods using a memetic algorithm. In G.-A. J., G. Alor-Hernández, A. | |
dc.relation | Arango-Serna, M. D., Zapata-Cortés, J. A., & Gutíerrez, D. (2015). Modeling The Inventory Routing Problem ( IRP ) With Multiple Depots With Genetic Algorithms. IEEE Latin America Transactions, 13(12), 3959–3965.
Arango-Serna, M. D., Zapata-Cortés, J. A., & Serna-Urán, C. A. (2018a). Collaborative multiobjective model for urban goods distribution optimization. In García-Alcaraz J., G. Alor-Hernández, A. Maldonado-Macías, & C. Sánchez-Ramírez (Eds.), New Perspectives on Applied Industrial Tools and Techniques. Management and Industrial Engineering (pp. 47–70). Springer, Cham.
Arango-Serna, M. D., Zapata-Cortés, J. A., & Serna-Urán, C. A. (2018b). Collaborative Multiobjective Model for Urban Goods Distribution Optimization Á Optimization Á City logistics Á Supply chain. (51), 47–70. https://doi.org/10.1007/978-3-319-56871-3 | |
dc.relation | Attanasio, A., Bregman, J., Ghiani, G., & Manni, E. (2007). Real-time fleet managment at eCourier Ltd. In V. Zeimpekis, C. . Tarantilis, G. . Giaglis, & I. Minis (Eds.), Dynamic Fleet Management; Concepts, Systems, Algorithms and Case Studies (pp. 219–238). US: Springer. | |
dc.relation | Awasthi, A., Adetiloye, T., & Crainic, T. G. (2016). Collaboration partner selection for city logistics planning under municipal freight regulations. Applied Mathematical Modelling, 40, 510–525. https://doi.org/10.1016/j.apm.2015.04.058 | |
dc.relation | Baindur, D., & Viegas, J. M. (2011). An agent based model concept for assessing modal share in inter-regional freight transport markets. Journal of Transport Geography, 19(6), 1093–1105. https://doi.org/10.1016/j.jtrangeo.2011.05.006 | |
dc.relation | Ballas, D., Broomhead, T., & Jones, P. M. (2019). Spatial microsimulation and agent-based modelling.pdf. In H. Briassoulis, D. Kavroudakis, & N. Soulakellis (Eds.), The Practice Spatial Analysis (pp. 69–80). Springer International Publishing. | |
dc.relation | Barbucha, D. (2016). An improved agent-based approach to the dynamic vehicle routing problem. In I. et al. Czarnowski (Ed.), Intelligent Decision Technologies 2016 (Vol. 56, pp. 361–370). https://doi.org/10.1007/978-3-319-39630-9 | |
dc.relation | Barceló, Jaime, Grzybowska, H., & Pardo, S. (2007). Vehicle routing and scheduling models, simulation and city logistics. In V. Zeimpekis, C. . Tarantilis, G. . Giaglis, & I. Minis (Eds.), Dynamic Fleet Management; Concepts, Systems, Algorithms and Case Studies (pp. 163–195). https://doi.org/10.1007/978-0-387-71722-7_8
Barceló, Jaume. (2010). Models, traffic Models, simulation, and traffic Simulation. In Jaume Barceló (Ed.), Fundamentals of Traffic Simulation (pp. 1–62). https://doi.org/10.1007/978-1-4419-6142-6_1 | |
dc.relation | Barkaoui, M., Berger, J., & Boukhtouta, A. (2015). Customer satisfaction in dynamic vehicle routing problem with time windows. Applied Soft Computing Journal, 35, 423–432. https://doi.org/10.1016/j.asoc.2015.06.035
Barkaoui, M., & Gendreau, M. (2013). An adaptive evolutionary approach for real-time vehicle routing and dispatching. Computers and Operations Research, 40(7), 1766–1776. https://doi.org/10.1016/j.cor.2013.01.022 | |
dc.relation | Basso, F., D’Amours, S., Rönnqvist, M., & Weintraub, A. (2019). A survey on obstacles and difficulties of practical implementation of horizontal collaboration in logistics. International Transactions in Operational Research, 26(3), 775–793. https://doi.org/10.1111/itor.12577 | |
dc.relation | Bean, W. L., & Joubert, J. W. (2018). A systematic evaluation of freight carrier response to receiver reordering behaviour. Computers and Industrial Engineering, 124(July), 207–219. https://doi.org/10.1016/j.cie.2018.07.030 | |
dc.relation | Behrends, S. (2016). Recent Developments in Urban Logistics Research – A Review of the Proceedings of the International Conference on City Logistics 2009 – 2013. Transportation Research Procedia, 12, 278–287. https://doi.org/10.1016/j.trpro.2016.02.065 | |
dc.relation | Bektaș, T., Crainic, T. G., & Van Woensel, T. (2015). From managing urban freight to smart city logistics networks. Cirrelt, 17. Retrieved from https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2015-17.pdf | |
dc.relation | Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing Multi-agent Systems with JADE. West Sussex: John Wiley & Sons, ltd.
Bellifemine, F., Caire, G., Tiziana, T., & Rimassa, G. (2010). Jade Programmer ’ S Guide. Http://Jade.Tilab.Com/Doc/Programmersguide.Pdf, pp. 1–49. TILab S.p.A. | |
dc.relation | Belykh, D. L., & Botvin, G. A. (2018). Multi-agent framework for supply chain dynamics modelling with information sharing and demand forecast. In Communications in Computer and Information Science (Vol. 858). https://doi.org/10.1007/978-3-030-02843-5_29 | |
dc.relation | Beuck, U., Rieser, M., Strippgen, D., Balmer, M., & Nagel, K. (2008). Preliminary results of a multi-agent traffic simulation for berlin. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The Dynamics of Complex Urban Systems: An Interdisciplinary Approach (pp. 75–94). https://doi.org/10.1007/978-3-7908-1937-3_5 | |
dc.relation | Björklund, M., Abrahamsson, M., & Johansson, H. (2017). Critical factors for viable business models for urban consolidation centres. Research in Transportation Economics, 64, 36–47. https://doi.org/10.1016/j.retrec.2017.09.009 | |
dc.relation | Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2018). Multi-commodity location-routing: Flow intercepting formulation and branch-and-cut algorithm. Computers and Operations Research, 89, 94–112. https://doi.org/10.1016/j.cor.2017.08.013 | |
dc.relation | Bouhana, A., Chabchoub, H., Abed, M., & Fekih, A. (2013). A multi-criteria decision making approach based on fuzzy theory and fuzzy preference relations for urban distribution centers’ location selection under uncertain environments. 2013 International Conference on Advanced Logistics and Transport, 556–561. https://doi.org/10.1109/ICAdLT.2013.6568519 | |
dc.relation | Boussier, J., Cucu, T., Ion, L., & Breuil, D. (2011). Simulation of goods delivery process. International Journal of Physical Distribution & Logistics Management, 41(9), 913–930. | |
dc.relation | Bowersox, D. J., Daugherty, P. J., Dröge, C. L., Germain, R. N., & Rogers, D. S. (2013). Logistical Excellence: It’s Not Business As Usual - Donald J. Bowersox - Google Libros. Burlington: Digital Press. | |
dc.relation | Bozzo, R., Conca, A., & Marangon, F. (2014). Decision support system for city logistics: Literature review, and guidelines for an ex-ante model. Transportation Research Procedia, 3(July), 518–527. https://doi.org/10.1016/j.trpro.2014.10.033 | |
dc.relation | Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers and Industrial Engineering, 99, 300–313. https://doi.org/10.1016/j.cie.2015.12.007 | |
dc.relation | Bray, S., Caggiani, L., Dell’Orco, M., & Ottomanelli, M. (2014). Measuring Transport Systems Efficiency under Uncertainty by Fuzzy Sets Theory based Data Envelopment Analysis. Procedia - Social and Behavioral Sciences, 111, 770–779. https://doi.org/10.1016/j.sbspro.2014.01.111 | |
dc.relation | Brito, J. A. (2011). Optimización de rutas de distribución con información y restricciones difusas (Tesis de doctorado). Universidad de Laguna. | |
dc.relation | Bruglieri, M., Colorni, A., Lia, F., & Luè, A. (2014). A multi-objective time-dependent route planner: A real world application to Milano city. Transportation Research Procedia, 3(July), 460–469. https://doi.org/10.1016/j.trpro.2014.10.027 | |
dc.relation | Butrina, P., Girón-Valderrama, G. C., Machado-León, J. L., Goodchild, A., & Ayyalasomayajula, P. C. (2017). From the last mile to the last 800 feet : key factors in urban pick-up and delivery of goods. Transportation Research Record: Journal of the Transportation Research Board, 2609, 85–92. https://doi.org/10.3141/2609-10 | |
dc.relation | Cagliano, A. C., Carlin, A., Mangano, G., & Rafele, C. (2017). Analyzing the diffusion of eco-friendly vans for urban freight distribution. The International Journal of Logistics Management, 28(4), 1218–1242. https://doi.org/10.1108/IJLM-05-2016-0123
Cagliano, A. C., De Marco, A., Mangano, G., & Zenezini, G. (2017). Levers of logistics service providers’ efficiency in urban distribution. Operations Management Research, 10(3–4), 104–117. https://doi.org/10.1007/s12063-017-0125-4 | |
dc.relation | Caire, G. (2009). JADE Tutorial for beginners - Programming. JADE Tutorial for Beginners, (June), 1–23. | |
dc.relation | Cardenas, I., Borbon-Galvez, Y., Verlinden, T., Van de Voorde, E., Vanelslander, T., & Dewulf, W. (2017). City logistics, urban goods distribution and last mile delivery and collection. Competition and Regulation in Network Industries, 18(1–2), 22–43. https://doi.org/10.1177/1783591717736505 | |
dc.relation | Castrellón-Torres, J. P., García-Alcaraz, J. L., & Adarme-Jaimes, W. (2015). Consolidación de carga como mecanismo de coordinación en cadenas de suministro de perecederos: Estudio de simulación Resumen. DYNA, 82(189), 233–242. https://doi.org/10.15446/dyna.v82n189.48551 | |
dc.relation | Cavalcante, R. A. (2013). Freight market interactions simulation (FREMIS): An agent- based modeling framework (PhD Thesis) (University of Toronto; Vol. 19). https://doi.org/10.1016/j.procs.2013.06.116
Cavalcante, R. A., & Roorda, M. J. (2013). Shipper/Carrier Interactions Data Collection: Web-Based Respondent Customized Stated Preference (WRCSP) Survey. In Transport Survey Methods: Best Practice for Decision Making (pp. 257–278). https://doi.org/10.1108/9781781902882-013 | |
dc.relation | Cevirici, A., & Moller-Madsen, H. (2007). Solving Logistic Problem with Multi-Agent System. The Maersk Mc-Kinney Moeller Institute - MIP- University of Southern Denmark - SDU. | |
dc.relation | Chen, H. K., Hsueh, C. F., & Chang, M. S. (2006). The real-time time-dependent vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 42(5), 383–408. https://doi.org/10.1016/j.tre.2005.01.003 | |
dc.relation | Chopra, S., & Meindl, P. (2013). Administración de la cadena de suministro. In P. Education (Ed.), Estrategia, planeación y operación (3a ed). Méxio. | |
dc.relation | Chow, J. Y. J. (2018). Network Design. In Informed Urban Transport Systems. Classic and Emerging Applied Sciences in a Smart Cities Era (pp. 273–340). https://doi.org/10.1016/B978-0-12-813613-3.00007-3 | |
dc.relation | Cirovic, G., Pamucar, D., & Bozanic, D. (2014). Green logistic vehicle routing problem : Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert System with Applications, 41, 4245–4258. https://doi.org/10.1016/j.eswa.2014.01.005 | |
dc.relation | Collins, A. T. (2015). Behavioural Influences on the Environmental Impact of Collection/Delivery Points. In B. Fahimnia, M. G. H. Bell, D. A. Henser, & J. Sarkis (Eds.), Green Logistics and Transportation (pp. 15–34). Springer International Publishing. | |
dc.relation | Crainic, T. G., Gendreau, M., & Jean-Yves, P. (2009). Intelligent freight-transportation systems: Assessment and the contribution of operations research. Transportation Research Part C: Emerging Technologies., 17(6), 541–557.
Crainic, T. G., Perboli, G., Mancini, S., & Tadei, R. (2010). Two-Echelon Vehicle Routing Problem: A satellite location analysis. Procedia Social and Behavioral Sciences, 2(00), 5944–5955. https://doi.org/10.1016/j.sbspro.2010.04.009
Crainic, T. G., Perboli, G., & Rosano, M. (2018). Simulation of intermodal freight transportation systems: a taxonomy. European Journal of Operational Research, 270(2), 401–418. https://doi.org/10.1016/j.ejor.2017.11.061
Crainic, T. G., Ricciardi, N., & Storchi, G. (2007). Models for evaluating and planning city logistics systems. Transportation Science, 43(4), 432–454. https://doi.org/10.1287/trsc.1090.0279 | |
dc.relation | Crespo Márquez, A. (2010). Dynamic Modelling for Supply Chain Managment. Sevilla: Springer-Verlag. | |
dc.relation | Dablanc, L., Morganti, E., Arvidsson, N., Woxenius, J., Browne, M., & Saidi, N. (2017). The rise of on-demand ‘Instant Deliveries’ in European cities. Supply Chain Forum, 18(4), 203–217. https://doi.org/10.1080/16258312.2017.1375375 | |
dc.relation | Daganzo, C. (2005). Logistics Systems Analysis (4th ed.). Berlin Heidelberg: Springer. | |
dc.relation | Danielis, R., Maggi, E., Rotaris, L., & Valeri, E. (2013). Urban freight distribution: Urban supply chains and transportation Policies. In M. Ben-Akiva, H. Meersman, & E. Van de Voorde (Eds.), Freight Transport Modeling (pp. 377–403). Emerald Group Publishing Limited. | |
dc.relation | de Armas, J., & Melián-Batista, B. (2015). Variable Neighborhood Search for a Dynamic Rich Vehicle Routing Problem with time windows. Computers & Industrial Engineering, 85, 120–131. https://doi.org/10.1016/j.cie.2015.03.006 | |
dc.relation | de Bok, M., & Tavasszy, L. (2018). An empirical agent-based simulation system for urban goods transport. Procedia Computer Science, 130, 136–133. https://doi.org/10.1016/j.procs.2018.04.021 | |
dc.relation | de Jong, G., & Ben-Akiva, M. (2007). A micro-simulation model of shipment size and transport chain choice. Transportation Research Part B: Methodological, 41(9), 950–965. https://doi.org/10.1016/j.trb.2007.05.002
de Jong, G., Vierth, I., Tavasszy, L., & Ben-Akiva, M. (2013). Recent developments in national and international freight transport models within Europe. Transportation, 40(2), 347–371. https://doi.org/10.1007/s11116-012-9422-9 | |
dc.relation | De Marco, A., Mangano, G., & Zenezini, G. (2018). Classification and benchmark of City Logistics measures: an empirical analysis. International Journal of Logistics Research and Applications, 21(1), 1–19. https://doi.org/10.1080/13675567.2017.1353068 | |
dc.relation | De Oliveira, L. K., Lessa, D. A., Oliveira, E., Ferreira, B., & Calazans, G. (2017). Multi-agent modelling approach for evaluating the city logistics dynamic in a vulnerability situation: An exploratory study in Belo Horizonte (Brazil). Transportation Research Procedia, 25, 1046–1060. https://doi.org/10.1016/j.trpro.2017.05.478 | |
dc.relation | de Souza, R., Goh, M., Lau, H.-C., Ng, W.-S., & Tan, P.-S. (2014). Collaborative Urban Logistics – Synchronizing the Last Mile a Singapore Research Perspective. Procedia - Social and Behavioral Sciences, 125, 422–431. https://doi.org/http://dx.doi.org/10.1016/j.sbspro.2014.01.1485 | |
dc.relation | Deflorio, F., Gonzalez-Feliu, J., Perboli, G., & Tadei, R. (2012). The influence of time windows on the costs of urban freight distribution services in city logistics applications. European Journal of Transport and Infrastructure Research, 12(3), 256–274. | |
dc.relation | Domínguez, A. (2013). Modelización del comportamiento de los comerciantes ante nuevas políticas de reparto urbano de mercancías (Tesis de doctorado). Universidad de Cantabria. | |
dc.relation | Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2), 283–308. https://doi.org/10.1016/j.ejor.2014.08.030 | |
dc.relation | Ducret, R. (2014). Parcel deliveries and urban logistics: Changes and challenges in the courier express and parcel sector in Europe - The French case. Research in Transportation Business and Management, 11. https://doi.org/10.1016/j.rtbm.2014.06.009 | |
dc.relation | Edwards, J., Wang, Y., Potter, A., & Cullinane, S. (2010). E-business, e-logistics and the environment. In A. Mckinnon, S. Cullinane, M. Browne, & A. Witheing (Eds.), Green Logistics: Improving the Environmental Sustainability (Vol. 215, pp. 322–338). https://doi.org/10.1001/jama.1971.03180240003002 | |
dc.relation | Ehmke, J. F. (2012). Integration of Information and Optimization Models for Routing in City Logistics (Internatio; F. S. Hillier & C. C. Price, Eds.). https://doi.org/10.1007/978-1-4614-0806-2
Ehmke, J. F., & Mattfeld, D. C. (2011). Integration of information and optimization models for vehicle routing in urban areas. Procedia - Social and Behavioral Sciences, 20, 110–119. https://doi.org/10.1016/j.sbspro.2011.08.016
Ehmke, J. F., Steinert, A., & Mattfeld, D. C. (2012). Advanced routing for city logistics service providers based on time-dependent travel times. Journal of Computational Science, 3(4), 193–205. https://doi.org/10.1016/j.jocs.2012.01.006 | |
dc.relation | Escuín, D., Millán, C., & Larrodé, E. (2012). Modelization of Time-Dependent Urban Freight Problems by Using a Multiple Number of Distribution Centers. Networks and Spatial Economics, 12(3), 321–336. https://doi.org/10.1007/s11067-009-9099-6 | |
dc.relation | Estrada, M. Á. (2007). Análisis de Estrategias Eficientes en la Logística de Distribución de Paquetería (Tesis de doctorado). Universidad Politécnica de Cataluña. | |
dc.relation | Euchi, J., Yassine, A., & Chabchoub, H. (2015a). The dynamic vehicle routing problem: Solution with hybrid metaheuristic approach. Swarm and Evolutionary Computation, 21, 41–53. https://doi.org/http://dx.doi.org/10.1016/j.swevo.2014.12.003
Euchi, J., Yassine, A., & Chabchoub, H. (2015b). The dynamic vehicle routing problem: Solution with hybrid metaheuristic approach. Swarm and Evolutionary Computation, 21, 41–53. https://doi.org/10.1016/j.swevo.2014.12.003 | |
dc.relation | Farahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. Computers and Industrial Engineering, 68(1), 104–117. https://doi.org/10.1016/j.cie.2013.12.005
Farahani, R. Z., Rezapour, S., & Kardar, L. (2011). Logistics Operations and Management. In Logistics Operations and Management. https://doi.org/10.1016/B978-0-12-385202-1.00008-6 | |
dc.relation | Farias, G. P., Dimuro, G. P., & Rocha Costa, A. C. (2010). BDI agents with fuzzy perception for simulating decision making in environments with imperfect information. Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010), 627, 1–8. Lyon, France: Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010). | |
dc.relation | Fatnassi, E., Chaouachi, J., & Klibi, W. (2015). Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics. Transportation Research Part B: Methodological, 81, 440–460. https://doi.org/10.1016/j.trb.2015.07.016 | |
dc.relation | Faure, L., Battaia, G., Marqués, G., Guillaume, R., Vega-Mejía, C. A., Montova-Torres, J. R., … Quintero-Araújo, C. L. (2013). How to anticipate the level of activity of a sustainable collaborative network: The case of urban freight delivery through logistics platforms. IEEE International Conference on Digital Ecosystems and Technologies, (August), 126–131. https://doi.org/10.1109/DEST.2013.6611341 | |
dc.relation | Febbraro, A. Di, Sacco, N., & Saeednia, M. (2016). An agent-based framework for cooperative planning of intermodal freight transport chains. Transportation Research Part C, 64, 72–85. https://doi.org/10.1016/j.trc.2015.12.014 | |
dc.relation | Ferguson, M., Maoh, H., Ryan, J., Kanaroglou, P., & Rashidi, T. H. (2012). Transferability and enhancement of a microsimulation model for estimating urban commercial vehicle movements. Journal of Transport Geography, 24, 358–369. https://doi.org/10.1016/j.jtrangeo.2012.04.013 | |
dc.relation | Ferrucci, F., & Bock, S. (2015). A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems. Transportation Research Part B: Methodological, 77, 76–87. https://doi.org/http://dx.doi.org/10.1016/j.trb.2015.03.003
Ferrucci, F., & Bock, S. (2016). Pro-active real-time routing in applications with multiple request patterns. European Journal of Operational Research, 253(2), 356–371. https://doi.org/http://dx.doi.org/10.1016/j.ejor.2016.02.016
Ferrucci, F., Bock, S., & Gendreau, M. (2013). A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods. European Journal of Operational Research, 225(1), 130–141. https://doi.org/http://dx.doi.org/10.1016/j.ejor.2012.09.016 | |
dc.relation | Fieguth, P. (2017). Dynamic systems. In P. Fieguth (Ed.), An Introduction to Complex Systems: Society, Ecology, and Nonlinear Dynamics (pp. 41–65). https://doi.org/10.1007/978-3-319-44606-6 | |
dc.relation | Figliozzi, M. A. (2010). An iterative route construction and improvement algorithm for the vehicle routing problem with soft time windows. Transportation Research Part C: Emerging Technologies, 18(5), 668–679. https://doi.org/10.1016/j.trc.2009.08.005
Figliozzi, M. A. (2012). The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics. Transportation Research Part E: Logistics and Transportation Review, 48(3), 616–636. https://doi.org/10.1016/j.tre.2011.11.006 | |
dc.relation | FIPA. (2015). Foundation For Intelligent Physical Agents. Retrieved from Standar status specifications. website: http://fipa.org/repository/standardspecs.html | |
dc.relation | Firdauusiyah, N., Taniguchi, E., & Qureshi, A. G. (2018). Multi-agent simulation using adaptive dynamic programing for evaluating urban consolidation centers. In E. Taniguchi & R. G. Thompson (Eds.), City Logistics 2 (pp. 211–228). https://doi.org/10.1002/9781119425526.ch13 | |
dc.relation | Friedrich, H., Tavasszy, L., & Davydenkob, I. (2014). Distribution Structures. In Lóránt Tavasszy & G. de Jong (Eds.), Modelling Freight Transport (pp. 65–87). https://doi.org/10.1016/B978-0-12-410400-6.00004-5 | |
dc.relation | Frindik, R., & Prudon, M. (2017). Collaborative City Logistics in hyperconnected delivery networks. 4th International Physical Internet Conference, (August), 1–6. | |
dc.relation | Gabriel, T., Phuong, C., Nguyen, K., Toulouse, M., Nguyen, P. K., & Crainic, T. G. (2015). Synchronized Multi-Trip Multi-Traffic Pickup & Delivery in City Logistics. Retrieved from https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2015-05.pdf | |
dc.relation | Gao, S., Wang, Y., Cheng, J., Inazumi, Y., & Tang, Z. (2016). Ant colony optimization with clustering for solving the dynamic location routing problem. Applied Mathematics and Computation, 285, 149–173. https://doi.org/10.1016/j.amc.2016.03.035 | |
dc.relation | Gattuso, D., & Cassone, G. C. (2011). A statistical analysis for micro-simulation of UDC operativity. Procedia Engineering, 21, 114–124. https://doi.org/10.1016/j.proeng.2011.11.1994
Gattuso, D., Cassone, G. C., & Pellicanò, D. S. (2014). A micro-simulation model for performance evaluation of a logistics platform. Transportation Research Procedia, 3(July), 574–583. https://doi.org/10.1016/j.trpro.2014.10.036 | |
dc.relation | George, A., & Rajakumar, B. R. (2013). Fuzzy Aided Ant Colony Optimization Algorithm to Solve Optimization Problem. In A. Abraham & S. Thampi (Eds.), Intelligent Informatics. Advances in Intelligent Systems and Computing (pp. 207–215). Springer Berlin Heidelberg. | |
dc.relation | Ghannadpour, S. F., Noori, S., Tavakkoli-Moghaddam, R., & Ghoseiri, K. (2014). A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application. Applied Soft Computing, 14, 504–527. https://doi.org/10.1016/j.asoc.2013.08.015 | |
dc.relation | Ghiani, G., Laporte, G., & Musmano, R. (2004). Introduction to Logistics Systems Planning and Control (Wiley, Ed.). https://doi.org/10.1002/0470014040
Ghiani, G., Manni, E., Quaranta, A., & Triki, C. (2009). Anticipatory algorithms for same-day courier dispatching. Transportation Research Part E: Logistics and Transportation Review, 45(1), 96–106. https://doi.org/10.1016/j.tre.2008.08.003 | |
dc.relation | Gómez-Marín, C. G., Arango-Serna, M. D., & Serna-Urán, C. A. (2018). Agent-based microsimulation conceptual model for urban freight distribution. Transportation Research Procedia, 33, 155–162. https://doi.org/10.1016/j.trpro.2018.10.088 | |
dc.relation | Gómez-Marín, C. G., Arango-Serna, M. D., Serna-Urán, C. A., & Zapata-Cortés, J. A. (2018). Microsimulation as an Optimization Tool for Urban Goods Distribution: A Review. IET Seminar Digest Joint Conference for Urban Mobility in the Smart City, MOVICI-MOYCOT, 122–129. https://doi.org/10.1049/ic.2018.0020 | |
dc.relation | Gómez-Marín, C. G., Zapata-Cortés, J. A., Arango-Serna, M. D., & Serna-Urán, C. A. (2019). An Urban Supply Chain Distribution Model. Research in Computing Science, 148(4), 9–18. | |
dc.relation | Goncalves, G., Djadane, M., & Hsu, T. (2007). Handling Imprecision in Vehicle Routing Problems: Fuzzy Logic Approach. IFAC Proceedings Volumes, 40(18), 451–456. https://doi.org/10.3182/20070927-4-RO-3905.00075 | |
dc.relation | Goulias, K. G., Pendyala, R. M., & Bhat, C. R. (2013). Total design data needs for the new generation large-scale activity microsimulation models. In Transport Survey Methods: Best Practice for Decision Making (pp. 21–46). https://doi.org/10.1108/9781781902882-002 | |
dc.relation | Grzybowska, H., & Barceló, J. (2012). Decision support system for real-time urban freight management. Procedia - Social and Behavioral Sciences, 39, 712–725. https://doi.org/10.1016/j.sbspro.2012.03.142
Grzybwska, H. (2012). Combination of vehicle routing models and dynamic traffic simulation for city logistics applications (PhD Thesis) (Universidad Politécnica de Cataluña). Retrieved from http://upcommons.upc.edu/handle/10803/125067 | |
dc.relation | Guedria, M., Malhene, N., & Deschamps, J.-C. (2016). Urban Freight Transport: From Optimized Routes to Robust Routes. Transportation Research Procedia, 12(June 2015), 413–424. https://doi.org/10.1016/j.trpro.2016.02.076
Guerlain, C., Cortina, S., & Renault, S. (2016). Towards a Collaborative Geographical Information System to Support Collective Decision Making for Urban Logistics Initiative. Transportation Research Procedia, 12, 634–643. https://doi.org/10.1016/j.trpro.2016.02.017 | |
dc.relation | Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2013). Hybrid heuristic for the inventory location-routing problem with deterministic demand. International Journal of Production Economics, 146, 359–370. | |
dc.relation | Hackney, J., & Marchal, F. (2011). A coupled multi-agent microsimulation of social interactions and transportation behavior. Transportation Research Part A, 45, 296–309. https://doi.org/10.1016/j.tra.2011.01.009 | |
dc.relation | Holguín-Veras, J., & Sánchez-Díaz, I. (2016). Freight Demand Management and the Potential of Receiver-Led Consolidation programs. Transportation Research Part A: Policy and Practice, 84, 109–130. https://doi.org/10.1016/j.tra.2015.06.013 | |
dc.relation | Hunt, J. D., & Stefan, K. J. (2007). Tour-based microsimulation of urban commercial movements. Transportation Research Part B: Methodological, 41(9), 981–1013. https://doi.org/10.1016/j.trb.2007.04.009 | |
dc.relation | Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2007). Planned Route Optimization For Real-Time Vehicle Routing. In V. Zeimpekis, C. . Tarantilis, G. . Giaglis, & I. Minis (Eds.), Dynamic Fleet Management; Concepts, Systems, Algorithms and Case Studies (Vol. 38, pp. 1–18). https://doi.org/10.1007/978-0-387-71722-7_1 | |
dc.relation | Ishfaq, R., & Sox, C. R. (2012). Design of intermodal logistics networks with hub delays. European Journal of Operational Research, 220(3), 629–641. https://doi.org/10.1016/j.ejor.2012.03.010 | |
dc.relation | Jaller, M., Wang, X. (Cara), & Holguín-Veras, J. (2015). Large urban freight traffic generators: Opportunities for city logistics initiatives. The Journal of Transport and Land Use, 8(1), 51. https://doi.org/10.5198/jtlu.2015.406 | |
dc.relation | Jamshidi, A., Jamshidi, F., Ait-Kadi, D., & Ramudhin, A. (2018). A review of priority criteria and decision-making method applied in selection of sustainable city logistics initiatives and collaboration partners. International Journal of Production Research, 57(15–16), 5175–5193. https://doi.org/10.1080/00207543.2018.1540892 | |
dc.relation | Jemal, H., Kechaou, Z., & Ayed, M. Ben. (2019). Multi-agent based intuitionistic fuzzy logic healthcare decision support system. Journal of Intelligent & Fuzzy System, 37(2), 2697–2712. https://doi.org/10.3233/JIFS-182926 | |
dc.relation | Joubert, J. W. (2012). Analyzing Commercial Through-Traffic. Procedia - Social and Behavioral Sciences, 39, 184–194. https://doi.org/10.1016/j.sbspro.2012.03.100 | |
dc.relation | Kalia, A. K., & Singh, M. P. (2015). Muon: designing multiagent communication protocols from interaction scenarios. Autonomous Agents and Multi-Agent Systems, 29(4), 621–657. | |
dc.relation | Kao, C. (2017). Dynamic systems. In Network Data Envelopment Analysis (Vol. 240, pp. 409–431). https://doi.org/10.1016/j.ejor.2014.02.039 | |
dc.relation | Karakikes, I., Mitropoulos, L., & Savrasovs, M. (2018). Evaluating smart urban freight solutions using microsimulation.pdf. In I. Kabashkin, O. Prentkovskis, & I. Yatskiv (Eds.), Reliability and Statistics in Transportation and Communication (pp. 551–560). https://doi.org/10.1007/978-3-319-74454-4 | |
dc.relation | Kayikci, Y. (2010). A conceptual model for intermodal freight logistics centre location decisions. Procedia - Social and Behavioral Sciences, 2(3), 6297–6311. https://doi.org/10.1016/j.sbspro.2010.04.039 | |
dc.relation | Khouadjia, M. R., Sarasola, B., Alba, E., Jourdan, L., & Talbi, E. G. (2012). A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Applied Soft Computing Journal, 12(4), 1426–1439. https://doi.org/10.1016/j.asoc.2011.10.023
Khouadjia, M. R., Sarasola, B., Alba, E., Talbi, E., & Jourdan, L. (2013). Metaheuristics for Dynamic Vehicle Routing. In E. et al Alba (Ed.), Metaheuristics for Dynamic Optimization (pp. 265–289). Berlin Heidelberg: Springer-Verlag. | |
dc.relation | Kickhöfer, B., & Nagel, K. (2016). Towards high-resolution first-best air pollution tolls: An evaluation of regulatory policies and a discussion on long-term user reactions. Networks and Spatial Economics, 16(1), 175–198. https://doi.org/10.1007/s11067-013-9204-8 | |
dc.relation | Kilby, P., Prosser, P., & Shaw, P. (1998). Dynamic VRPs: A Study of Scenarios. In Report APES-06-1998. | |
dc.relation | Kim, G., Ong, Y. S., Cheong, T., & Tan, P. S. (2016). Solving the Dynamic Vehicle Routing Problem Under Traffic Congestion. IEEE Transactions on Intelligent Transportation Systems, 17(8), 2367–2380. https://doi.org/10.1109/TITS.2016.2521779 | |
dc.relation | Kim, G., Ong, Y. S., Heng, C. K., Tan, P. S., & Zhang, N. A. (2015). City Vehicle Routing Problem (City VRP): A Review. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1654–1666. https://doi.org/10.1109/TITS.2015.2395536 | |
dc.relation | Kim, H., & Park, D. (2017). Empirical comparison of tour- and trip-based truck travel demand models. KSCE Journal of Civil Engineering, 00(0000), 1–11. https://doi.org/10.1007/s12205-017-0868-3 | |
dc.relation | Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). The impact of depot location, fleet composition and routing on emissions in city logistics. Transportation Research Part B: Methodological, 84, 81–102. https://doi.org/10.1016/j.trb.2015.12.010 | |
dc.relation | Kuo, R. J., Wibowo, B. S., & Zulvia, F. E. (2016). Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Applied Mathematical Modelling, 40(23–24), 9990–10001. https://doi.org/10.1016/j.apm.2016.06.025 | |
dc.relation | Lagorio, A., Pinto, R., & Golini, R. (2016). Research in urban logistics: a systematic literature review. International Journal of Physical Distribution and Logistics Management, 46(10), 908–931. https://doi.org/10.1108/IJPDLM-01-2016-0008 | |
dc.relation | Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2007). Classifications of dynamic vehicle routing systems. In V. Zeimpekis, C. . Tarantilis, G. . Giaglis, & I. Minis (Eds.), Dynamic Fleet Management; Concepts, Systems, Algorithms & Case Studies (pp. 19–40). US: Springer. | |
dc.relation | Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2009). A Lagrangian heuristic for the real-time vehicle rescheduling problem. Transportation Research Part E: Logistics and Transportation Review, 45(3), 419–433. https://doi.org/10.1016/j.tre.2008.09.002 | |
dc.relation | Li, Y.-T., Huang, B., & Lee, D.-H. (2011). Multimodal, multicriteria dynamic route choice: a GIS-microscopic traffic simulation approach. Annals of GIS, 17(3), 173–187. https://doi.org/10.1080/19475683.2011.602026 | |
dc.relation | Liedtke, G., Matteis, T., & Wisetjindawat, W. (2015). Impacts of urban logistics measures on multiple actors and decision layers - a case study. Transportation Research Record: Journal of the Transportation Research Board, (2478), 57–65. https://doi.org/10.3141/2478-07 | |
dc.relation | Lin, C., Choy, K. L., Ho, G. T. S., Lam, H. Y., Pang, G. K. H., & Chin, K. S. (2014). A decision support system for optimizing dynamic courier routing operations. Expert Systems with Applications, 41(15), 6917–6933. https://doi.org/10.1016/j.eswa.2014.04.036 | |
dc.relation | Lindawati, van S. J., Goh, M., & de Souza, R. (2014). Collaboration in urban logistics: motivations and barriers. International Journal of Urban Sciences, 18(2), 278–290. | |
dc.relation | Lindholm, M., & Behrends, S. (2012). Challenges in urban freight transport planning – a review in the Baltic Sea Region. Journal of Transport Geography, 22, 129–136. https://doi.org/10.1016/j.jtrangeo.2012.01.001 | |
dc.relation | Liu, C. S., Kou, G., & Huang, F. H. (2016). Vehicle coordinated strategy for vehicle routing problem with fuzzy demands. Mathematical Problems in Engineering, 2016, 9071394. https://doi.org/10.1155/2016/9071394 | |
dc.relation | Liu, R., Xie, X., Augusto, V., & Rodriguez, C. (2013). Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. European Journal of Operational Research, 230, 475–486. https://doi.org/10.1016/j.ejor.2013.04.044 | |
dc.relation | Lu, C. C., Ying, K. C., & Chen, H. J. (2016). Real-time relief distribution in the aftermath of disasters - A rolling horizon approach. Transportation Research Part E: Logistics and Transportation Review, 93, 1–20. https://doi.org/10.1016/j.tre.2016.05.002 | |
dc.relation | Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations. Transportation Research Part B: Methodological, 89, 19–42. https://doi.org/10.1016/j.trb.2016.03.009 | |
dc.relation | Mahmoudifard, S. M., Shabanpour, R., Golshani, N., Mohammadian, K., & Mohammadian, A. (2018). Supplier Evaluation Model in Freight Activity Microsimulation Estimator. Journal of Transportation Research Record, 2672(9), 70–80. https://doi.org/10.1177/0361198118777084 | |
dc.relation | Mancini, S., González-Feliu, J., & Crainic, T. G. (2014). Planning y Optimization Methods for Advanced Urban Logistics Systems at Tactical Level. In Sustainable Urban Logistics: Concepts, Methods and Information Systems. EcoProduction. Environmental Issuesin Logistics and Manufacturing (pp. 145–164). Springer Berlin Heidelberg. | |
dc.relation | Marcucci, E., Gatta, V., Marciani, M., & Cossu, P. (2017). Measuring the effects of an urban freight policy package defined via a collaborative governance model. Research in Transportation Economics, 65, 3–9. https://doi.org/10.1016/j.retrec.2017.09.001 | |
dc.relation | Mavrovouniotis, M., & Yang, S. (2015). Ant algorithms with immigrants schemes for the dynamic vehicle routing problem. Information Sciences, 294, 456–477. https://doi.org/10.1016/j.ins.2014.10.002 | |
dc.relation | Melo, S., Macedo, J., & Baptista, P. (2017). Guiding cities to pursue a smart mobility paradigm: An example from vehicle routing guidance and its traffic and operational effects. Research in Transportation Economics, 65, 24–33. https://doi.org/10.1016/j.retrec.2017.09.007 | |
dc.relation | Miller, E. J. (2019). Agent-based activity travel microsimulation what’s next? In H. Briassoulis, D. Kavroudakis, & N. Soulakellis (Eds.), The Practice of Spatial Analysis (pp. 119–150). Springer International Publishing. | |
dc.relation | Mirabi, M., Ghomi, S. M. T. F., & Jolai, F. (2010). Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing, 26(6), 564–569. https://doi.org/http://dx.doi.org/10.1016/j.rcim.2010.06.023 | |
dc.relation | Möller, D. P. F. (2014). Computacional foundation in transportation systems modeling. In Introduction to Transportation Analysis, Modeling and Simulation (pp. 195–228). https://doi.org/10.1007/978-1-4471-5637-6 | |
dc.relation | Montemanni, R., Gambardella, L., Rizzoli, A., & Donati, A. (2005). A new algorithm for a dynamic vehicle routing problem based on ant colony system. Journal of Combinatorial Optimization, 10, 327–343. | |
dc.relation | Montoya-Torres, J. R., Muñoz-Villamizar, A. F., & Vega-Mejía, C. A. (2016). On the impact of collaborative strategies for goods delivery in city logistics. Production Planning & Control: The Management of Operations, 27(6), 443–455. | |
dc.relation | Morganti, E., & Dablanc, L. (2014). Recent innovation in last mile deliveries. In Non-technological Innovations for Sustainable Transport (pp. 27–45). Springer International Publishing. | |
dc.relation | Morganti, E., & Gonzalez-Feliu, J. (2015). City logistics for perishable products. The case of the Parma’s Food Hub. Case Studies on Transport Policy, 3(2), 120–128. https://doi.org/10.1016/j.cstp.2014.08.003 | |
dc.relation | Muñuzuri, J., Cortés, P., Onieva, L., & Guadix, J. (2009). Modeling freight delivery flows: Missing link of urban transport analysis. Journal of Urban Planning and Development, 135(3), 91–99. | |
dc.relation | Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254–264. https://doi.org/10.1016/J.COR.2017.07.004 | |
dc.relation | Ninikas, G., & Minis, I. (2018). Load transfer operations for a dynamic vehicle routing problem with mixed backhauls. Journal on Vehicle Routing Algorithms, 1(1), 47–68. https://doi.org/10.1007/s41604-017-0005-y | |
dc.relation | Nourinejad, M., Wenneman, A., Habib, K. N., & Roorda, M. J. (2014). Truck parking in urban areas: Application of choice modelling within traffic microsimulation. Transportation Research Part A: Policy and Practice, 64, 54–64. https://doi.org/10.1016/j.tra.2014.03.006 | |
dc.relation | Novaes, A. G. N., Bez, E. T., Burin, P. J., & Aragão, D. P. (2015). Dynamic milk-run OEM operations in over-congested traffic conditions. Computers and Industrial Engineering, 88, 326–340. https://doi.org/10.1016/j.cie.2015.07.010 | |
dc.relation | Nuzzolo, A., & Comi, A. (2014). Urban freight demand forecasting: A mixed quantity/delivery/vehicle-based model. Transportation Research Part E: Logistics and Transportation Review, 65, 84–98. https://doi.org/10.1016/j.tre.2013.12.014 | |
dc.relation | O’Donoghue, C. (2014). Introduction. In C. O’Donoghue (Ed.), Handbook of Microsimulation Modelling (pp. 1–21). https://doi.org/10.1108/S0573-855520140000293001 | |
dc.relation | Orozco, J. A. (2011). A Microscopic Traffic Simulation Based Decision Support System for Real-Time Fleet Management (PhD Thesis). Universidad Politécnica de Cataluña. | |
dc.relation | Osicka, O., Guajardo, M., & van Oost, T. (2019). Cooperative game-theoretic features of cost sharing in location-routing. International Transactions in Operational Research, 27, 2157–2183. https://doi.org/10.1111/itor.12698 | |
dc.relation | Palacio-León, O., & Adarme-Jaimes, W. (2014). Coordinación de inventarios: Un caso de estudio para la logística de ciudad. DYNA, 81(186), 295–303. | |
dc.relation | Perboli, G., & Rosano, M. (2018). A decision support system for optimizing the last-mile by mixing traditional and green logistics. Lecture Notes in Business Information Processing, 262, 28–46. https://doi.org/10.1007/978-3-319-73758-4_3 | |
dc.relation | Perboli, G., Rosano, M., Saint-Guillain, M., & Rizzo, P. (2018). Simulation–optimisation framework for City Logistics: an application on multimodal last-mile delivery. IET Intelligent Transport Systems, 12(4), 262–269. https://doi.org/10.1049/iet-its.2017.0357 | |
dc.relation | Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11. https://doi.org/10.1016/j.ejor.2012.08.015 | |
dc.relation | Pillac, V., Guéret, C., & Medaglia, A. L. (2012). An event-driven optimization framework for dynamic vehicle routing. Decision Support Systems, 54(1), 414–423. https://doi.org/10.1016/j.dss.2012.06.007 | |
dc.relation | Pira, M. Le, Marcucci, E., Gatta, V., & Ignaccolo, M. (2017). Towards a decision-support procedure to foster stakeholder involvement and acceptability of urban freight transport policies. 9, 54. https://doi.org/10.1007/s12544-017-0268-2 | |
dc.relation | Ponce-Cueto, E., Carrasco-Gallego, R., & García-García, R. (2009). Propuesta de una guía de selección del modelo de distribución en el sistema logístico del canal HORECA. Dirección y Organización, 37, 67–75. Retrieved from http://www.revistadyo.com/index.php/dyo/article/view/40 | |
dc.relation | Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects. Annals of Operations Research, 61(1), 143–164. | |
dc.relation | Psaraftis, H. N., Wen, M., & Kontovas, C. A. (2016). Dynamic Vehicle Routing Problems: Three Decades and Counting. Networks, 67(1), 3–31. https://doi.org/10.1002/net | |
dc.relation | Pureza, V., & Laporte, G. (2008). Waiting and Buffering Strategies for the Dynamic Pickup and Delivery Problem with Time Windows. INFOR: Information Systems and Operational Research, 46(3), 165–175. https://doi.org/10.3138/infor.46.3.165 | |
dc.relation | Quak, H., & De Koster, M. B. . (2009). Delivering goods in urban areas: how to deal with urban policy resctrictions and the enviroment.pdf. Transportation Science, 43(2), 211–227. | |
dc.relation | Qureshi, A. G., Taniguchi, E., & Yamada, T. (2009). An exact solution approach for vehicle routing and scheduling problems with soft time windows. Transportation Research Part E: Logistics and Transportation Review, 45(6), 960–977. https://doi.org/10.1016/j.tre.2009.04.007 | |
dc.relation | Ramstedt, L., Törnquist, K., & Davidsson, P. (2013). Movement of people and goods. In E. Bruce & M. Ruth (Eds.), Simulating Social Complexity. A Handbook (pp. 651–665). https://doi.org/10.1007/978-3-540-93813-2 | |
dc.relation | Ranaiefar, F., & Amelia, R. (2011). Freight-Transportation Externalities. In R. Z. Farahani, S. Rezapour, & L. Kardar (Eds.), Logistics Operations and Management (pp. 333–358). https://doi.org/10.1016/B978-0-12-385202-1.00016-5 | |
dc.relation | Reis, V., & Macário, R. (2019). Freight transport modeling and simulation. In V. Reis & R. Macário (Eds.), Intermodal Freight Transportation (pp. 131–160). https://doi.org/10.1016/b978-0-12-814464-0.00006-2 | |
dc.relation | Richiardi, M. (2013). The missing link: AB models and dynamic microsimulation. In S. Leitner & F. Wall (Eds.), Artificial Economics and Self Organization. Springer, Lecture Notes in Economics and Mathematical Systems (Vol. 669). | |
dc.relation | Richiardi, M., & Richardson, R. (2017). JAS-mine: A new platform for microsimulation and agent-based modelling. International Journal of Microsimulation, 10(1), 106–134. | |
dc.relation | Richiardi, M., & Richardson, R. E. (2016). Agent-based computational demography and microsimulation using JAS-mine. In A. Grow & J. Van Bavel (Eds.), Agent-Based Modelling in Population Studies. Concepts, Methods and Applications (Vol. 41, pp. 75–112). https://doi.org/10.1007/978-3-319-32283-4 | |
dc.relation | Rieck, J., Ehrenberg, C., & Zimmermann, J. (2014). Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery. European Journal of Operational Research, 236(3), 863–878. https://doi.org/10.1016/j.ejor.2013.12.021 | |
dc.relation | Ritzinger, U., Puchinger, J., & Hartl, R. F. (2016). A survey on dynamic and stochastic vehicle routing problems. International Journal of Production Research, 54(1), 1–17. https://doi.org/10.1080/00207543.2015.1043403 | |
dc.relation | Roorda, M. J., Cavalcante, R., McCabe, S., & Kwan, H. (2010). A conceptual framework for agent-based modelling of logistics services. Transportation Research Part E: Logistics and Transportation Review, 46(1), 18–31. https://doi.org/10.1016/j.tre.2009.06.002 | |
dc.relation | Rushton, A., Croucher, P., & Baker, P. (2011). The Handbook of Logistics and Distribution Management: Understanding the Supply Chain (4th ed.). https://doi.org/10.1016/j.tre.2007.02.001 | |
dc.relation | Russo, F., & Comi, A. (2011). A model system for the ex-ante assessment of city logistics measures. Research in Transportation Economics, 31(1), 81–87. https://doi.org/10.1016/j.retrec.2010.11.011 | |
dc.relation | Sadeghi, J., Mousavi, S. M., & Niaki, S. T. A. (2014). Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 40, 7318–7335. https://doi.org/10.1016/j.apm.2016.03.013 | |
dc.relation | Sadjady, H. (2011). Physical Flows. In R. Z. Farahani, S. Rezapour, & L. Kardar (Eds.), Logistics Operations and Management (pp. 13–42). https://doi.org/10.1016/B978-0-12-385202-1.00002-5 | |
dc.relation | Samimi, A., Mohammadian, A., Kawamura, K., & Pourabdollahi, Z. (2014). An activity-based freight mode choice microsimulation model. Transportation Letters, 6(3), 142–151. https://doi.org/10.1179/1942787514Y.0000000021 | |
dc.relation | Sayama, H. (2015). Introduction to the Modeling and Analysis of Complex Systems. New York, NY: Open SUNY Textbooks. | |
dc.relation | Scherr, Y. O., Neumann Saavedra, B. A., Hewitt, M., & Mattfeld, D. C. (2019). Service network design with mixed autonomous fleets. Transportation Research Part E: Logistics and Transportation Review, 124(February), 40–55. https://doi.org/10.1016/j.tre.2019.02.001 | |
dc.relation | Schröder, S., & Liedtke, G. T. (2017). Towards an integrated multi-agent urban transport model of passenger and freight. Research in Transportation Economics, 64, 3–12. https://doi.org/10.1016/j.retrec.2016.12.001 | |
dc.relation | Schyns, M. (2015). An ant colony system for responsive dynamic vehicle routing. European Journal of Operational Research, 245(3), 704–718. https://doi.org/10.1016/j.ejor.2015.04.009 | |
dc.relation | Serna-Urán, C. A. (2016). Modelo multi-agente para problemas de recogida y entrega de mercancías con ventanas de tiempo usando un algoritmo memético con relajaciones difusas (Tesis de doctorado). Universidad Nacional de Colombia. | |
dc.relation | Serna-Urán, C. A., Arango-Serna, M. D., Zapata-Cortés, J. A., & Gómez-Marín, C. G. (2018). An agent-based memetic algorithm for solving three-level freight distribution problems. In J. L. Sánchez-Cervantes, G. Alor-Hernández, M. del P. Salas-Zárate, J. L. García-Alcaraz, & L. Rodríguez-Mazahua (Eds.), Exploring Intelligent Decision support Systems (pp. 111–131). https://doi.org/10.1007/978-3-319-74002-7_6 | |
dc.relation | Seyedhosseini, S. M., Makui, A., Shahanaghi, K., & Torkestani, S. S. (2016). Models, solution, methods and their applicability of dynamic location problems (DLPs) (a gap analysis for further research). Journal of Industrial Engineering International, 12(3), 311–341. https://doi.org/10.1007/s40092-016-0150-1 | |
dc.relation | Shaabani, H., & Kamalabadi, I. N. (2016). An efficient population-based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem. Computers and Industrial Engineering, 99, 189–201. https://doi.org/10.1016/j.cie.2016.07.022 | |
dc.relation | Sifa, Z., Jiandong, C., Xiaomin, L., & Keqiang, L. (2011). Urban pickup and delivery problem considering time-dependent fuzzy velocity. Computers and Industrial Engineering, 60(4), 821–829. https://doi.org/10.1016/j.cie.2011.01.020 | |
dc.relation | Simic, D., & Simic, S. (2011). A Review : Approach of Fuzzy Models. In R. et al Bruduk (Ed.), Computer Recognition Systems (pp. 717–726). Springer Berlin Heidelberg. | |
dc.relation | Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Operations Research, 35(2), 254–265. https://doi.org/10.1287/opre.35.2.254 | |
dc.relation | Sopha, B. M., Asih, A., Nurdiansyah, H., & Maulida, R. (2018). Decision Support System for an Urban Distribution Center Using Agent‐based Modeling: A Case Study of Yogyakarta Special Region Province, Indonesia. In E. Taniguchi & R. G. Thompson (Eds.), City Logistics 2: Modeling and Planning Initiatives. (pp. 179–196). https://doi.org/10.1002/9781119425526 | |
dc.relation | Tadić, S., Zečević, S., & Krstić, M. (2014). Ranking of logistics system scenarios for central business district. Promet-Traffic & Transportation, 26(2), 159–167. https://doi.org/10.7307/ptt.v26i2.1349 | |
dc.relation | Taniguchi, E. (2015). City Logistics for sustainable and liveable cities. In Green Logistics and Transportation (pp. 49–60). https://doi.org/10.1007/978-3-319-17181-4_4 | |
dc.relation | Taniguchi, E., Thompson, R. G., Yamada, T., & Van Duin, J. H. . (2001). City logistics: Network modelling and intelligent transport systems. Elsevier Science. | |
dc.relation | Tarimoradi, M., Zarandi, M. H. F., Zaman, H., & Turksan, I. B. (2015). Evolutionary fuzzy intelligent system for multi-objective supply chain network designs: an agent-based optimization state of the art. Journal of Intelligent Manufacturing, 28, 1551–1579. https://doi.org/10.1007/s10845-015-1170-1 | |
dc.relation | Tavasszy, Lorant, De Bok, M., Alimoradi, Z., & Rezaei, J. (2019). Logistics Decisions in Descriptive Freight Transportation Models: A Review. Journal of Supply Chain Management Science, 1(March), 74–86. https://doi.org/10.18757/jscms.2019.1992 | |
dc.relation | Teo, J. S.-E., Taniguchi, E., & Qureshi, A. G. (2015). Evaluation of Urban Distribution Centers Using Multiagent Modeling with Geographic Information Systems. Transportation Research Record: Journal of the Transportation Research Board, 2478(1), 35–47. https://doi.org/10.3141/2478-05 | |
dc.relation | Teodorović, D., & Janić, M. (2016). Freight Transportation and Logistics. In Transportation Engineering (pp. 569–634). https://doi.org/10.1016/b978-0-12-803818-5.00009-3 | |
dc.relation | Thaller, C., Uwe, C., & Kampmann, R. (2016). System dynamics based, microscopic freight transport simulation for urban areas. A methodological approach. In U. Clausen, H. Friedrich, C. Thaller, & C. Geiger (Eds.), Commercial Transport. Lecture Notes in Logistics. (pp. 14–20). https://doi.org/10.1007/978-3-319-21266-1 | |
dc.relation | Tomislavav, L., Matej, M., & Stane, B. (2018). Dynamic management of urban last-mile deliveries. In E. Taniguchi & R. G. Thompson (Eds.), City Logistics 2 (pp. 23–37). https://doi.org/10.1002/9781119425526.ch2 | |
dc.relation | Toth, P., & Vigo, D. (2002). The Vehicle Routing Problem. Philadelphia, PA, USA: SIAM, 2002. Philadelphia, PA, USA: SIAM. | |
dc.relation | Trillas, E., & Eciolaza, L. (2015). Fuzzy Logic: An Introductory Course for Engineering Students. Switzerland: Springer International Publishing. | |
dc.relation | Tsekeris, T., & Vogiatzoglou, K. (2011). Spatial agent-based modeling of household and firm location with endogenous transport costs. NETNOMICS: Economic Research and Electronic Networking, 12(2), 77–98. https://doi.org/10.1007/s11066-011-9060-y | |
dc.relation | Urbano-Guerrero, L. C., Muñoz-Marín, L. S., & Osorio-Gómez, J. C. (2016). Selección multicriterio de aliado estratégico para la operación de carga terrestre. Estudios Gerenciales, 32(138), 35–43. https://doi.org/10.1016/j.estger.2015.09.002 | |
dc.relation | van Lon, R. R. S., Ferrante, E., Turgut, A. E., Wenseleers, T., Berghe, G. Vanden, & Holvoet, T. (2016). Measures of dynamism and urgency in logistics. European Journal of Operational Research, 253(3), 614–624. https://doi.org/http://dx.doi.org/10.1016/j.ejor.2016.03.021 | |
dc.relation | Verlinden, T., Van de Voorde, E., & Dewulf, W. (2016). Ho.Re-Ca. Logistics and medieval structured cities: A market analysis and typology. In C. Uwe, H. Friedrich, C. Thaller, & C. Geiger (Eds.), Commercial Transport (pp. 369–384). https://doi.org/10.1007/978-3-319-21266-1 | |
dc.relation | Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). Implicit depot assignments and rotations in vehicle routing heuristics. European Journal of Operational Research, 237(1), 15–28. https://doi.org/10.1016/j.ejor.2013.12.044 | |
dc.relation | Villeta, M., Lahera, T., Merino, S., Zato, J. G., Naranjo, J. E., & Jiménez, F. (2012). Modelo para la conducción eficiente y sostenible basado en lógica borrosa. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 9(3), 259–266. https://doi.org/10.1016/j.riai.2012.05.009 | |
dc.relation | Wang, Q., & Holguín-Veras, J. (2009). Investigation of attributes determining trip chaining behavior in hybrid microsimulation urban freight models. Transportation Research Record: Journal of the Transportation Research Board, 2066(5478), 1–8. https://doi.org/10.3141/2066-01 | |
dc.relation | Weidner, T., Knudson, B., Picado, R., & Hunt, J. D. (2010). Sensitivity testing with the Oregon statewide integrated model. Transportation Research Record: Journal of the Transportation Research Board, 2133, 109–122. https://doi.org/10.3141/2133-12 | |
dc.relation | Wolpert, S., & Reuter, C. (2012). Status quo of city logistics in scientific literature: systematic review. Transportation Research Record, 2269(2269), 110–116. https://doi.org/10.3141/2269-13 | |
dc.relation | Wooldridge, M. (2002). An Introduction to Multiagent Systems. https://doi.org/10.1145/1753171.1753181 | |
dc.relation | Xu, J., Hancock, K., & Southworth, F. (2003). Simulation of regional freight movement with trade and transportation multinetworks. Transportation Research Record, 1854(1), 152–161. https://doi.org/10.3141/1854-17 | |
dc.relation | Xu, Y., Wang, L., & Yang, Y. (2013). Dynamic vehicle routing using an improved variable neighborhood search algorithm. Journal of Applied Mathematics, 2013. https://doi.org/10.1155/2013/672078 | |
dc.relation | Yang, Z., van Osta, J.-P., van Veen, B., van Krevelen, R., van Klaveren, R., Stam, A., … Emmerich, M. (2016). Dynamic vehicle routing with time windows in theory and practice. Natural Computing, 16, 119–134. https://doi.org/10.1007/s11047-016-9550-9 | |
dc.relation | Zadeh, L. a. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X | |
dc.relation | Zapata-Cortés, J. A. (2016). Optimización de la distribución de mercancías utilizando un modelo genético multiobjetivo de inventario colaborativo de m proveedores con n clientes (Tesis de doctorado). Universidad Nacional de Colombia. | |
dc.relation | Zenezini, G., & De Marco, A. (2016). A review of methodologies to assess urban freight initiatives. IFAC-PapersOnLine, 49(12), 1359–1364. https://doi.org/10.1016/j.ifacol.2016.07.752 | |
dc.relation | Zenezini, G., Gonzalez-Feliu, J., Mangano, G., & Palacios-Arguello, L. (2019). A Business Model Assessment and Evaluation Framework for City Logistics Collaborative Strategic Decision Support. In Collaborative Networks and Digital Transformation (Vol. 1, pp. 552–561). https://doi.org/10.1007/978-3-030-28464-0_48 | |
dc.relation | Zhang, J., Lam, W. H. K., & Chen, B. Y. (2016). On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. European Journal of Operational Research, 249(1), 144–154. https://doi.org/10.1016/j.ejor.2015.08.050 | |
dc.relation | Zheng, H., Son, Y.-J., Chiu, Y.-C., Head, L., Feng, Y., Xi, H., … Hickman, M. (2013). A Primer for Agent-Based Simulation and Modeling in Transportation Applications. Tucson, Arizona: US Department of Transportation (DOT). | |
dc.relation | Zhu, L., Rousseau, L. M., Rei, W., & Li, B. (2014). Paired cooperative reoptimization strategy for the vehicle routing problem with stochastic demands. Computers and Operations Research, 50, 1–13. https://doi.org/10.1016/j.cor.2014.03.027 | |
dc.relation | Zhu, Z., Xiao, J., He, S., Ji, Z., & Sun, Y. (2016). A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem. Information Sciences, 329, 73–89. https://doi.org/10.1016/j.ins.2015.09.006 | |
dc.relation | Zufferey, N., Cho, B. Y., & Glardon, R. (2016). Dynamic multi-trip vehicle routing with unusual time-windows for the pick-up of blood samples and delivery of medical material. Proceedings of 5th the International Confemarrence on Operations Research and Enterprise Systems, (Icores), 366–372. https://doi.org/10.5220/0005733303660372 | |
dc.relation | Zulvia, F. E., Kuo, R. J., & Hu, T. L. (2012). Solving CVRP with time window, fuzzy travel time and demand via a hybrid ant colony optimization and genetic algortihm. 2012 IEEE Congress on Evolutionary Computation, CEC 2012, 10–15. https://doi.org/10.1109/CEC.2012.6252922 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Modelo dinámico multivariable de la distribución urbana de mercancías utilizando microsimulación e inferencia difusa | |
dc.type | Otro | |