dc.contributorAlvarez Gutierrez, Luis Felipe
dc.contributorSánchez Camargo, Andrea del Pilar
dc.creatorOrozco Moreno, Carlos Andrés
dc.date.accessioned2020-03-06T13:32:06Z
dc.date.available2020-03-06T13:32:06Z
dc.date.created2020-03-06T13:32:06Z
dc.date.issued2020-03-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75914
dc.description.abstractEl mangostino (Garcinia mangostana) es una fruta exótica cultivada en Colombia, principalmente en el Tolima, los Llanos Orientales y la zona cafetera, en donde se producen alrededor de 1.000 toneladas al año. El fruto de mangostino está compuesto por epicarpio y pedúnculo (65%), y pulpa y semilla (35%). El epicarpio posee propiedades biológicas importantes, principalmente antioxidantes, antiinflamatorias, citotóxicas, bactericidas, fungicidas, antidiabetogénicas, anti obesidad, las cuales se deben principalmente a la presencia de compuestos fenólicos (xantonas, como la α-mangostin). Estas características le otorgan un potencial industrial importante en aplicaciones alimentarias, cosméticas y farmacéuticas. La pulpa, reconocida por su agradable sabor, está compuesta principalmente por carbohidratos. En Colombia, el principal uso que se le da al mangostino es como fruto fresco, y su transformación en productos de mayor valor es muy limitada. Sin embargo, las posibilidades de desarrollar productos alimenticios a partir del fruto del mangostino son altas, lo cual puede contribuir a la generación de valor a la cadena de frutas. El objetivo general de este trabajo fue realizar una propuesta técnico-económica para el aprovechamiento integral del fruto de mangostino en aplicaciones alimentarias. Para ello, el proyecto se dividió en dos fases. En la primera, se desarrollaron actividades experimentales relacionadas con los procesos de elaboración de productos alimenticios a partir de la pulpa (pulpa pasteurizada, néctares, jaleas, conservas en almíbar, bocadillos y pulpa deshidratada) y del epicarpio (polvo deshidratado que se adicionó a yogures, galletas, panes y chocolates). De esta fase se tomaron los datos relacionados con los balances de materia y energía, y algunos de los productos desarrollados fueron evaluados en términos de propiedades fisicoquímicas y sensoriales. En la segunda fase del proyecto se hizo la modelización de los procesos y su evaluación económica utilizando el software SuperPro Designer®. Se encontró que es posible aprovechar integralmente el fruto del mangostino en la elaboración de varios productos alimenticios, con características sensoriales aceptables por consumidores no entrenados. Adicionalmente, las evaluaciones económicas de los procesos de elaboración de productos individuales fueron estimadas, así como el de una planta de producción que integre la elaboración de varios productos. (Texto tomado de la fuente)
dc.description.abstractMangosteen (Garcinia mangostana) is an exotic fruit grown in Colombia, mainly in Tolima, the Eastern Plains and the coffee area, where about 1,000 tons are produced per year. The mangosteen fruit is composed of epicarp and peduncle (65%), and pulp and seed (35%). The epicarp has important biological properties, mainly antioxidants, anti-inflammatory, cytotoxic, bactericidal, fungicidal, antidiabetogenic, anti-obesity, which are mainly due to the presence of phenolic compounds (xanthones, such as α-mangostin). These characteristics give it an important industrial potential in food, cosmetic and pharmaceutical applications. The pulp, recognized for its pleasant taste, is mainly composed of carbohydrates. In Colombia, the main use of mangosteen is as fresh fruit, and its transformation into products of greater value is very limited. However, the chances of developing food products from the mangosteen fruit are high, which can contribute to the generation of value to the fruit chain. The general objective of this work was to make a technical-economic proposal for the integral use of the mangosteen fruit in food applications. For this, the project was divided into two phases. In the first one, experimental activities related to the processes of elaboration of food products from the pulp (pasteurized pulp, nectars, jellies, canned in syrup, snacks and dehydrated pulp) and the epicarp (dehydrated powder that was added to yogurts) were developed , cookies, breads and chocolates). From this phase, data related to the balance of matter and energy were taken, and some of the products developed were evaluated in terms of physicochemical and sensory properties. In the second phase of the project, the modeling of the processes and their economic evaluation were done using the SuperPro Designer® software. It was found that it is possible to take full advantage of the mangosteen fruit in the elaboration of various food products, with sensory characteristics acceptable by untrained consumers. Additionally, the economic evaluations of the processes of elaboration of individual products were estimated, as well as that of a production plant that integrates the elaboration of several products.
dc.languagespa
dc.publisherInstituto de Ciencia y Tecnología de Alimentos -ICTA-
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationSiche R., Aredo V. Velasquez L., Castillo I. 2016. The Simplex-Centroid Design and Desirability Function in optimizing the sensory acceptability of sweet bread enriched with Chenopodium quinoa. UTE. 7(3)
dc.relationHLPE. Las pérdidas y el desperdicio de alimentos en el contexto de sistemas alimentarios sostenibles. Un informe del Grupo de alto nivel de expertos en seguridad alimentaria y nutrición 2014 [cited 2018 Noviembre].
dc.relationFAO. Despilfarro de alimentos: datos y cifras clave. 2018 [cited 2018 Noviembre]; Available from: http://www.fao.org/news/story/es/item/196450/icode/.
dc.relationBotero A., Diseño de Biorrefinerias con caña, citricos y aguacate, in Ciencia & tecnologia, A.d.N. UN:, Editor. 2012.
dc.relationJung HA, S.B., Keller WJ, Mehta RG y Kinghorn AD, Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem, 2006. 54: p. 5.
dc.relationOvalle-Magallanes, B., D. Eugenio-Pérez, and J. Pedraza-Chaverri, Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology, 2017. 109: p. 102-122.
dc.relationIbrahim, M.Y., et al., α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arabian Journal of Chemistry, 2016. 9(3): p. 317-329.
dc.relationWang, M.-H., et al., Pharmacology of mangostins and their derivatives: A comprehensive review. Chinese Journal of Natural Medicines, 2017. 15(2): p. 81-93.
dc.relationPeres V, N.T., Oliveira FF., Tetraoxygenated naturally occurring xanthones Phytochemistry, 2000. 55: p. 27.
dc.relationChin YW, J.H., Chai H, Keller WJ, Kinghorn AD., Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry, 2008. 69: p. 4.
dc.relationPuripattanavong JKW, K.W., Chansathirapanich W. , Improved isolation of a-mangostin from the fruit hull of Garcinia mangostana and its antioxidant and antifungal activity. Planta Med 2006. 78: p. 10.
dc.relationChomnawang MT, S.S., Nukoolkarn VS, Gritsanapan W., Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes. Fitoterapia, 2007. 78: p. 7.
dc.relationYu L, Z.M., Yang B, Zhao Q, Jiang Y., Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem, 2007. 104: p. 5.
dc.relationMahabusarakam W, P.J., Taylor W, Croft K. , Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangosteen. Free Radic Res, 2000. 33: p. 16.
dc.relationGopalakrishnan G, B.B., Suresh G. , Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod, 1997. 60: p. 5.
dc.relationSakagami Y, I.M., Piyasena KG, Dharmaratne HR., Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine, 2005. 12: p. 5.
dc.relationChomnawang MT, S.S., Nukoolkarn VS, Gritsanapan W., Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J Ethnopharmacol 2005. 101: p. 3.
dc.relationPedraza-Chaverri, J., Noemi Cárdenas- Rodríguez, Propiedades medicinales del mangostino (Garcinia mangostana), in Departamento de Biología, UNAM, Editor. 2013, Universidad Nacional Autónoma de México: Facultad de Química. p. 52.
dc.relationSato A, F.H., Oku H, Ishiguro K, Ohizumi Y. , Alphamangostin induces Ca2+ -ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci 2004. 95: p. 7.
dc.relationNabandith V, S.M., Morioka T, Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev, 2004. 5: p. 5.
dc.relationMatsumoto K, A.Y., Yi H et al. , Preferential target is mitochon
dc.relationMoongkarndi P, K.N., Kaslungka S, Luanratana O, Pongpan N, Neungton N, Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol 2004 a. 90: p. 5.
dc.relationHo CK, H.Y., Chen CC., Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med, 2002. 68: p. 4.
dc.relationNakatani K., Y.T.y.K.N., Gamma-Mangostin inhibits inhibitor-kappaB kinase activity and decreases lipopolysaccharide-induced cyclooxygenase-2 gene expression in C6 rat glioma cells. Mol Pharmacol, 2004. 66: p. 4.
dc.relationNakatani K, N.N., Arakawa T, Yasuda H, Ohizumi Y., Inhibition of cyclooxygenase and prostaglandin E2 synthesis by gamma-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol, 2002. 63: p. 6.
dc.relationChairungsrilerd N., F.K., Ohta T., Nozoe S. y Ohizumi Y. , Gamma-mangostin, a novel type of 5-hydroxytryptamine 2A receptor antagonist. . Naunyn Schmiedebergs Arch Pharmacol, 1998 a. 357: p. 6.
dc.relationChairungsrilerd N., F.K., Tadano T., Kisara K. y Ohizumi Y., Effect of gamma-mangostin through the inhibition of 5-hydroxy-tryptamine2A receptors in 5-fluoro-alphamethyltryptamine-induced head-twitch responses of mice. Br J Pharmacol 1998 b 123: p. 7.
dc.relationChairungsrilerd N., T.K., Ohizumi Y., Nozoe S. y Ohta T. , Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry, 1996. 43: p. 4.
dc.relationShankaranarayan D, G.C., Kameswaran L., Pharmacological profile of mangostin and its derivatives. . Arch Int Pharmacodyn Ther, 1979. 239: p. 12.
dc.relationPongphasuk N, K.W., Chitcharoenthum M., Antiinflammatory and analgesic activities of the extract from Garcinia mangostana Linn. . Acta Hort (ISHS), 2005. 680: p. 5.
dc.relationSacramento- Rivero J., R.G., Cortés-Rodríguez E., Pech E. y Blanco-Rosete S., Diagnóstico del desarrollo de biorrefinerías en México. Rev. Mex. de Ing. Química., 2010. 9(3): p. 22.
dc.relationDavila J., y.A.C., Residuos de mora y aguacate con potencial para la industria farmacéutica, in Ciencia & tecnología, A.d.N. UN, Editor. 2016.
dc.relationDiczbalis, Y., Mangosteen (Garcinia mangostana). . Specialty crops for pacific island agroforestry., 2009.
dc.relationRivero, J., Arboles frutales exóticos y poco conocidos en Puerto Rico. Universidad de Puerto Rico, 2005. 1: p. 3.
dc.relationReyes, C., Mangostino (Garcinia mangostana L.). Manual para el cultivo de frutales en el trópico, ed. e. G. Fischer. Vol. 1. 2012, Produmedios: Universidad Nacional de Colombia 4.
dc.relationOrduz, J.R., J., Frutales Tropicales Potenciales para el pie de Monte Llanero. Corpoica, 2002. 2002: p. 4.
dc.relationUNFPA. Población mundial. UNFPA 2018 [cited 2018 Noviembre]; Available from: https://bit.ly/2ETRfUH.
dc.relationONU. Población mundial llegará a 9.800 millones para el año 2050. 2017 [cited 2018 Noviembre]; Available from: https://bit.ly/2PsVr3V.
dc.relationUNFPA. ¿Cuántos habitantes tendrá el planeta en 2050?. 2012 [cited 2018 Noviembre]; Available from: https://bbc.in/2qMm9pg.
dc.relationFAO. El futuro de la alimentación y la agricultura. Tendencias y desafíos. 2017 [cited 2018 Noviembre]; Available from: http://www.fao.org/3/a-i6881s.pdf.
dc.relationFAO. Estudios de perspectivas mundiales, datos basados en ONU. 2015 [cited 2018 Noviembre]; Available from: https://population.un.org/wpp/.
dc.relationRamírez D., POTENCIALIDAD DE EXPORTACIÓN DE MANGOSTINO LIOFILIZADO CON DESTINO AL MERCADO FARMACÉUTICO DE LA EUROZONA, in Finanzas y comercio internacional. 2016, Universidad de la salle: Facultad de ciencias sociales y económicas. p. 73.
dc.relationAgronet. Area, producción y rendimiento nacional por cultivo. 2018 [cited 2018 Noviembre]; Available from: https://bit.ly/2znzp5O.
dc.relationRural, M.d.A.y.D., Plan Frutícola Nacional: Diagnostico y Análisis de los Recursos Para la Fruticultura en Colombia., M.d.A.y.D. Rural, Editor. 2006. p. 45-57.
dc.relationDIAN. Consultas predefinidas de las estadisticas de comercio extrerior. Estadisticas de comercio exterior 2016 [cited 2018 Noviembre]; Available from: https://www.dian.gov.co/dian/cifras/Paginas/EstadisticasComEx.aspx.
dc.relationProcolombia. Empresas que conquistas mercados en el Exterior. 2015 [cited 2018 Noviembre]; Available from: https://bit.ly/2QN8z0x.
dc.relationTrademap. Trade Statistics for International Business Development. 2014 [cited 2018 Noviembre]; Available from: https://www.trademap.org/Index.aspx.
dc.relationSuksamrarn, S., et al., Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chemical and Pharmaceutical Bulletin, 2006. 54(3): p. 301-305.
dc.relationYoshikawa, M., et al., Antioxidant constituents from the fruit hulls of mangosteen (Garcinia mangostana L.) originating in Vietnam. Yakugaku Zasshi, 1994. 114(2): p. 129-133.
dc.relationWilliams, P., et al., Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radical Research, 1995. 23(2): p. 175-184.
dc.relationMahabusarakam W., et al., Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radical Research, 2000. 33(5): p. 643-659.
dc.relationFan, C. and J. Su, Antioxidative mechanism of isolated components from methanol extract of fruit hulls of Garcinia mangostana L. Zhongguo Nongye Huaxue Huizhi, 1997. 35: p. 540-551.
dc.relationGarcía V., M.T.y.E.L., Antioxidant potencial of selected Philippine vegetables and fruits. The Philippine Agricultural Scientist, 2005. 88: p. 6.
dc.relationWeecharangsan W., O.P., Sukma M., Ngawhirunpat T, Sotanaphum U. y Siripong P., Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Medical Principles and Practice 2006. 15(4): p. 6.
dc.relationDevi Sampath, P. and K. Vijayaraghavan, Cardioprotective effect of α-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. Journal of Biochemical and Molecular Toxicology, 2007. 21(6): p. 336-339.
dc.relationChen, L.G., L.L. Yang, and C.C. Wang, Anti-inflammatory activity of mangostins from Garcinia mangostana. Food and Chemical Toxicology, 2008. 46(2): p. 688-693.
dc.relationPérez-Rojas, J.M., et al., Renoprotection byα-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radical Research, 2009. 43(11): p. 1122-1132.
dc.relationCui, J., et al., New medicinal properties of mangostins: Analgesic activity and pharmacological characterization of active ingredients from the fruit hull of Garcinia mangostana L. Pharmacology Biochemistry and Behavior, 2010. 95(2): p. 166-172.
dc.relationSánchez-Pérez, Y., et al., The α-mangostin prevention on cisplatin-induced apoptotic death in LLC-PK1 cells is associated to an inhibition of ROS production and p53 induction. Chemico-Biological Interactions, 2010. 188(1): p. 144-150.
dc.relationBuelna-Chontal, M., et al., Protective Effect of α-Mangostin on Cardiac Reperfusion Damage by Attenuation of Oxidative Stress. Journal of Medicinal Food, 2011. 14(11): p. 1370-1374.
dc.relationSukma, M., et al., γ-Mangostin increases serotonin2A/2C, muscarinic, histamine and bradykinin receptor mRNA expression. Journal of Ethnopharmacology, 2011. 135(2): p. 450-454.
dc.relationDaza D., M.E., Mendez J., Murillo W., Moyano D. y Osorio N, Potencial antioxidante de la cascara del mangostino. Vitae 2012. 19(1): p. 2.
dc.relationDaza L., H.A., Murillo E. y Mendez J., Evaluación de propiedades antioxidantes de parte comestible y no comestible de pitahaya, uchuva y mangostino. Biotecnologia en el sector Agropecuario y Agroindustrial, 2014. 12(1): p. 8.
dc.relationSyam, S., et al., β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo. Journal of Ethnopharmacology, 2014. 153(2): p. 435-445.
dc.relationSani M., T.M., Susanti, D., Kek L., Salleh M. y Zakaria Z. , Mechanisms of α-mangostin-induced antinociception in a rodent model. Biol. Res. Nurs., 2015. 17: p. 9.
dc.relationLiu, Q., et al., Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry, 2016. 131: p. 115-123.
dc.relationGopalakrishnan, C., Shankaranarayanan, D., Kameswaran, L., Nazimudeen, S.K., Effect of mangostin, a xanthone from Garcinia mangostana Linn. in immunopathological & inflammatory reactions. Dept. Pharmacol., P. G. Inst. Basic Med. Sci., 1980. 18(8): p. 3.
dc.relationYamakuni T., A.K., Nakatani K., Kondo N., Oku H., Ishiguro K. y Ohizumi Y., Garcinone B reduces prostaglandin E2 release and NF-kB mediated transcription in C6 rat glioma cells. Neuroscience Letters, 2006. 394: p. 4.
dc.relationDeschamps, J.D., et al., Discovery of platelet-type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries. Bioorganic & Medicinal Chemistry, 2007. 15(22): p. 6900-6908.
dc.relationItoh, T., et al., Inhibitory effect of xanthones isolated from the pericarp of Garcinia mangostana L. on rat basophilic leukemia RBL-2H3 cell degranulation. Bioorganic & Medicinal Chemistry, 2008. 16(8): p. 4500-4508.
dc.relationChae, H.-S., et al., Mangosteen xanthones, α-and γ-mangostins, inhibit allergic mediators in bone marrow-derived mast cell. Food Chemistry, 2012. 134(1): p. 397-400.
dc.relationJang, H.-Y., et al., Mangosteen xanthones mitigate ovalbumin-induced airway inflammation in a mouse model of asthma. Food and Chemical Toxicology, 2012. 50(11): p. 4042-4050.
dc.relationHiguchi, H., Tanaka, A., Nishikawa, S., Oida, K., Matsuda, A., Jung, K., Amagai, Y., Matsuda, H., Suppressive effect of mangosteen rind extract on the spontaneous development of atopic dermatitis in NC/Tnd mice. Journal of Dermatology, 2013. 40(10): p. 10.
dc.relationFu, Y., et al., Immune Regulation and Anti-inflammatory Effects of Isogarcinol Extracted from Garcinia mangostana L. against Collagen-Induced Arthritis. Journal of Agricultural and Food Chemistry, 2014. 62(18): p. 4127-4134.
dc.relationLi, W., et al., Isogarcinol Extracted from Garcinia mangostana L. Ameliorates Systemic Lupus Erythematosus-like Disease in a Murine Model. Journal of Agricultural and Food Chemistry, 2015. 63(38): p. 8452-8459.
dc.relationWang, M., et al., Amelioration of Experimental Autoimmune Encephalomyelitis by Isogarcinol Extracted from Garcinia mangostana L. Mangosteen. Journal of Agricultural and Food Chemistry, 2016. 64(47): p. 9012-9021.
dc.relationChen, S., et al., Isogarcinol Extracted from Garcinia mangostana L. Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in Mice. Journal of Agricultural and Food Chemistry, 2017. 65(4): p. 846-857.
dc.relationMatsumoto K, A.Y., . Kobayashi E., Ouguchi K., Ito T., Linuma M. y Nozawa Y., Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. Journal of Natural Products 2003. 66: p. 3.
dc.relationMoongkarndi P., K.N., Luanratana O., Jongsomboonkusol S. y Pongpan N., Antiproliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia, 2004. 75: p. 2.
dc.relationMatsumoto K, A.Y., . Kobayashi E., Ouguchi K., Ito T., Linuma M. y Nozawa Y, Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorganic & Medicinal Chemistry, 2005. 12: p. 5.
dc.relationNakagawa, Y., et al., Characterized mechanism of α-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorganic & Medicinal Chemistry, 2007. 15(16): p. 5620-5628.
dc.relationHung, S.-H., et al., α-Mangostin Suppresses PC-3 Human Prostate Carcinoma Cell Metastasis by Inhibiting Matrix Metalloproteinase-2/9 and Urokinase-Plasminogen Expression through the JNK Signaling Pathway. Journal of Agricultural and Food Chemistry, 2009. 57(4): p. 1291-1298.
dc.relationYin, Y. et al., α-Mangostin Suppresses Phorbol 12-myristate 13-acetate-Induced MMP-2/MMP-9 Expressions via αvβ3 Integrin/FAK/ERK and NF-κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells. Cell Biochemistry and Biophysics, 2010. 58(1): p. 3.
dc.relationLee, Y.-B., et al., α-Mangostin, A Novel Dietary Xanthone, Suppresses TPA-Mediated MMP-2 and MMP-9 Expressions through the ERK Signaling Pathway in MCF-7 Human Breast Adenocarcinoma Cells. Journal of Food Science, 2010. 75(1): p. H13-H23.
dc.relationKikuchi, H., et al., Activity of Mangosteen Xanthones and Teleocidin A-2 in Death Receptor Expression Enhancement and Tumor Necrosis Factor Related Apoptosis-Inducing Ligand Assays. Journal of Natural Products, 2010. 73(3): p. 452-455.
dc.relationKrajarng, A., et al., Antiproliferative effect of α-mangostin on canine osteosarcoma cells. Research in Veterinary Science, 2012. 93(2): p. 788-794.
dc.relationAisha, A.F.A., et al., Solid Dispersions of α-Mangostin Improve Its Aqueous Solubility through Self-Assembly of Nanomicelles. Journal of Pharmaceutical Sciences, 2012. 101(2): p. 815-825.
dc.relationRyu, H.W., et al., Inhibition Effects of Mangosenone F from Garcinia mangostana on Melanin Formation in B16F10 Cells. Journal of Agricultural and Food Chemistry, 2012. 60(34): p. 8372-8378.
dc.relationWang, J.J., et al., Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food and Chemical Toxicology, 2012. 50(9): p. 3004-3013.
dc.relationHsieh, S.-C., Huang, M.-H., Cheng, C.-W., Hung, J.-H., Yang, S.-F., Hsieh, Y.-H., α-mangostin induces mitochondrial dependent apoptosis in human hepatoma SK-Hep-1 cells through inhibition of p38 MAPK pathway. Apoptosis, 2013. 18(12): p. 12.
dc.relationMizushina, Y., et al., Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food and Chemical Toxicology, 2013. 59: p. 793-800.
dc.relationChitchumroonchokchai, C., et al., Anti-tumorigenicity of dietary α-mangostin in an HT-29 colon cell xenograft model and the tissue distribution of xanthones and their phase II metabolites. Molecular Nutrition & Food Research, 2012. 57(2): p. 203-211.
dc.relationChitchumroonchokchai, C., et al., Xanthones in Mangosteen Juice Are Absorbed and Partially Conjugated by Healthy Adults. The Journal of Nutrition, 2012a 142(4): p. 675-680.
dc.relationShan, T., et al., α-Mangostin suppresses human gastric adenocarcinoma cells in vitro via blockade of Stat3 signaling pathway. Acta Pharmacologica Sinica, 2014. 35: p. 1065.
dc.relationLei, J., et al., α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Letters, 2014. 347(1): p. 129-138.
dc.relationKorm, S., et al., α-Mangostin induces G1 cell cycle arrest in HCT116 cells through p38MAPK-p16INK4a pathway. RSC Advances, 2015. 5(44): p. 34752-34760.
dc.relationCai, N., et al., Potential effects of α-mangostin in the prevention and treatment of hepatocellular carcinoma. Journal of Functional Foods, 2016. 26: p. 309-318.
dc.relationWon, Y.-S., et al., α-Mangostin-induced apoptosis is mediated by estrogen receptor α in human breast cancer cells. Food and Chemical Toxicology, 2014. 66: p. 158-165.
dc.relationKritsanawong, S., Innajak, S., Imoto, M., & Watanapokasin, R. , Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. . International Journal of Oncology, 2016. 48: p. 10.
dc.relationKritsanawong, S., Innajak, S., Imoto, M., & Watanapokasin, R. , Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. . International Journal of Oncology, 2016. 48: p. 10.
dc.relationOnodera, T., Takenaka, Y., Kozaki, S., Tanahashi, T., & Mizushina, Y. , Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis. International Journal of Oncology, 2016. 48: p. 9.
dc.relationLee, H.N., Jang, H.Y., Kim, H.J., Shin, S.A., Choo, G.S., Park, Y.S. y Jung, J.Y. , Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.)in YD-15 tongue mucoepidermoid carcinoma cells. International Journal of Molecular Medicine, 2016. 38: p. 9.
dc.relationKwak, H.-H., et al., α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell. Evidence-Based Complementary and Alternative Medicine, 2016. 2016: p. 10.
dc.relationSundaram B., G.C., Subramanian S., Shankaranarayanan D. y Kameswaran L., Antimicrobial activities of Garcinia mangostana. Panta medica, 1983. 48.
dc.relationPhongpaichit S., O.M., Nilrat L., Tharavichitkul P., Bunchoo S., Chuaprapaisilp T. y Wiriyachitra P., Antibacterial activities of extracts from Garcinia mangostana pericarps on methicillin-resistant Staphylococcus aureus and Enterococcus especies. Songklanakarin Journal of Sciencie and Technology, 1994. 16(4): p. 6.
dc.relationLinuma M, T.H., Tanaka T Antibacterial activity of xanthones from guttiferaeous plants against methicillinresistant Staphylococcus aureus. J Pharm Pharmacol, 1996. 48: p. 4.
dc.relationChanarat P. y N., F.M.y.N.T., Inmunopharmacological activity of polysaccharide from the pericarb of mangosteen: Phagocytic intracellular killing activities. Journal of Medical Association of Thailan, 1997. 80(1): p. 5.
dc.relationSuksamran, S.S.N., Phakodee W., Thanuhiranlert J., Ratananukul P., Chimnoi N., Antimycobacterial activity of prenulated xanthones from the fruit of Garcinia mangostana Chemical and Pharmaceutical Bulletin, 2003. 51: p. 3.
dc.relationL., V.S.y.K., Activity of medicinal plant extracts against hospital isolates of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and infection, 2005. 11: p. 3.
dc.relationChen S., W.M., Loh B. , Active constituents against HIV-1 protease from Garcinia mangostana. Planta Medica, 1996. 62.
dc.relationVlietinck, A.J., et al., Plant-Derived Leading Compounds for Chemotherapy of Human Immunodeficiency Virus (HIV) Infection. Planta Med, 1998. 64(02): p. 97-109.
dc.relationKaomongkolgit, R., K. Jamdee, and N. Chaisomboon, Antifungal activity of alpha-mangostin against <I>Candida albicans</I>. Journal of Oral Science, 2009. 51(3): p. 401-406.
dc.relationArunrattiyakorn, P., et al., Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry, 2011. 72(8): p. 730-734.
dc.relationTaylorW. , G.M., Prenylated xanthones as potential antiplasmodial substances. Planta Med, 2006. 72: p. 4.
dc.relationBullangpoti, V., et al., Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanism. Communications in agricultural and applied biological sciences, 2007. 72(3): p. 431-441.
dc.relationLarson, R.T., et al., The Biological Activity of α-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor. Journal of Medical Entomology, 2010. 47(2): p. 249-257.
dc.relationKeiser, J., M. Vargas, and R. Winter, Anthelminthic properties of mangostin and mangostin diacetate. Parasitology International, 2012. 61(2): p. 369-371.
dc.relationQuan, X.W., Y. Liang, Y. Tian, W. Ma, Q. Jiang, H. Zhao H., α-Mangostin induces apoptosis and suppresses differentiation of 3T3–L1 cells via inhibiting fatty acid synthase. PLoS One, 2012. 7: p. 4.
dc.relationRyu, H.W., et al., α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry, 2011. 72(17): p. 2148-2154.
dc.relationLi, G., et al., Selective Modulation of Endoplasmic Reticulum Stress Markers in Prostate Cancer Cells by a Standardized Mangosteen Fruit Extract. PLOS ONE, 2013a. 8(12): p. e81572.
dc.relationLi, L., et al., Pharmacokinetic properties of pure xanthones in comparison to a mangosteen fruit extract in rats. Planta Medica, 2013. 79(8): p. 646-653.
dc.relationChoi, Y.H., et al., Absorption, tissue distribution, tissue metabolism and safety of α-mangostin in mangosteen extract using mouse models. Food and Chemical Toxicology, 2014. 66: p. 140-146.
dc.relationPetiwala, S.M., et al., Pharmacokinetic characterization of mangosteen (Garcinia mangostana) fruit extract standardized to α-mangostin in C57BL/6 mice. Nutrition Research, 2014. 34(4): p. 336-345.
dc.relationHan, S.-C., H.-C. Guo, and S.-Q. Sun, Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Archives of Virology, 2015. 160(1): p. 1-16.
dc.relationBumrungpert, A., et al., Xanthones from Mangosteen Inhibit Inflammation in Human Macrophages and in Human Adipocytes Exposed to Macrophage-Conditioned Media. The Journal of Nutrition, 2010. 140(4): p. 842-847.
dc.relationGutierrez-Orozco, F., et al., α-Mangostin: Anti-Inflammatory Activity and Metabolism by Human Cells. Journal of Agricultural and Food Chemistry, 2013. 61(16): p. 3891-3900.
dc.relationZhao, Y., et al., A Method of Effectively Improved α-Mangostin Bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 2016. 41(5): p. 605-613.
dc.relationXu, W.-K., et al., Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin. The Kaohsiung Journal of Medical Sciences, 2017. 33(3): p. 116-123.
dc.relationKhonkarn, R., et al., Cytostatic effect of xanthone-loaded mPEG-b-p(HPMAm-Lac2) micelles towards doxorubicin sensitive and resistant cancer cells. Colloids and Surfaces B: Biointerfaces, 2012. 94: p. 266-273.
dc.relationPan-In, P., et al., Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles. International Journal of Nanomedicine, 2014. 9(1): p. 3677-3686.
dc.relationAisha, A.M., S. Abdulmajid, Z. Ismail, S.A. Alrokayan, K.M. Abu-salah K., Development of Polymeric Nanoparticles of Garcinia Mangostana Xanthones in Eudragit RL100/RS100 for Anti-colon Cancer Drug Delivery Journal of Nanomaterials, 2015: p. 4.
dc.relationQiu, S., et al., Delivery of tanshinone IIA and α-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorganic & Medicinal Chemistry Letters, 2016. 26(10): p. 2503-2506.
dc.relationChitchumroonchokchai, C., et al., Xanthones in Mangosteen Juice Are Absorbed and Partially Conjugated by Healthy Adults. The Journal of Nutrition, 2012. 142(4): p. 675-680.
dc.relationUdani, J.K., et al., Evaluation of Mangosteen juice blend on biomarkers of inflammation in obese subjects: a pilot, dose finding study. Nutrition Journal, 2009. 8(1): p. 48.
dc.relationKondo, M., et al., Bioavailability and Antioxidant Effects of a Xanthone-Rich Mangosteen (Garcinia mangostana) Product in Humans. Journal of Agricultural and Food Chemistry, 2009. 57(19): p. 8788-8792.
dc.relationChang, C.-K., et al., Asteroid spin-rate studies using large sky-field surveys. Geoscience Letters, 2017. 4(1): p. 17.
dc.relationXie, Z., et al., Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Science & Nutrition, 2014. 3(1): p. 32-38.
dc.relationXie, Z., et al., Daily consumption of a mangosteen-based drink improves in vivo antioxidant and anti-inflammatory biomarkers in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Food Science & Nutrition, 2015. 3(4): p. 342-348.
dc.relationPérez-Rojas, J.M.o.-M., J. González-Cortes, R. Jurado, J. Pedraza-Chaverri, P. García-Lópe P., Synergic effect of α-mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid. Med. Cell. Longev. , 2016. 16: p. 13.
dc.relationVerdile, G.K., V.F. Cruzat, S. Medic, M. Sabale, J. Rowles, N. Wijesekara, R.N. Martins, P.E. Fraser, P. Newsholme P., Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. Mediat. Inflamm, 2015.
dc.relationMushtaq, G., et al., Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms. Saudi Journal of Biological Sciences, 2015. 22(1): p. 4-13.
dc.relationChatuphonprasert, W. and K. Jarukamjorn, Impact of six fruits—banana, guava, mangosteen, pineapple, ripe mango and ripe papaya—on murine hepatic cytochrome P450 activities. Journal of Applied Toxicology, 2012. 32(12): p. 994-1001.
dc.relationShagufta and I. Ahmad, Recent insight into the biological activities of synthetic xanthone derivatives. European Journal of Medicinal Chemistry, 2016. 116: p. 267-280.
dc.relationAsohofrucol. Balance del sector Hortifruticultura en el 2017. . 2017 [cited 2018 Noviembre]; Available from: https://bit.ly/2B549MJ.
dc.relationNatturale. Empresa productora de la región de Mariquita, Tolima. Principal exportadora de mangostino de Colombia. 2018 [cited 2018 Noviembre]; Available from: http://www.natturale.com/natturale/spanish/.
dc.relationOrozco C., Encuesta de mercado del comercio de productos tranformados a base de Mangostino (Garcinima mangostana). 2018, Universidad Nacional de Colombia. p. 10.
dc.relationDestandau, E., et al., Centrifugal partition chromatography directly interfaced with mass spectrometry for the fast screening and fractionation of major xanthones in Garcina mangostana. Journal of Chromatography A, 2009. 1216(9): p. 1390-1394.
dc.relationBundeesomchok, K., et al., Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: Computational predictive and experimental studies. LWT - Food Science and Technology, 2016. 65: p. 297-303.
dc.relationPiacham, T., C. Isarankura-Na-Ayudhya, and V. Prachayasittikul, Quercetin-imprinted polymer for anthocyanin extraction from mangosteen pericarp. Materials Science and Engineering: C, 2015. 51: p. 127-131.
dc.relationFang, L., et al., Combined microwave-assisted extraction and high-speed counter-current chromatography for separation and purification of xanthones from Garcinia mangostana. Journal of Chromatography B, 2011. 879(28): p. 3023-3027.
dc.relationCheok, C.Y., et al., Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Industrial Crops and Products, 2013. 50: p. 1-7.
dc.relationSuwalle Fongin., et al., Effects of maltodextrin and pulp on the water sorption, glass transition and caking properties of freeze-dried mango powder. Journal of Food Engineering, 2019. 247: p. 95 - 103.
dc.relationQuitral V.; González M. A.; Carrera C.; Gallo G.; Moyano P.; Salinas J., Jiménez P., Efecto de edulcorantes no calóricos en la aceptabilidad sensorial de un producto horneado, Santiago Chile, 2017. Recuperado de: https://scielo.conicyt.cl/scielo.php?pid=S0717-75182017000200004&script=sci_arttext
dc.relationCifuentes A. 2005. Efecto reológico en una masa panaria de la adición de ingredientes y su influencia en el volumen del pan. Repositorio digital IPN. Tomado de: https://bit.ly/2JKFZuX
dc.relationGratzek, P. J.y Toledo, R. T.,. Solid Food Thermal Conductivity Determination at High Temperature, J. Food Sci. 1993. 58 (4): 910-913.
dc.relationResolución Número 003929 del 2013 del ministerio de salud y proteccion social. Recuperado de http://www.mincit.gov.co/loader.php?lServicio=Documentos&lFuncion=verPdf&id=73797&name=ResolucionMinsalud3929_Frutas.pdf&prefijo=file
dc.relationChaparrpo S., Monica L., Martinez J y Gil J. Functional properties of flour and protein isolates from Annona muricata Seeds. Revista U.D.CA Act & Div. Cient. 17(1): 151-159.
dc.relationWinuprasith T. y M. Suphantharika. Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids 32 (2013) .
dc.relationSouthgate, D.A.T.; Hudson, GJ. and Englyst, H. 1978. The choice for the analyst. (J. Sci. Food Agric. 29:979-988).
dc.relationSlavin, J.L. 1987. Dietary fiber: classifícation, chemical analysis, and food sources. (J. Am. Diet Ass. 87:1164-1171).
dc.relationVahouny, G. & Kritchevsky, D. Dietary Fiber, Basic and Clinical Aspects. Cap 1. Plenum Press. New York. 1984.
dc.relationNielsen, S. Food Analysis. Fourth Edition. Part II, Cap 10. Springer. USA. 2009
dc.relationRodriguez E.; Lascano A. y Sandoval G. Influence of the partial substitution of wheat flour for quinoa and potato on the thermomechanical and breadmarking properties of dough. 2012. 15(1):199-207
dc.relationLamus M. y Barrera D. Efecto de la lipolifilización sobre las propiedades funcionales de la harina de palmiste (Elaeis guineensis). Grasas y Aceites.2005. 56(1): 1-8.
dc.relationLargo E., Cortés M y Ciro H. Influence of maltodextrin and spray drying process condition on sugarcane juice powder quality. Rev. Fac. Nac. Agron.2015. 68 (1): 75.9 - 7520.
dc.relationOchoa L., Gonzales S., Morales J., Rocha N., Trancoso N., y Urbina M. Rehydration and functional properties of a powder duct from pomegranate-apple juice. Rev. uaq. 2011. 4(2): 19-25.
dc.relationMartinez A., Arroqui C., y Cantalejo M. 2015. Efecto de la maltodextrina y la temperatura sobre kiwi deshidratado po atomización. Tesis de grado. Universidad Pública de Navarra.
dc.relationFogin S., Alvino A., Harnkarnsujarit N., Hagura Y., y Kawai K. Effect of maltodextrins in the water-content–water activity–glass transition relationships of noni (Morinda citrifolia L.) pulp powder. Journal of Food engineering. 2019. 103(1) :47-51
dc.relationWan Mohd Aizat, Faridda Hannim Ahmad-Hashim , Sharifah Nabihah Syed Jaafar,. Valorization of mangosteen, ‘‘The Queen of Fruits,” and new advances in postharvest and in food and engineering applications: A review. Journal of Advanced Research. 2019; 20; 61-70
dc.relationCharoen R, Tipkanon S, Savedboworn W. Sorption isotherm study of preserved wild mangosteen (kra-thon yhee) with replacing humectants. Int Food Res J 2018:25.
dc.relationSayuti K, Yenrina R, Anggraini T. Characteristics of ‘‘Kolang-kaling”(sugar palm fruit jam) with added natural colorants. Pak J Nutr 2017;16:69–76.
dc.relationYenrina R, Sayuti K, Nakano K, Thammawong M, Anggraini T, Fahmy K, et al. Cyanidin, malvidin and pelargonidin content of ‘‘Kolang-Kaling” jams made with juices from asian melastome (Melastoma malabathricum) fruit, java plum (Syzygium cumini) fruit rind or mangosteen (Garcinia mangostana) fruit rind. Pak J Nutr 2017;16:850–6.
dc.relationHanafi SMS, Irawan C, Rochaeni H. Effect gelatine of the characteristic functional drink from mangosteen peel extract (Garcinia mangostana). J Pharmacogn Phytochem 2017;6:332–5.
dc.relationHolm M, Chen D, Seow Y, Ong P, Liu S. Volatile flavour compounds of mangosteen juice and wine fermented with Saccharomyces cerevisiae. Int Food Res J 2016;23:1812–7.
dc.relationShori AB, Rashid F, Baba AS. Effect of the addition of phytomix-3+ mangosteen on antioxidant activity, viability of lactic acid bacteria, type 2 diabetes keyenzymes, and sensory evaluation of yogurt. LWT-Food Sci Technol 2018;94:33–9
dc.relationSim SY, Ng JW, Ng WK, Forde CG, Henry CJ. Plant polyphenols to enhance the nutritional and sensory properties of chocolates. Food Chem 2016;200:46–54.
dc.relationPeamsuk Suvarnakuta, Chanchawee Chaweerungrat, Sakamon Devahastin,. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chemistry. 2019;125; 240- 247.
dc.relationKusmayadi, A., Adriani, L., Abun, A., Muchtaridi, M., Tanuwiria, U.H., The microencapsulation of mangosteen peel extract with maltodextrin from arenga starch: Formulation and characterization. Journal of Applied Pharmaceutical Science. 2019; 9(3); 33-40.
dc.relationMoraga G., Telens P., Moraga M., Martinez N. 2011. Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Universitat Politècnica de València, Departamento de Tecnología de Alimentos, Grupo de Investigación e Innovación Alimentaria, Camino de Vera s/n, 46022 Valencia, Spain https://www.sciencedirect.com/science/article/pii/S0260877411002548
dc.relationManinder Kaur, Varinder Singh, Rajwinder Kaur, Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies, Bioactive Carbohydrates and Dietary Fibre, 2017, Volume 9, Pages 14-20, ISSN 2212-6198,
dc.relationZhang, Y. Song, Y. Zhou, T. Liao, X. Hu, X. Li, Q. Kinetics of 5- hydroxymethylfurfural formation in chinese acacia honey during heat treatment. Food Sci. Biotechnol.2012. 21(6):1627–1632.
dc.relationPavlovich A. Guadalupe S., Cinco F., Ortega R y Gómez N. Efectos de una mezcla de estearina de palma y aceite de canola sobre parámetros reológicos de la masa de trigo y características del pan. Interciencia. 2009. 34(8): 577-582.
dc.relationGuerra, J. C. (2018). Aspectos químicos y bioquímicos de la panificación. Obtenido de https://bit.ly/32cwnQ1 octubre 2019
dc.relationAlvis A., Perez L., y Arrazola G.,Elaboration Bread with Added Rice Flour and Modeling of Sensory Attributes Through Response Surface Methodology. Inf. Tecnol. 2016 22(5): 29-38
dc.relationKhairunizah Hazila Khalid, Jae-Bom Ohm, Senay Simsek Whole wheat bread: Effect of bran fractions on dough and end-product quality, Journal of Cereal Science, 2017. 78: 48-56, ISSN 0733-5210, https://doi.org/10.1016/j.jcs.2017.03.011.
dc.relationAmit Arora, Jhumur Banerjee, R. Vijayaraghavan, Douglas MacFarlane, Antonio F. Patti, Process design and techno-economic analysis of an integrated mango processing waste biorefinery, Industrial Crops and Products.2018., (116): 24-34
dc.relationTsz Him Kwan, Khai Lun Ong, Md Ariful Haque, Sandeep Kulkarni, Carol Sze Ki Lin, Biorefinery of food and beverage waste valorisation for sugar syrups production: Techno-economic assessment, Process Safety and Environmental Protection,Volume 2019. (121):194-208.
dc.relationPavel Somavat, Deepak Kumar, Vijay Singh,Techno-economic feasibility analysis of blue and purple corn processing for anthocyanin extraction and ethanol production using modified dry grind process, Industrial Crops and Products,2018, 115: 78-87.
dc.relationTrademap 2020. Exporting markets in 2018 of Colombia. Producto: 080450- Fresh or dried guavas, mangoes and mangosteens. https://www.trademap.org/Country_SelProductCountry.aspx?nvpm=1%7c170%7c%7c%7c%7c0804%7c%7c%7c4%7c1%7c1%7c2%7c1%7c1%7c2%7c1%7c . Consulta 24 enero 2020.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titlePropuesta técnico económica para el aprovechamiento integral del fruto de mangostino (Garcinia mangostana) en aplicaciones alimentarias
dc.typeOtro


Este ítem pertenece a la siguiente institución