dc.contributor | Torres Suárez, Mario Camilo | |
dc.contributor | GRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUN | |
dc.creator | Sainea-Vargas, Carlos Javier | |
dc.date.accessioned | 2020-01-31T14:49:38Z | |
dc.date.available | 2020-01-31T14:49:38Z | |
dc.date.created | 2020-01-31T14:49:38Z | |
dc.date.issued | 2019-12-30 | |
dc.date.issued | 2019-12-30 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/75546 | |
dc.description.abstract | In densely populated cities, the lack of space on the surface gives rise to the need for utilizing subsoil through different infrastructures, in which deep open excavations are required. However, there are several challenges to face, related to local geotechnical conditions as in the presence of soft soils, or
serviceability requirements as potential damages on neighboring buildings may occur. Apart from the unfavorable behavior of soft soils, given its low resistance and high compressibility, their properties are spatially variable. These aspects should be considered in the analyses when assessing potential damages in buildings caused by ground movements during the excavation.
In this research, a combination of numerical and probabilistic methods is considered through the use of a random field-based finite element modeling of deep excavations in soft soils. Finite element modeling allows performing tridimensional analysis, simulating staged construction, and including complex soil behavior. Probabilistic methods are useful to address the uncertainty in constitutive parameters related to spatial variability, expressing the response of the models in terms of damage probabilities, and updating initial predictions using information from other sources. Constitutive models Hardening Soil and Hardening Soil Small Strain are considered to model soft soil behavior, and selected parameters E0ref and E50ref were represented as random variables and random fields with different anisotropy in numerical models. Damage probability assessment analyses in terms of damage probability indexes were performed for a synthetic excavation of idealized geometry in Bogotá soft soils, and a real excavation project in Mexico City soft soils.
The obtained results indicate a significant increase in assessed probabilities when not considering soil stiffness at small strains. Slight to moderate effects were found when changing the simulated construction sequence, using random-variable based models or changing the anisotropy ratio in random field-based models, except in highly anisotropic random fields. Ground movements and building damage potential distribution depend on boundary conditions, and they are different when changing the constitutive model employed or the simulated construction sequence.
Similar results were attained when using the response surface, or the point estimates methods. In the former method, polynomial equations were employed to approximate numerical model performance in order to assess damage probabilities, obtaining similar results when using Gaussian random
variables or the distributions found in inferential analyses. The polynomial equation approximation was also useful to update initial damage probabilities employing information from semiempirical methods or a combination of these and actual measurements. | |
dc.description.abstract | En ciudades densamente pobladas, la falta de espacio en la superficie da lugar a la necesidad de utilizar el subsuelo a través de diferentes infraestructuras, en las que se requieren excavaciones abiertas. Sin embargo, hay varios desafíos que enfrentar, relacionados con las condiciones geotécnicas locales, como la presencia de suelos blandos, o requisitos de servicio ya que pueden ocurrir daños potenciales en edificios vecinos. Además del comportamiento desfavorable de los suelos blandos, dada su baja resistencia y alta compresibilidad, sus propiedades son espacialmente variables. Estos aspectos deben considerarse en los análisis al evaluar los posibles daños en los edificios causados por los movimientos del suelo durante la excavación.
En esta investigación, se considera una combinación de métodos numéricos y probabilísticos para el análisis de excavaciones profundas en suelos blandos usando una modelación de elementos finitos basada en campos aleatorios. El modelado de elementos finitos permite realizar análisis tridimensionales, simular la construcción por etapas e incluir el comportamiento complejo del suelo. Los métodos probabilísticos son útiles para abordar la incertidumbre en los parámetros constitutivos relacionados con la variabilidad espacial, expresando la respuesta de los modelos en términos de probabilidades de daño y actualizando las predicciones iniciales utilizando información de otras fuentes. Se considera que los modelos constitutivos Hardening Soil y Hardening Soil Small Strain sirven para simular el comportamiento del suelo blando, y los parámetros seleccionados E0ref y E50ref se representan en los modelos numéricos como variables aleatorias y campos aleatorios con diferente anisotropía. Se realizaron análisis de evaluación de probabilidad de daño en términos de índices de probabilidad de daño para una excavación sintética de geometría idealizada en suelos blandos de Bogotá y un proyecto de excavación real en suelos blandos de la Ciudad de México.
Los resultados obtenidos indican un aumento significativo en las probabilidades evaluadas cuando no se considera la rigidez del suelo a bajas deformaciones. Se encontraron efectos leves a moderados al cambiar la secuencia de construcción simulada, utilizando modelos basados en variables aleatorias o cambiando la relación de anisotropía en modelos basados en campos aleatorios, excepto en campos aleatorios altamente anisotrópicos. Los movimientos del suelo y la distribución potencial del daño del edificio dependen de las condiciones de frontera, y son diferentes al cambiar el modelo constitutivo empleado o la secuencia de construcción simulada.
Se obtuvieron resultados similares al usar los métodos de superficie de respuesta o de estimación puntual. En el primero, se emplearon ecuaciones polinomiales para aproximar el desempeño del modelo numérico con el fin de evaluar las probabilidades de daño, obteniendo resultados similares cuando se usan variables aleatorias con distribución Gaussiana o las distribuciones encontradas en análisis inferenciales. La aproximación de la ecuación polinomial también fue útil para actualizar las probabilidades de daño inicial empleando información de métodos semiempíricos o una combinación de éstas y mediciones reales. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Addenbrooke, T. I., Potts, D. M., & Dabee, B. (2000). Displacement flexibility number for multipropped retaining wall design. Journal of Geotechnical and Geoenvironmental Engineering 126, (8) 718-726. | |
dc.relation | Ahmed, S. M. (2014). State-of-the-art report: deformations associated with deep excavation and their effects on nearby structures. Cairo: Ain Shams University. | |
dc.relation | AIS. (2010). Título H Estudios Geotécnicos. In Normas Colombianas de. Diseño y Construcción Sismo-Resistente, NSR-10. Bogotá: Asociación Colombiana de Ingeniería Sísmica. | |
dc.relation | Alcaldía Mayor de Bogotá D.C. (2010, Diciembre 16). Decreto 523 de 2010, por el cual se adopta la Microzonificación Sísmica de Bogotá D.C. Bogotá D.C. | |
dc.relation | Ang, A. H.-S., & Tang, W. H. (2007). Probability concepts in engineering. Emphasis on Applications to Civil and Environmental Engineering. 2nd Ed. John Wiley & Sons, Inc. | |
dc.relation | Atkinson, J. (2007). The Mechanics of Soils and Foundations, Second Edition. Taylor and Francis Group. | |
dc.relation | Auvinet, G. (2002). Uncertainty in Geotechnical Engineering. Sixteenth Nabor Carrillo Lecture – XXIth National Meeting of the Mexican Society of Soil Mechanics (pp. 1-139). Querétaro: SMIG. | |
dc.relation | Auvinet, G. (2014). Comportamiento del Sistema de Transporte Colectivo (Metro) de la Ciudad de México en presencia de hundimiento regional. XIV CCG & IVSAYGEC (pp. 16-30). Bogotá D.C.: Sociedad Colombiana de Geotecnia. | |
dc.relation | Auvinet, G. (2017). Sixty years of Geotechnical Engineering in Mexico (1957-2017). 4th International Conference on Deep Foundations SMIG, DFI, ASCE G-I, ISSMGE TC-214 (pp. xv-xxxvii). Mexico City: SMIG. | |
dc.relation | Auvinet, G., & Romo-Organista, M. (1998). Deep excavations in Mexico City soft clays. Symposium on Big Digs Around the World, ASCE National Convention (pp. 211-229). Boston, Massachusetts: ASCE Special Publication No 86. | |
dc.relation | Auvinet, G., Méndez, E., & Juárez, M. (2016). The subsoil of Mexico City, 3rd edition, Vol. III. Instituto de Ingeniería Universidad Nacional Autónoma de México. | |
dc.relation | Baecher, G. B. (2017). Bayesian Thinking in Geotechnics Bayesian thinking in Geotechnics. Second Suzanne Lacasse Lecture of the ISSMGE. Proceedings of GeoRisk2017 (pp. 1-19). Denver: American Society of Civil Engineers. | |
dc.relation | Baecher, G. B., & Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. John Wiley & Sons. | |
dc.relation | Bakker, K. J. (2006). A 3D FE model for excavation analysis. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 473-478). Taylor & Francis Group. | |
dc.relation | Becker, M., & Klößner, S. (2017). PearsonDS: Pearson Distribution System. R package v. 1.0. | |
dc.relation | Becker, P., Berhane, G., & Kempfert, H. G. (2012). Spatial effects on excavations in deep soft lacustrine clay. Geotechnical Aspects of Underground Construction in Soft Ground - Viggiani (ed) (pp. 585-592). Taylor & Francis Group. | |
dc.relation | Benjamin, J. R., & Cornell, C. A. (1970). Probability, Statistics, and Decisions for Civil Engineering. Mc Graw-Hill, Inc. | |
dc.relation | Bentler, D. J. (1998). Finite element analysis of deep excavations. Doctoral Dissertation, Virginia Polytechnic Institute and State University. | |
dc.relation | Benz, T. (2007). Small-Strain Stiffness of Soils and its Numerical Consequences. Institut für Geotechnik der Universität Stuttgart. | |
dc.relation | Bolton, M. D., Lam, S. Y., & Vardanega, P. J. (2010). Predicting and controlling ground movements around deep excavations. In Keynote Lecture in Geotechnical Challenges in Urban Regeneration, 11th Int. Conf. DFI-EFFC. London. | |
dc.relation | Bolton, M. D., Lam, S. Y., Vardanega, P. J., Ng, C., & Ma, X. (2014). Ground movements due to deep excavations in Shanghai: Design charts. Frontiers of Structural and Civil Engineering 8, (3) 201-236. | |
dc.relation | Boone, J. (1996). Ground-movement-related building damage. Journal of Geotechnical Engineering 122, (11) 886-896. | |
dc.relation | Boone, S. J. (2006). Deep excavations. In Geotechnical Aspects of Underground Construction in Soft Ground - Bakker at al. (Eds) (pp. 81-90). London: Taylor & Francis Group. | |
dc.relation | Boone, S. J., & Westland, J. (2006). Estimating displacements associated with deep excavations. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 817-822). London: Taylor & Francis Group. | |
dc.relation | Boone, S., Westland, J., & Nusink, R. (1999). Comparative evaluation of building responses to an adjacent braced excavation. Canadian Geotechnical Journal 36, (2) 210-223. | |
dc.relation | Boscardin, M. D., & Cording, E. J. (1989). Building response to excavation-induced settlement. Journal of Geotechnical Engineering 115, (1) 1-21. | |
dc.relation | Bowles, J. E. (1988). Foundation analysis and design. Mc Graw-Hill Inc. | |
dc.relation | Brinkgreve, R. B. (2005). Selection of soil models and parameters for geotechnical engineering application. In Soil Constitutive Models: Evaluation, Selection, and Calibration (pp. 69-98). ASCE. | |
dc.relation | Brinkgreve, R. B., & Engin, E. (2013). Validation of geotechnical finite element analysis. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, (pp. 677-683). Paris. | |
dc.relation | Brinkgreve, R. B., Kumarswamy, S., & Swolfs, W. M. (2015). PLAXIS 2015 Manual. Plaxis bv. | |
dc.relation | Broere, W. (2016). Urban underground space: Solving the problems of today's cities. Tunnelling and Underground Space Technology 55, 245-248. | |
dc.relation | Bucher, C. G., & Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability problems. Structural Safety 7, (1) 57-66. | |
dc.relation | Burland, J. B., & Wroth, C. P. (1974). Settlement of buildings and associated damage. Conference on Settlement of Structures, Cambridge, (pp. 611-654). | |
dc.relation | Caicedo, B., Mendoza, C., López, F., & Lizcano, A. (2018). Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. Journal of Rock Mechanics and Geotechnical Engineering 10, 367-379. | |
dc.relation | Calvello, M., & Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics 31, 411-425. | |
dc.relation | Cañavate-Grimal, A. (2014). Metodología para la identificación de parámetros en excavaciones profundas al abrigo de muros pantalla mediante métodos espectrales estocásticos. Tesis Doctoral, Universidad Politécnica de Valencia. | |
dc.relation | Cañavate-Grimal, A., Falcó, A., Calderón, P., & Payá-Zaforteza, I. (2015). On the use of stochastic spectral methods in deep excavation inverse problems. Computers & Structures 159, 41-60. | |
dc.relation | Capraru, C., & Adam, D. (2014). Evaluating the influence of deep excavations on neighboring buildings by numerical analysis. Numerical Methods in Geotechnical Engineering - Hicks, Brinkgreve & Rohe (Eds) (pp. 729-734). Taylor & Francis Group. | |
dc.relation | Capraru, C., Adam, D., Hoffmann, J., & Pelzl, M. (2014). Numerical analysis of deep excavations and prediction of their influence on neighboring buildings. Numerical Methods in Geotechnical Engineering - Hicks, Brinkgreve & Rohe (Eds) (pp. 735-740). Taylor & Francis Group. | |
dc.relation | Catena, A., Ramos, M. M., & Trujillo, H. M. (2003). Análisis multivariado. Un manual para investigadores. Madrid: Biblioteca Nueva. | |
dc.relation | Ching, J. Y., & Phoon, K. -K. (2012). Establishment of Generic Transformations for Geotechnical Design Parameters. Structural Safety 35, 52-62. | |
dc.relation | Ching, J. Y., & Wu, T. J. (2017). Probabilistic transformation model for preconsolidation stress based on clay index properties. Engineering Geology 226, 33-43. | |
dc.relation | Ching, J., & Hsieh, Y.-H. (2009). Updating future reliability of nonlinear systems with low dimensional monitoring data using short-cut simulation. Computers & Structures 87, 871-879. | |
dc.relation | Ching, J., Wu, T.-J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers 9, 1597-1608. | |
dc.relation | Clough, G. W., & O'Rourke, T. D. (1990). Construction induced movements of in situ walls. Specialty Conference on Design and Performance of Earth Retaining Structures, (pp. 439-470). | |
dc.relation | Cording, E. J., Long, J. L., Son, M., Laefer, D., & Bidjan, G. (2010). Assessment of excavation-induced building damage. Earth Retention Conference 3 - Arduino, Hashash & Finno (Eds). American Society of Civil Engineers. | |
dc.relation | Corral, G. A. (2013). Methodology for updating numerical predictions of excavations performance. Doctoral Dissertation, Massachusetts Institute of Technology. | |
dc.relation | Cuevas, A. (2012). Diseño de Sistemas de Contención para Excavaciones. México D.F.: Tesis de Maestría, Universidad Nacional Autónoma de México. | |
dc.relation | Delattre, L. (2001). A century of design methods for retaining walls–The French point of view. Bulletin des laboratoires des Ponts et Chaussées 234, 33-52. | |
dc.relation | Díaz, L. G., & Morales, M. A. (2015). Análisis estadístico de datos multivariados, Segunda edición. Bogotá: Universidad Nacional de Colombia. | |
dc.relation | Díaz-Rodríguez, J. A. (2003). Characterization and engineering properties of Mexico City lacustrine soils. Tan et al. (eds.) Characterisation and Engineering Properties of Natural Soils (pp. 725-755). Lisse: Swets & Zeitlinger. | |
dc.relation | Dithinde, M., Phoon, K.-K., Ching, J., Zhang, L., & Retief, J. V. (2016). Statistical characterization of model uncertainty. In Reliability of geotechnical structures in ISO2394 (pp. 127-158). CRC Press. | |
dc.relation | Dong, Y. (2014). Advanced Finite Element Analysis of Deep Excavation Case Histories. Doctoral Dissertation. The University of Oxford. | |
dc.relation | Duncan, J. M. (2000). Factors of Safety and Reliability in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering 126, (4) 307-316. | |
dc.relation | Duncan, J. M., & Sleep, M. D. (2015). Evaluating reliability in geotechnical engineering. In Risk and reliability in geotechnical engineering (pp. 131-179). CRC Press. | |
dc.relation | Elkateb, T., Chalaturnyk, R., & Robertson, P. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal 40, (1) 1-15. | |
dc.relation | Emery, X. (2013). Geoestadística. Santiago de Chile: Facultad de Ciencias Físicas y Matemáticas Universidad de Chile. | |
dc.relation | Facciorusso, J., & Uzielli, M. (2004). Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests. Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization (pp. 905-912). Rotterdam: Millpress. | |
dc.relation | Fenton, G. A. (1990). Simulation and Analysis of Random Fields . Doctoral Dissertation, University of Princeton. | |
dc.relation | Fenton, G. A., & Griffiths, D. V. (2008). Risk Assessment in Geotechnical Engineering. John Wiley & Sons, Inc. | |
dc.relation | Finno, R. J., & Tu, X. (2006). Selected Topics in Numerical Simulation of Supported Excavations. Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment - Triantafyllidis (ed) (pp. 3-20). Taylor & Francis Group. | |
dc.relation | Finno, R. J., Blackburn, J. T., & Roboski, J. F. (2007). Three-dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering 133, (1) 30-36. | |
dc.relation | Finno, R. J., Voss, F. T., & Rossow, E. (2005). Evaluating damage potential in buildings affected by excavations. Journal of Geotechnical and Geoenvironmental Engineering 131, (10) 1199-1210. | |
dc.relation | Fox, J. (2005). The R Commander: A Basic-Statistics Graphical User Interface to R. Journal of Statistical Software 14, (9) 1-42. | |
dc.relation | Fox, J., & Bouchet-Valat, M. (2017). Rcmdr: R Commander. R package version 2.3-2. . | |
dc.relation | García-Carrera, D. (2015). La excavación urbana y los edificios vecinos. Tesis Doctoral Universitat Politècnica de Catalunya BarcelonaTech. | |
dc.relation | GCDMX. (2017). Normas Técnicas Complementarias para Diseño y Construcción de Cimentaciones. Gaceta Oficial de la Ciudad de México No 220 Bis. CDMX: Gobierno de la Ciudad de México. | |
dc.relation | Ghanem, R. G., & Spanos, P. D. (1991). Stochastic Finite Elements - A Spectral Approach. Springer-Verlag New York, Inc. | |
dc.relation | Goel, R. K., Singh, B., & Zhao, J. (2012). Underground Infrastructures: Planning, Design, and Construction. Butterworth-Heinemann. | |
dc.relation | Goh, A. T., Zhang, F., Zhang, W., Zhang, Y., & Liu, H. (2016). A simple estimation model for 3D braced excavation wall deflection. Computers and Geotechnics 83, 106-116. | |
dc.relation | Goldberg, D. T., Jaworski, W. E., & Gordon, M. D. (1976). Lateral Support Systems and Underpinning FHWA-RD-75-128, 129. Washington D. C: Federal Highway Administration. | |
dc.relation | Google LLCa. (2019, March 08). Bogotá (26/03/2013). Google Earth v7.3.2.5491. | |
dc.relation | Google LLCb. (2019, June 05). Mexico City (24/03/2018). Google Earth v7.3.2.5491. | |
dc.relation | Grömping, U. (2011). Tutorial for designing experiments using the R package RcmdrPlugin.DoE. Reports in Mathematics, Physics and Chemistry. Berlin: Beuth University of Applied Sciences Berlin. | |
dc.relation | Grömping, U., & Fox, J. (2015). RcmdrPlugin.DoE: R Commander Plugin for (industrial) Design of Experiments. v.0.12-3. | |
dc.relation | Hashash, Y. M. (1992). Analysis of deep excavations in clay. Doctoral Dissertation, Massachusetts Institute of Technology. | |
dc.relation | Hashash, Y. M., & Whittle, A. J. (1996). Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical Engineering 122, (6) 474-486. | |
dc.relation | Hashash, Y. M., Marulanda, C., Ghaboussi, J., & Jung, S. (2006). Novel approach to integration of numerical modeling and field observations for deep excavations. Journal of Geotechnical and Geoenvironmental Engineering 132, (8) 1019-1031. | |
dc.relation | Hashash, Y. M., Song, H., & Osouli, A. (2011). Three-dimensional inverse analyses of a deep excavation in Chicago clays. International Journal for Numerical and Analytical Methods in Geomechanics 35, (9) 1059-1075. | |
dc.relation | Hicks, M. A. (2014). Application of the Random Finite Element Method. In ALERT Doctoral School 2014 - Stochastic and Inverse Modeling (pp. 181-208). The Alliance of Laboratories in Europe for Research and Technology. | |
dc.relation | Hsein Juang, C., Luo, Z., Atamturktur, S., & Huang, H. (2013). Bayesian Updating of Soil Parameters for Braced Excavations Using Field Observations. Journal of Geotechnical and Geo- environmental Engineering 39, (3) 395-406. | |
dc.relation | Hsein Juang, C., Schuster, M., Ou, C. Y., & Phoon, K.-K. (2011). Fully Probabilistic Framework for Evaluating Excavation-Induced Damage Potential of Adjacent Buildings. Journal of Geotechnical and Geoenvironmental Engineering 137, (2) 130-139. | |
dc.relation | Hsiao, C. L. (2007). Wall and ground movements in a braced excavation in clays and serviceability reliability of adjacent buildings. All Dissertations, Clemson University. | |
dc.relation | Hsiao, E. C., Schuster, M., Hsein Juang, C., & Kung, G. T. (2008). Reliability Analysis and Updating of Excavation-Induced Ground Settlement for Building Serviceability Assessment. Journal of Geotechnical and Geoenvironmental Engineering 134, (10) 1448-1458. | |
dc.relation | Hsieh, P. G., & Ou, C. Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal 35, (6) 1004-1017. | |
dc.relation | Huber, M. (2013). Soil variability and its consequences in geotechnical engineering. Doctoral Dissertation, Institut für Geotechnik Universität Stuttgart. | |
dc.relation | Huber, M., Vermeer, P., & Bardossy, A. (2010). Evaluation of soil variability and its consequences. In Numerical Methods in Geotechnical Engineering - Benz & Nordal (Eds) (pp. 363-368). Taylor & Francis Group. | |
dc.relation | Husson, F., Josse, J., Lê, S., & Mazet, J. (2009). FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. | |
dc.relation | Husson, F., Lê, S., & Pagès, J. (2013). Análisis de datos con R. Editorial Escuela Colombiana de Ingeniería. | |
dc.relation | IDIGER. (2015). Lineamientos técnicos para la reducción de riesgos en excavaciones en Bogotá, D.C. Resolución No 600 del 29 de diciembre de 2015. Bogotá: Instituto Distrital de Gestión de Riesgos y Cambio Climático. | |
dc.relation | Idris, M. A., Nordlund, E., & Saiang, D. (2016). Comparison of Different Probabilistic Methods for Analyzing Slope Stability of Underground Rock Excavations. Electronic Journal of Geotechnical Engineering 21, 6555-6585. | |
dc.relation | IGR. (2014). Exploración para el proyecto Parque Colina Colpatria. Bogotá D.C.: Ingeniería y Georiesgos IGR SAS. | |
dc.relation | Jaksa, M. B. (2007). Modeling the natural variability of over-consolidated clay in Adelaide, South Australia. Characterisation and Engineering Properties of Natural Soils (pp. 2721-2752). Taylor & Francis Group. | |
dc.relation | Jen, L. C. (1998). The Design and Performance of Deep Excavations in Clay. Doctoral Dissertation, Massachusetts Institute of Technology. | |
dc.relation | Jolliffe, I. T. (2002). Principal Component Analysis, Second Edition. Springer. | |
dc.relation | Juárez, M. (2015). Análisis Geoestadístico del Subsuelo de la Zona Lacustre del Valle de México. México, D.F.: Tesis Doctoral, Universidad Nacional Autónoma de México. | |
dc.relation | Juárez-Camarena, M., Auvinet-Guichard, G., & Méndez-Sánchez, E. (2016). Geotechnical zoning of Mexico Valley subsoil. Ingeniería, Investigación y Tecnología 17, (3) 297-308. | |
dc.relation | Kang, B. J., Kim, J. H., & Kim, Y. (2016). Engineering criticality analysis on an offshore structure using the first- and second-order reliability method. International Journal of Naval Architecture and Ocean Engineering 8, (6) 577-588. | |
dc.relation | Katsigiannis, G. (2017). Modern Geotechnical Codes of Practice and New Design Challenges Using Numerical Methods. London: Doctoral Dissertation, University of London. | |
dc.relation | Kempfert, H.-G., & Gebreselassie, B. (2006). Excavations and Foundations in Soft Soils. Springer. | |
dc.relation | Konstanakos, D. C. (2008). Online Database of Deep Excavation Performance and Prediction, Paper 5.16. 6th International Conference on Case Histories in Geotechnical Engineering, (pp. 1-12). Arlington. | |
dc.relation | Korff, M. (2009). Deformations and damage to buildings adjacent to deep excavations in soft soils. Delft: Deltares. | |
dc.relation | Korff, M. (2012). Response of piled buildings to the construction of deep excavations. Doctoral Dissertation. The University of Cambridge. | |
dc.relation | Krushke, J. K. (2015). Doing Bayesian Data Analysis A Tutorial with R, JAGS, and Stan, 2nd edition. Academic Press, Elsevier Inc. | |
dc.relation | Kulhawy, F., & Mayne, P. W. (1990). Manual on Estimating Soil Propeties for Foundation Design, Report No. EPRI-EL-6800. Electric Power Research Institute, Inc. | |
dc.relation | Kung, G. T., Hsein Juang, C., Hsiao, E. C., & Hashash, Y. M. (2007). Simplified Model for Wall Deflection and Ground-Surface Settlement Caused by Braced Excavation in Clays. Journal of Geotechnical and Geoenvironmental Engineering 133, (6) 731-747. | |
dc.relation | Kung, G. T., Hsiao, E. C., & Hsein Juang, C. (2007). Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements. Canadian Geotechnical Journal 44, (6) 726-736. | |
dc.relation | Kung, G. T., Hsiao, E. C., Schuster, M., & Hsein Juang, C. (2007). A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Computers and Geotechnics 34, 385-396. | |
dc.relation | Kung, G. T., Ou, C. Y., & Hsein Juang, C. (2009). Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations. Computers and Geotechnics 36, 304-319. | |
dc.relation | Kung, T. C., & Ou, C. Y. (2006). Prediction of surface settlement caused by excavation. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 853-858). Taylor & Francis Group. | |
dc.relation | Lacasse, S., & Nadim, F. (1997). Uncertainties in Characterising Soil Properties. Uncertainty in the Geological Environment, ASCE specialty conference, (pp. 49-75). Madison. | |
dc.relation | Lacasse, S., Høeg, K., Liu, Z. Q., & Nadim, F. (2016). An homage to Wilson Tang: Reliability and risk in geotechnical practice—how Wilson led the way. Geotechnical Safety and Risk IV (pp. 3-26). Taylor & Francis Group. | |
dc.relation | Lade, P. V. (2005). Overview of constitutive models for soils. In Soil Constitutive Models: Evaluation, Selection and Calibration (pp. 1-34). ASCE. | |
dc.relation | Lam, S. Y. (2010). Ground movement due to excavation in clay: physical and analytical models. Doctoral Dissertation. The University of Cambridge. | |
dc.relation | Lê, S., Josse, S., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25, 1-18. | |
dc.relation | Li, D.-Q., Zheng, D., Cao, Z.-J., Tang, X.-S., & Phoon, K.-K. (2016). Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology 203, 3-14. | |
dc.relation | Lim, A., Ou, C. Y., & Hsieh, P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering 5, (1) 9-20. | |
dc.relation | Lloret-Cabot, M., Hicks, M. A., & Van Den Eijnden, A. P. (2012). Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging. Géotechnique Letters 2, 123-127. | |
dc.relation | Lobo-Guerrero, A. (2008, 08 26). Factores geológicos que afectan las excavaciones en Bogotá D.C., Colombia. Retrieved from Observatorio Ambiental de Bogotá: http://oab.ambientebogota.gov.co/es/el-observatorio-y-las-localidades/documentos-tunjuelito/factores-geologicos-que-afectan-las-excavaciones-en-bogota-d-c-colombia | |
dc.relation | Long, M. (2001). Database for retaining wall and ground movements due to deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, 127, (3) 203-224. | |
dc.relation | Long, M., & Donohue, S. (2010). Characterisation of Norwegian marine clays with combined shear wave velocity and CPTU data. Canadian Geotechnical Journal 47, (7) 709-718. | |
dc.relation | Low, B.-K. (2015). Reliability-based design: Practical procedures, geotechnical examples. In Risk and Reliability in Geotechnical Engineering (pp. 355-394). CRC Press. | |
dc.relation | Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS Book, A practical introduction to Bayesian Analysis. CRC Press, Taylor & Francis Group. | |
dc.relation | Luo, Z. (2011). Probabilistic approaches to stability and deformation problems in braced excavation. All Dissertations, Clemson University. | |
dc.relation | Mair, R. J., Taylor, R. N., & Burland, J. B. (1996). Prediction of ground movements and assessment of risk of building damage due to bored tunnelling. Geotechnical Aspects of Underground Construction in Soft Ground - Mair, Taylor & Burland (eds) (pp. 713-718). Rotterdam: Balkema. | |
dc.relation | Margetts, L., Smith, I. M., Lever, L. M., & Griffiths, D. V. (2014). Parallel processing of excavation in soils with randomly generated material properties. In Numerical Methods in Geotechnical Engineering - Hicks, Brinkgreve & Rohe (Eds) (pp. 265-270). Taylor & Francis Group. | |
dc.relation | Marsal, R. J., & Mazari, M. (2016). The subsoil of Mexico City, 3rd edition, Vol. I, II. Instituto de Ingeniería Universidad Nacional Autónoma de México. | |
dc.relation | Mayne, P. W. (2007). Cone Penetration Testing, A Synthesis of Highway Practice. NCHRP Synthesis 368. Washington, D.C.: Transportation Research Board. | |
dc.relation | Mayne, P. W., Peuchen, J., & Bouwmeester, D. (2011). Soil unit weight estimated from CPTu in offshore soils. Frontiers in Offshore Geotechnics II (pp. 371-376). Taylor & Francis Group. | |
dc.relation | Mestat, P. (2001). Applications of the MOMIS database to the validation of computations for underground structures. Bulletin de Liaison des Laboratoires des Ponts et Chaussees 236, 55-71. | |
dc.relation | Mestat, P., & Riou, Y. (2006). New developments of the MOMIS database applied to the performance of numerical modelling of underground excavations. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 609-614). Taylor & Francis Group. | |
dc.relation | Moormann, C., & Moormann, H. R. (2002). A study of wall and ground movements due to deep excavations. Geotechnical Aspects of Underground Construction in Soft Ground - Kastner et al. (Eds) (pp. 477-482). Lyon: Spécifique. | |
dc.relation | Mu, L., & Huang, M. (2016). Small strain based method for predicting three-dimensional soil displacements induced by braced excavation. Tunnelling and Underground Space Technology 52, 12-22. | |
dc.relation | Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology. Process and Product Optimization Using Designed Experiments. Fourth Edition. John Wiley & Sons, Inc. | |
dc.relation | Nadim, F. (2007). Tools and Strategies for Dealing with Uncertainty in Geotechnics . In Probabilistic methods in geotechnical engineering (pp. 71-95). New York: SpringerWien. | |
dc.relation | Nadim, F., Einstein, H., & Roberds, W. (2005). Probabilistic stability analysis for individual slopes in soil and rock. Landslides risk management (pp. 63-98). Taylor & Francis Group. | |
dc.relation | Nowak, A. S., & Collins, K. R. (2000). Reliability of structures. Boston: Mc Graw Hill. | |
dc.relation | Nuttall, J. D. (2011). Parallel Implementation and Application of the Random Finite Element Method. Doctoral Dissertation, University of Manchester. | |
dc.relation | Obrzud, R. F. (2010). On the use of the Hardening Soil Small Strain model in geotechnical practice. In Numerics in Geotechnics and Structures (pp. 15-32). Lausanne: Elmepress International. | |
dc.relation | Obrzud, R., & Preisig, M. (2013). Large scale 3D numerical simulations of deep excavations in urban areas – constitutive aspects and optimization. FEM in der Geotechnik, Mitteilungen der Geotechnik Schweiz, (pp. 57-67). Biel-Bienne. | |
dc.relation | Obrzud, R., & Truty, A. (2014). The Hardening Soil Model - A Practical Guidebook, Z_Soil.PC 100701 Report revised 31.09.2014. Lausanne: Zace Services Ltd. | |
dc.relation | Olea, R. A. (2017). A Practical Primer on Geostatistics, Open-File Report 2009-1103, Version 1.3. U.S. Geological Survey.
Olivella, X. O., & de Saracíbar Bosch, C. A. (2002). Mecánica de Medios Continuos para Ingenieros, Segunda edición. Edicions UPC. | |
dc.relation | Onyejekwe, S., Kang, X., & Ge, L. (2016). Evaluation of the scale of fluctuation of geotechnical parameters by autocorrelation function and semivariogram function. Engineering Geology 214, 43-49. | |
dc.relation | Oñate, E., & Zárate, F. (2001). Introducción al Método de los Elementos Finitos. Apuntes del curso Métodos Numéricos para Cálculo y Diseño en Ingeniería. Universitat Politècnica de Catalunya. | |
dc.relation | O'Riordan, N., Kumar, S., Ciruela-Ochoa, F., & Cañavate-Grimal, A. (2018). Estimation and calibration of input parameters for | |
dc.relation | Lake Texcoco Clays, Mexico City. Numerical Methods in Geotechnical Engineering IX - Cardoso et al. (Eds) (pp. 163-172). Taylor & Francis Group. | |
dc.relation | Orozco, L. F., & Orozco, M. C. (2011). Difficult Excavations and Foundations for Buildings on Soft Soils in Bogotá. Geo-Frontiers 2011 (pp. 3360-3369). ASCE. | |
dc.relation | Orr, T. (2015). Managing risk and achieving reliable geotechnical designs using Eurocode 7. In Risk and Reliability in Geotechnical Engineering (pp. 395-433). CRC Press. | |
dc.relation | Osman, A. S., & Bolton, M. D. (2006). Ground movement predictions for braced excavations in undrained clay. Journal of Geotechnical and Geoenvironmental Engineering 132, (4) 465-477. | |
dc.relation | Ou, C. Y. (2006). Deep Excavation: Theory and Practice. London: Taylor & Francis Group. | |
dc.relation | Ou, C. Y., & Hsieh, P. G. (2011). A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Computers and Geotechnics 38, (8) 987-997. | |
dc.relation | Ou, C. Y., Teng, F. C., Hsieh, P. G., & Chien, S. -C. (2013). Mechanism of Settlement Influence Zone due to Deep Excavation in Soft Clay. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, (pp. 2063-2066). Paris. | |
dc.relation | Ovando-Shelley, E. (2011). Some geotechnical properties to characterize Mexico City Clay. Proceedings 14th Pan-am CGS Geotechnical Conference. Toronto, Canada: Canadian Geotechnical Society. | |
dc.relation | Park, J. K. (2011). Adaptive reliability analyss of excavation problems. Doctoral Dissertation Texas A & M University. | |
dc.relation | Paulín-Aguirre, J. (2014). Panorama actual de las excavaciones profundas en las arcillas blandas del Valle de México. XIV CCG & IVSAYGEC (pp. 222-233). Bogotá D.C.: Sociedad Colombiana de Geotecnia. | |
dc.relation | Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique 19, (2) 171-187. | |
dc.relation | Peck, R. B. (1969). Deep Excavation and Tunneling in Soft Ground. State-of-the-Art Report. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering (pp. 225-290). Mexico City: Sociedad Mexicana de Mecánica de Suelos. | |
dc.relation | Phoon, K. -K., & Kulhawy, F. H. (1999). Evaluation of geotechnical property variability. Canadian Geotechnical Journal 36, (4) 625-639. | |
dc.relation | Phoon, K. -K., Quek, S. -T., & An, P. (2003). Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics. Journal of Geotechnical and Geoenvironmental Engineering 129, (7) 649-659. | |
dc.relation | Phoon, K.-K. (2004). Towards reliability-based design for geotechnical engineering. Special lecture for Korean Geotechnical Society, (pp. 1-23). Seoul. | |
dc.relation | Phoon, K.-K. (2008). Numerical recipes for reliability analysis - a primer. In Reliability-Based Design in Geotechnical Engineering, Computations and Applications (pp. 1-75). Taylor & Francis. | |
dc.relation | Phoon, K.-K. (2016). Reliability as a basis for geotechnical design. In Reliability of geotechnical structures in ISO2394 (pp. 1-32). CRC Press. | |
dc.relation | Phoon, K.-K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal 36, (4) 612-624. | |
dc.relation | Phoon, K.-K., Prakoso, W. A., Wang, Y., & Ching, J. (2016). Uncertainty representation of geotechnical design parameters. In Reliability of geotechnical structures in ISO2394 (pp. 49-88). CRC Press. | |
dc.relation | Pineda, A. R. (2015). Análisis estocástico de estructuras térreas. Enfoque espectral. México, D.F.: Tesis Doctoral, Universidad Nacional Autónoma de México. | |
dc.relation | Pineda-Contreras, A. R., & Auvinet-Guichard, G. (2013). Método del elemento finito estocástico en geotecnia. Enfoque espectral. Ingeniería Investigación y Tecnología, 11-22. | |
dc.relation | Pineda-Jaimes, J. A., Estevez, L. A., & Daza, N. A. (2014). A case study of a deep excavation on a soft lacustrine clay of Bogota, Colombia, with emphasis between predicted and measured deformations. Geotechnical Aspects of Underground Construction in Soft Ground - Yoo et al. (Eds) (pp. 327-332). Seoul: Korean Geotechnical Society. | |
dc.relation | Polshin, D. E., & Tokar, R. A. (1957). Maximum Allowable Non-uniform Settlement of Structures. 4th International Conference on Soil Mechanics and Foundation Engineering, (pp. 402-405). | |
dc.relation | Potts, D. M. (2003). Numerical analysis: a virtual dream or practical reality? Géotechnique 53, (6) 535-573. | |
dc.relation | Potts, D. M., & Zdravkovic, L. (1999). Finite element analysis in Geotechnical Engineering. Theory. London: Thomas Telford Limited. | |
dc.relation | Puller, M. (2003). Deep excavations: a practical manual. 2nd edition. Thomas Telford. | |
dc.relation | Qi, X.-H., & Zhou, W. H. (2017). An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points. Computers and Geotechnics 85, 186-198. | |
dc.relation | R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. | |
dc.relation | Rackwitz, R. (2000). Reviewing probabilistic soils modelling. Computers and Geotechnics 26, 199-223. | |
dc.relation | Remy, N., Boucher, A., & Wu, J. (2009). Applied Geostatistics with SGeMS. Cambridge University Press. | |
dc.relation | Rétháthi, L. (1988). Probabilistic solutions in geotechnics. Elsevier. | |
dc.relation | Robertson, P. K., & Cabal, K. L. (2015). Guide to Cone Penetration Testing for Geotechnical Engineering, 6th Edition. Gregg Drilling & Testing, Inc. | |
dc.relation | Rodríguez, J. A. (2006). Case study of a deep excavation in soft soils with complex ground water conditions in Bogota. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 881-886). Taylor & Francis Group. | |
dc.relation | Romo, M. P. (1995). Clay Behavior, Ground Response and Soil-Structure Interaction Studies in Mexico City. Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (pp. 1039-1051). St. Louis: Missouri S & T. | |
dc.relation | Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the National Academy of Sciences, USA 72, (10) 3812-3814. | |
dc.relation | Sabatini, P. J., Bachus, R. C., Mayne, P. W., Schneider, J. A., & Zettler, T. E. (2002). Geotechnical Engineering Circular No 5, Evaluation of Soil and Rock Properties, Report FHWA-IF-02-034. FHWA. | |
dc.relation | Samy, K. (2003). Stochastic Analysis with Finite Elements in Geotechnical Engineering. Doctoral Dissertation, University of Manchester. | |
dc.relation | Sánchez, M. (2010). Introducción a la confiabilidad y evaluación de riesgos. Teoría y aplicaciones en ingeniería. Segunda Edición. Bogotá, D. C.: Facultad de Ingeniería Universidad de Los Andes. | |
dc.relation | Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics – 10 Years of PLAXIS (pp. 1-16). Rotterdam: Balkema. | |
dc.relation | Schuster, M. (2008). Framework for the fully probabilistic analysis of excavation-induced serviceability damage to buildings in soft clays. All Dissertations, Clemson University. | |
dc.relation | Schuster, M., Kung, G. T., Hsein Juang, C., & Hashash, Y. M. (2009). Simplified Model for Evaluating Damage Potential of Buildings Adjacent to a Braced Excavation. Journal of Geotechnical and Geoenvironmental Engineering 135, (12) 1823-1835. | |
dc.relation | Schweiger, H. F. (2008). The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanics and Tunnelling 1, (5) 336-344. | |
dc.relation | Schweiger, H. F. (2010). Design of deep excavations with FEM - Influence of constitutive model and comparison of EC7 design approaches. Proceedings of the 2010 Earth Retention Conference, (pp. 804-817). | |
dc.relation | Schweiger, H. F., & Breymann, H. (2006). FE-analysis of five deep excavations in lacustrine clay and comparison with in situ measurements. Geotechnical Aspects of Underground Construction in Soft Ground - Bakker et al. (Eds) (pp. 887-892). Taylor & Francis Group. | |
dc.relation | Schweiger, H. F., Freiseder, M. G., & Breymann, H. (2000). In situ measurements and FE-analysis of a deep excavation. Geotechnical Aspects of Underground Construction in Soft Ground - Kusakabe, Fujita & Miyazaki (eds) (pp. 711-716). Rotterdam: Balkema. | |
dc.relation | Secretaría Distrital de Planeación. (2010). Zonas Geotécnicas, Mapa Escala 1:40000. Secretaría Distrital de Planeación, Alcaldía Mayor de Bogotá. | |
dc.relation | Son, M., & Cording, E. J. (2005). Estimation of building damage due to excavation-induced ground movements. Journal of Geotechnical and Geoenvironmental Engineering 131, (2) 162-177. | |
dc.relation | Spencer, W. A. (2007). Parallel stochastic and finite element modelling of clay slope stability in 3D. Doctoral Dissertation, Faculty of Engineering and Physical sciences, University of Manchester. | |
dc.relation | Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Comput. Methods Appl. Math. Engrg 198, 1031-1051. | |
dc.relation | Straub, D. (2014). Engineering Risk Assessment. In Risk - a multidisciplinary introduction (pp. 333-362). Springer. | |
dc.relation | Straub, D., & Papaioannou, I. (2015). Bayesian analysis for learning and updating geotechnical parameters and models with measurements. In Risk and Reliability in Geotechnical Engineering (pp. 221-264). CRC Press. | |
dc.relation | Sudret, B., & Berveiller, M. (2008). Stochastic finite element methods in geotechnical engineering. In Reliability-based design in geotechnical engineering: computations and applications (pp. 260-297). Taylor & Francis Group. | |
dc.relation | Sudret, B., & Der Kiureghian, A. (2000). Stochastic finite element methods and reliability: a state-of-the-art report. Berkeley: University of California. | |
dc.relation | Sugimoto, T., & Tanaka, H. (1995). Movements of adjacent ground during deep excavations - A survey on Japanese literature. Underground Construction in Soft Ground (pp. 301-303). Rotterdam: Balkema. | |
dc.relation | Tan, T. S., & Shirlaw, J. N. (2000). Influence of Spatially Varying Soil on Basal Heave Analysis of Braced Excavation. In Geotechnical Aspects of Underground Construction in Soft Ground - Kusakabe, Fujita & Miyazaki (eds) (pp. 53-62). Rotterdam: Balkema. | |
dc.relation | Terzaghi, K., Peck, R., & Mesri, G. (1996). Soil Mechanics in Engineering Practice, 3rd Edition. John Wiley & Sons Inc. | |
dc.relation | Torres, M. C. (2011). Efectos de los ciclos de carga-descarga y humedecimiento-secado en el comportamiento geomecánico de rocas lodosas de los Andes colombianos. Tesis Doctoral. Universidad Nacional de Colombia. | |
dc.relation | Torres-Suárez, M. C., Alarcón-Guzmán, A., & Berdugo-De Moya, R. (2014). Effects of loading–unloading and wetting–drying cycles on geomechanical behaviors of mudrocks in the Colombian Andes. Journal of Rock Mechanics and Geotechnical Engineering 6, (3) 257-268. | |
dc.relation | US Army Corps of Engineers. (1997). Engineering and design introduction to probability and reliability methods for use in geotechnical engineering. Technical Letter No. 1110-2-547. Washington, D.C.: Department of the Army. | |
dc.relation | Uzielli, M., Lacasse, S., Nadim, F., & Phoon, K.-K. (2006). Soil Variability Analysis for Geotechnical Practice. Proceedings of the 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils, (pp. 1653-1754). Singapore. | |
dc.relation | Uzielli, M., Vannucchi, G., & Phoon, K. -K. (2005). Random field characterisation of stress-normalised cone penetration testing parameters. Géotechnique 55, (1) 3-20. | |
dc.relation | Vanmarcke, E. (2010). Random Fields. Analysis and Synthesis. Singapore: World Scientific. | |
dc.relation | Vera, A. V., Gonzalez, G. M., Gonzalez, L. B., Gomez, A. S., & Vara, J. M. (1995). Twenty-Five years of Subway Construction in Mexico City. Tunnelling and Underground Space Technology 10, (1) 65-77. | |
dc.relation | Wang, L., Luo, Z., Xiao, J., & Hsein Juang, C. (2014). Probabilistic Inverse Analysis of Excavation-Induced Wall and Ground Responses for Assessing Damage Potential of Adjacent Buildings. Geotechnical and Geological Engineering 32, (2) 273-285. | |
dc.relation | Wang, Y., & Cao, Z. (2015). Practical reliability analysis and design by Monte Carlo Simulation. In Risk and Reliability in Geotechnical Engineering (pp. 301-336). CRC Press. | |
dc.relation | Wood, D. M. (2004). Geotechnical modelling. Spon Press. | |
dc.relation | Woods, R. I. (2003). The Application Analysis of Finite Element Method to the Design of Embedded Retaining Walls. Doctoral Dissertation, School of Engineering University of Surrey. | |
dc.relation | Wu, T. H. (2009). Reliability of geotechnical predictions. Geotechnical Risk and Safety (pp. 3-10). Taylor & Francis Group. | |
dc.relation | Zeevaert, L. (1957). Foundation design and behavior of Tower Latino Americana in Mexico City. Géotechnique, 6, 115-133. | |
dc.relation | Zhang, J., Chen, H. Z., Huang, H. W., & Luo, Z. (2015). Efficient response surface method for practical geotechnical reliability analysis. Computers and Geotechnics 69, 496-505. | |
dc.relation | Zhang, W., Goh, A. T., & Xuan, F. (2015). A simple prediction model for wall deflection caused by braced excavation in clays. Computers and Geotechnics 63, 67-72. | |
dc.relation | Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The Finite Element Method: Its Basis & Fundamentals. 7th Edition. Butterwoth-Heinemann. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Damage probability assessment for adjoining buildings to deep excavations in soft soils | |
dc.type | Otro | |