dc.contributorCarriazo Baños, José Gegorio
dc.contributorLaboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES)
dc.creatorGarcía Caro, William
dc.date.accessioned2020-07-22T14:36:54Z
dc.date.available2020-07-22T14:36:54Z
dc.date.created2020-07-22T14:36:54Z
dc.date.issued2019-11-30
dc.identifierGarcía Caro, W. (2019). Óxidos de Metales de Transición como catalizadores para la oxidación total de Compuestos Orgánicos Volátiles (COVs) en fase gaseosa [Trabajo de grado, maestría en ciencias - química]. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77819
dc.description.abstractEn general los óxidos de metales de transición (OMT) se posicionan como materiales con actividad catalítica apreciable en la oxidación total de compuestos orgánicos volátiles (COVs), con altos porcentajes de conversión y selectividad, gracias a sus propiedades oxido-reductoras, de superficie y texturales. Esto se debe, principalmente, a su gran variedad de estructuras, presencia de vacantes y su capacidad de movilidad de oxígeno en la superficie o estructura, todo ello acompañado de alta resistencia térmica y la facilidad de re-oxidación de los cationes metálicos. Estas propiedades están estrechamente relacionadas con los métodos de síntesis y el control estricto de las variables fisicoquímicas en cada uno de ellos, como la presión, la concentración, la temperatura y el pH entre otras. Por otra parte, ciertos fenómenos dependientes de interacciones químicas, como efectos sinérgicos y cooperativos, contribuyen a que algunas especies mixtas de óxidos metálicos mejoren su eficiencia catalítica y logren oxidar una amplia gama de COVs de diferente naturaleza química a temperaturas cada vez más bajas. En el presente trabajo se realizó una revisión profunda de los OMT y su actividad catalítica en la eliminación oxidativa de COVs, buscando correlacionar los parámetros de estructura, textura y función de dichos materiales. Adicionalmente, se estudiaron los mecanismos de reacción involucrados, concluyendo que el mecanismo de reacción Mars – Van Krevelen es el más apropiado y proporciona una comprensión mucho más amplia acerca de cómo transcurre dicho fenómeno.
dc.description.abstractIn general, transition metal oxides (TMOs) are considered as materials with substantial catalytic activity for the complete oxidation of volatile organic compounds (VOCs), with high percentages of conversion and selectivity, due to their redox, surface, and textural properties. This is mainly explained by the transition metal oxides properties, such as their great variety of structures, the presence of vacancies and their ability to move oxygen on the surface or structure, combined with their high thermal resistance and their easiness to develop metal cation reoxidation. These properties are closely related to the methods of synthesis and rigorous control of physicochemical variables involved in the process, such as pressure, concentration, temperature, and pH, among others. Moreover, certain phenomena that depend on chemical interactions, such as synergy and cooperation effects, contribute to the improvement of the catalytic efficiency of some types of metal oxides, allowing them to oxidize a broad range of VOCs of different chemical nature, at increasingly lower temperatures. In this work, a thorough review about TMOs and their catalytic activity in the oxidative elimination of VOCs was carried out, attempting to correlate the parameters of structure, texture, and function of these materials. Furthermore, the involved reaction mechanisms were analyzed, concluding that the Mars-Van Krevelen mechanism is the most suitable and provides a much broader understanding of how this phenomenon occurs.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbbasi, Z., Haghighi, M., Fatehifar, E., & Saedy, S. (2011). Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. Journal of Hazardous Materials, 186(2-3), 1445-1454. doi:10.1016/j.jhazmat.2010.12.034
dc.relationAgula, B., Deng, Q.-F., Jia, M.-L., Liu, Y., Zhaorigetu, B., & & Yuan, Z.-Y. (2011). Catalytic oxidation of CO and toluene over nanostructured mesoporous NiO/Ce0.8Zr0.2O2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 103, 101. doi:10.1007/s11144-011-0296-1
dc.relationAmbiente, A. E. (2009). Air Pollution. Air Pollution Emissions. Unión Europea. Copenhagen: Agencia Europea del Ambiente.
dc.relationAtta, N., Galal, A., & El-Ads, E. (2016). Perovskite Nanomaterials – Synthesis, Characterization, and Applications. In L. Pan, & G. Zhu, Perovskite Materials, 107-151. Intechopen. doi:10.5772/61280
dc.relationAvci, A., Trimm, D. L., & Önsan, I. (2001). Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane. Chemical Engineering Science, 56(2), 641-649. doi:10.1016/S0009-2509(00)00271-2
dc.relationBalzer, R., Probst, L. F., Drago, V., Schreiner, W. H., & Fajardo, H. V. (2014). Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene) promoted by cobalt catalysts supported on γ-Al2O3-CeO2. Brazilian Journal of Chemical Engineering, 31(3), 757-769. doi: 10.1590/0104-6632.20140313s00002802.
dc.relationBarakat, T., Idakiev, V., Cousin, R., Shao, G.-S., Yuan, Z.-Y., Tabakova, T., & Siffert, S. (Marzo). Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied Catalysis B: Environmental, 146, 138-146. doi:10.1016/j.apcatb.2013.05.064
dc.relationBayati, M. R., Molaei, R., Budai, J. D., Narayan, R. J., & Narayan, J. (2013). Role of substrate crystallographic characteristics on structure and properties of rutile TiO2 epilayers. Journal of Applied Physics, 114, 1-14. doi:10.1063/1.4816470
dc.relationBellard, C., Bertelsmeier, C., Leadley, P., & Thuiller, W. &. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377. doi: 10.1111/j.1461-0248.2011.01736.x
dc.relationBellat, J. P., Bezverkhyy, I., Weber, G., Royer, S., Averlant, R., Giraudon, J.-M., & Lmonier, J. F. (2015). Capture of formaldehyde by adsorption on nanoporous materials. Journal Hazardous Materials, 300, 711-717. doi: 10.1016/j.jhazmat.2015.07.078
dc.relationBertinchamps, F., Attianese, A., Mestdagh, M. M., & Gaigneaux, E. M. (2006). Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene. Catalysis Today, 112(1-4), 165-168. doi:10.1016/j.cattod.2005.11.043
dc.relationBogacki, M., & Sygula, P. (2013). The impact of biogenic volatile organic compounds emission on photochemical processes ocurring in the troposphere. Geomatics and environmental engineering, 7(1), 37-46. doi:10.7494/geom.2013.7.1.37
dc.relationBranderburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and the understanding of regimes and single filaments. Plasma Sources Science and Technology, 26, 053001. doi: 10.1088/1361-6595/aa6426
dc.relationCai, Y. Z., Hu, W., Zheng, C., Yang, Y., Chen, M., & Gao, X. (2018). Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M=Mn, Fe, y Co) perovskite catalyst. Journal of Industrial and Engineering Chemistry, 70, 447-452. doi: 10.1016/j.jiec.2018.11.007
dc.relationCao, X., Lv, X., Qiu, J., Hu, S., Liu, S., & Huang, X. (2012). Catalytic Oxidation of Toluene over CuyMnzOx/γ-Al2O3 Catalysts. Advanced Materials Research, 454, 7-10. doi:10.4028/www.scientific.net/AMR.454.7
dc.relationCarrillo, A. M., & Carriazo, J. G. (2015). Cu and Co oxides supported on halloysite for the total oxidation of toluene. Applied Catalysis B: Environmental, 164, 443-452. doi: 10.1016/j.apcatb.2014.09.027
dc.relationChae, J.-o., Moon, S.-i., Sun, H.-s., Kim, K.-y., Vassiev, V., & & Mikholap, E. M. (1999). A study of volatile organic compounds decomposition with the use of non-thermal plasma. KSME International Journal, 13, 647-655. doi: 10.1007/BF03184575
dc.relationChen, X., Cai, S., Yu, E., Chen, J., & Jia, H. (2019). MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Applied Surface Science, 475, 312-324. doi:10.1016/j.apsusc.2018.12.277
dc.relationCho, C.-H., & Ihm, S.-K. (2002). Development of New Vanadium-Based Oxide Catalysts for Decomposition of Chlorinated Aromatic Pollutants. Enviromental Science & Technology, 36(7), 1600-1606. doi:10.1021/es015687h
dc.relationCiccioli, P., Centritto, M., & Loreto, F. (01 de Abril de 2014). Biogenic volatile organic compound emissions from vegetation fires. Plant, Cell & Environment, 37(8), 1810-1825. doi:10.1111/pce.12336
dc.relationCorpuz, A., & Richards, R. (2010). Chemistry of Rocksalt-Structured (111) metal oxides. In L. Erickson, R. Koodali, & R. Richards, Nanoscale Metarials in Chemistry: Environmental Applications, 273. Washington: American Chemical Society. doi:10.1021/bk-2010-1045.ch004
dc.relationCruz, I., Araujo, J., Freire, C., & Pereira, C. (2018). Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. En A. El Gendy, J. M. Barandiaran, & R. Hadimani, Magnetic Nanostructured Materials, 59-116. Elsevier.
dc.relationde Blas, Maite; Ibáñez, Pablo; García, José Antonio; Gómez, María Carmen; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Iza, Jon; Gangoiti, Gotzon; Sáez de Cámara, Estíbaliz (2018). Summertime high resolution variability of atmospheric formaldehyde. Science of the Total Environment, 862 - 877. doi:https://doi.org/10.1016/j.scitotenv.2018.07.411
dc.relationDeng, Y., Tang, W., Li, W., & Chen, Y. (2018). MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial Effect for promoting catalytic oxidation activity. Catalysis Today, 308, 58-63. doi:10.1016/j.cattod.2017.07.007
dc.relationDobosz, J., & & Zawadzki, M. (2014). Total oxidation of lean propane over α-Fe2O3 using microwaves as an energy source. Reaction Kinetics, Mechanisms and Catalysis, 114, 157-172. doi:10.1007/s11144-014-0776-1
dc.relationDobre, T., Pârvulescu, O., Iavorschi, G., Stroescu, M., & Anicuta, S. (2014). volatile Organic Compounds Removal from gas streams by adsorption onto activated carbon. Industrial & Engineering Chemistry Research, 53(9), 3622-3628. doi: 10.1021/ie402504u
dc.relationDu, C., Gong, X. (2019). Decomposition of volatile organic compounds using corona discharge plasma technology. Journal of the Air & Waste Management Association, 69(8), 879-899. doi: 10.1080/10962247.2019.1582441
dc.relationDupuis, A.-C., Haija, M. A., Richter, B., Kuhlenbeck, H., & Freund, H.-J. (2003). V2O3(0001) on Au(111) and W(110): growth, termination and electronic structure. Surface Science, 539(1-3), 99-112. doi:10.1016/S0039-6028(03)00752-0
dc.relationEinaga, H., Yamamoto, S., Maeda, N., & Teraoka, Y. (2015). Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catalysis Today, 242, 287-293. doi:10.1016/j.cattod.2014.05.018
dc.relationEl Assal, Zouhair; Ojala, Satu; Zbair, Mohamed; Echchtouki, Hafid; Nevanpera, Tuomas; Pitkäaho, Satu; Pirault-Roy, Laurence; Bensitel, Mohammed; Brahmi, Rachid; Keiski, Riita L. (2019). Catalytic abatement of dichlorometane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. Journal of Cleaner Production, 228, 814-823. doi:10.1016/j.jclepro.2019.04.073
dc.relationEmis. (2020). Emis. Vlaanderen is milieubewust. Recuperado el 06 de Junio de 2020, de Regenerative thermal oxidation: https://emis.vito.be/nl/node/19481
dc.relationEskandarya, S., Maghsoodi, S., & Shahbazi Kootenaei, A. (2019). Evaluation of LaBO3 (B=Mn, Cr, Mn0.5Cr0.5) perovskites in catalytic oxidation of trichloroethylene. Advances in Environmental Technology, 5(1), 1-8. doi:10.22104/AET.2019.3559.1175
dc.relationEsposito, S. (2019). "Traditional" Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalyst. Materials (basel), 12(4), 668. doi:10.3390/ma12040668.
dc.relationFigueruelo Alejano, J., & Marino Dávila, M. (2004). Química física del ambiente y de los procesos medioambientales. Barcelona: Reverté.
dc.relationFrikha, Kawthar; Limousy, Lionel; Bouaziz, Jamel; Chaari, Kamel; Josien, Ludovic; Nouali, Habiba; Michelin, Laure; Vidal, Loic; Hajjar-Garreau, Samar; Bennici, Simona (2019). Binary oxides prepared by microwave-assisted solution combustion: synthesis,characterization and catalytic activity. Materials, 12(6), 910-926. doi:10.3390/ma12060910
dc.relationFu, X., Liu, Y., Yao, W., & Wu, Z. (2016). One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous. Catalysis Communications, 83(5), 22-26. doi:10.1016/j.catcom.2016.05.001
dc.relationFujimoto, T. M., Ponczek, M., Rochetto, U. L., & Landers, R. &. (2016). Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd. Environmental Science and Pollution Research, 24(7), 6390-6396. doi: 10.1007/s11356-016-6494-7
dc.relationGanchenkova, M., & Nieminen, R. M. (2015). Mechanical Properties of Silicon Microstructures. In M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, & M. Paulasto-Kröckel, Handbook of Silicon Based MEMS Materials and Technologies, 253-293. Elsevier.
dc.relationGanduglia-Pirovano, V., Hofmann, A., & Sauer, J. (2007). Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 62(6), 219-270. doi:10.1016/j.surfrep.2007.03.002
dc.relationGannoun, C., Delaigle, R., Ghorbel, A., & Gaigneaux, E. M. (2019). V2O5/TiO2 and V2O5/TiO2-SO42- catalysts for the total oxidation of chlorobenzene: one-step sol gel preparation vs. two-step impregnation. Catalysis science & technology(9), 2344-2350. doi:10.1039/C9CY00099B
dc.relationGarcía, T., Solsona, B., & Taylor, S. (2014). The Catalytic Oxidation of Hydrocarbon Volatile. In D. Duprez, & F. Cavani, Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry (Vol. 1, pp. 51-90). Bologne: Imperial College Press. doi:10.1142/9781848167513_0003
dc.relationGarcia, T., Solsona, B., Cazorla-Amorós, D., Linares-Solano, Á., & Taylor, S. H. (2006). Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalyst: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 62(1-2), 66-76. doi:10.1016/j.apcatb.2005.06.016
dc.relationGenano. (2019). Genano. Recuperado el 06 de Junio de 2020, de Technology options for VOC abatament: https://www.genano.com/es/voc/tecnolog%C3%ADa
dc.relationGeng, W., Zhang, J., Yuan, D., & Sun, R. &. (2018). Application Study on Three-Bed Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds. 2nd International Symposium on Resource Exploration and Environmental Science (p. 042137). IOP Conference Series: Earth and Environmental Science.
dc.relationGennequin, C., Lamallem, M., Cousin, R., Siffert, S., Aı¨ssi, F., & Aboukaı¨s, A. (2007). Catalytic oxidation of VOCs on Au/Ce-Ti-O. Catalysis Today, 122(3-4), 301-306. doi:10.1016/j.cattod.2007.03.009
dc.relationGenty, E., Siffert, S., & Cousin, R. (2019). Investigation of reaction mechanism and kinetic modelling for the toluene. Catalysis Today, 333, 28-35. doi:10.1016/j.cattod.2018.03.018
dc.relationGharagozlou, M., & Bayati, R. (2014). Photocatalytic activity and formation of oxygen vacancies in cation doped anastase TiO2 nanoparticles. Ceramics International, 40(7), 10247-10253. doi:10.1016/j.ceramint.2014.02.114
dc.relationGlazneva, T. S., & Kotsarenko, N. S. (2008). Surface acidity and basicity of oxide catalyst: from aqueous suspensions to in situ measurements. Kinetics and Catalysis, 49, 859-867. doi:10.1134/S0023158408060104
dc.relationGreedan, J. E. (2017). Introduction to the Crystal Chemistry of Transition Metal Oxides. In J. Maier, Handbook of Solid State Chemistry, 161-220. Wiley. doi:10.1002/9783527691036.hsscvol1005
dc.relationGuo, T., Yao, M.-S., & Lin, Y.-H. &.-W. (2015). A comprehensive review on synthesis methods for transition-metal oxide nanostructure. CrystEngComm, 17(19), 3551-3585. doi:10.1039/C5CE00034C
dc.relationHamid, H. H., Hazman, M. H., Nadzir, M. S., & Uning, R. (2019). Anthropogenic and biogenic volatile organic compounds and ozone formation potential in ambient air of Kuala Lumpur, Malaysia. Conf. Series: Earth and Environmental Science, 228-236.
dc.relationHan, Q., Liu, X., Shi, W., Zhang, C., Li, E., & Zhu, T. (2019). Catalytic oxidation of ethyl acetate over Ru-Cu bimetallic catalysts: Further insights into reaction mechanism via in situ FTIR and DFT studies. Journal of Catalysis, 369, 482-492. doi:10.1016/j.jcat.2018.11.025
dc.relationHeynderickx, P., Thybaut, J., Poelman, H., Poelman, D., & Marin, G. (2010). The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides. Journal of Catalysis, 272(1), 109-120. doi:10.1016/j.jcat.2010.03.006
dc.relationHsieh, C.-T., Chen, & Jin-Ming. (2002). Adsorption Energy Distribution Model for VOCs onto Activated Carbons. Journal of Colloid and Interface Science, 255(2), 248-253. doi: 10.1006/jcis.2002.8668.
dc.relationHuang, B., Lei, C., Wei, C., & Zeng, G. (2014b). Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts and current remediation technologies. Environment International, 71, 118-138. doi:10.1016/j.envint.2014.06.013
dc.relationHuang, Ganlin; Brook, Rosie; Crippa, Monica; Janssens-Maenhout, Greet; Schieberle, Christian; Dore, Chris; Guizzardi, Diego; Muntean, Marilena; Schaaf, Edwin; and Friedrich, Rainer (2017a). Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012. Atmospheric Chemistry and Physics, 17, 7683-7701. doi:10.5194/acp-17-7683-2017
dc.relationHuang, H., Xu, Y., Feng, Q., & Leung, D. Y. (2015c). Low temperature catalytic oxidation of volatile organic. Catalysis Science & Technology, 5(5), 2649-2669. doi:10.1039/C4CY01733A
dc.relationIbrahim, M., Labaki, M., Nuns, N., Giraudon, J.-M., & Lamonier, J.‐F. (2019). Cu-Mn Hydroxyapatite materials for toluene total oxidation. ChemCatChem, 12(2), 550-560. doi:10.1002/cctc.201901336
dc.relationJanotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501. doi:10.1088/0034-4885/72/12/126501
dc.relationJi, J., Xu, Y., Huang, H., He, M., Liu, S., & Liu, G. (2017). Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineeering Journal, 327, 490-499. doi: 10.1016/j.cej.2017.06.130
dc.relationJian, W., Wang, S.-P., Zhang, H.-X., & Bai, F.-Q. (2019). Disentangling the role of oxygen vacancies on the surface of Fe3O4 and γ-Fe2O3. Inorganic Chemistry Frontiers, 6(10), 245-289. doi:10.1039/C9QI00351G
dc.relationJiang, Q., Faraji, S., Slade, D. A., & Stagg-Williams, S. M. (2011a). A Review of Mixed Ionic and Electronic Conducting Ceramic Membranes as Oxygen Sources for High-Temperature Reactors. In S. T. Oyama, & S. M. Stagg-Williams, Inorganic Plymeric and Composite Membranes, 14, 253-273. Amsterdam: Elsevier. doi:10.1016/B978-0-444-53728-7.00011-2
dc.relationJiang, S., Handberg, E. S., Liu, F., Liao, Y., Wang, H., Li, Z., & Song, S. (2014b). Effect of doping the nitrogen into carbon nanotubes on the activity of NiO catalysts for the oxidation removal of toluene. Applied Catalysis B: Environmental, 160-161, 716-721. doi:10.1016/j.apcatb.2014.06.026
dc.relationJiao, Y., Chen, X., He, F., & Liu, S. (2019). Simple preparation of uniformly distributed mesoporous Cr/TiO2 microspheres for low-temperature catalytic combustion of chlorobenzene. Chemical Engineering Journal, 372, 107-117. doi:10.1016/j.cej.2019.04.118
dc.relationKabongo, G., Kawula, T., Thokozani, T., Nyongombe, G., Ozoemena, K., & Dhlamini, S. (2018). Microwave Irradiation Induces Oxygen Vacancy in Metal Oxides based materials and devices: A Review. Journal of Nanosciences: Current Research, 3(2), 1-13. doi:10.4172/2572-0813.1000125
dc.relationKalinin, S. V., & Spaldin, N. A. (2013). Functional Ion Defects in Transition Metal Oxides. Science, 341(6148), 858-859. doi:10.1126/science.1243098
dc.relationKang, S.-J. L. (2005). Sintering additives and Defect Chemistry. In S.-J. L. Kang, Sintering. Densification, Grain Growth and Microstructure, 173-179. Elsevier.
dc.relationKim, H.-H., & Ogata, A. (2011a). Nonthermal plasma activates catalyst: From current understanding and future prospects. The European Physical Journal Applied Physics, 55(1), 13806. doi: 10.1051/epjap/2011100444
dc.relationKim, J., Lee, S.-H., Lee, J. H., & Hong, K.-H. (2014b). The Role of Intrinsic Defects in Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 5(8), 1312-1317. doi:10.1021/jz500370k
dc.relationKondratowicz, T., Drozdek, M., Rokicińska, A., Natkański, P., Michalik, M., & Kuśtrowski, P. (2019). Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene. Microporous and Mesoporous Materials, 279, 446-455. doi:10.1016/j.micromeso.2019.01.031
dc.relationKwon, J.-W., Park, H.-W., Kim, W. J., & Kim, M.-G. &.-J. (2018). Exposure to volatile organic compounds and airway inflammation. Environmental Health, 17, 65-73. doi:10.1186/s12940-018-0410-1
dc.relationLaothawornkitkul, J., Taylor, J. E., & Paul, N. D. (2009). Biogenic volatile organic compounds in the Earth system. New Phytologist, 246-276.
dc.relationLawrence, S. J. (2006). Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature. USGS. USGS. doi:10.3133/ofr20061338
dc.relationLi, G. Z., Wang, Z., Huang, H., Peng, H., & Li, X. (2018a). Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation. Applied Catalysis A: General, 550, 67-76. doi:10.1016/j.apcata.2017.11.003
dc.relationLi, J., Zhang, H., Ying, D., Wang, Y., & Sun, T. &. (2019b). In Plasma Catalytic Oxidation of Toluene Using Monolith CuO Foam as a Catalyst in a Wedged High Voltage Electrode Dielectric Barrier Discharge Reactor: Influence of Reaction Parameters and Byproduct Control. International Journal of Environmental Research and Public Health, 16(5), 711. doi: 10.3390/ijerph16050711.
dc.relationLi, K., Chen, C., Zhang, H., Hu, X., Sun, T., & Jia, J. (2019c). Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Applied Surface Science, 496, 143662. doi:10.1016/j.apsusc.2019.143662
dc.relationLi, W. B., Wang, J. X., & Gong, H. (2009d). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148(1-2), 81-87. doi:10.1016/j.cattod.2009.03.007
dc.relationLiao, W.-M., Zhao, P.-P., Cen, B.-H., Jia, A.-P., Lu, J.-Q., & Luo, M.-F. (2020). Co-Cr-O mixed oxides for low-temperature total oxidation of propane: structural effects, kinetics, and spectroscopic investigation. Chinese Journal of Catalysis, 41(3), 442-453. doi:10.1016/S1872-2067(19)63480-7
dc.relationLim, S. T., Kim, J. H., Lee, C. Y., Koo, S., Jerng, D.-W., & Wongwises, S. a. (2019). Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Scientific Reports, 9, 10922. doi:10.1038/s41598-019-47100-z
dc.relationLiotta, L. F. (2010). Catalytic Oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental, 100(3-4), 403-412. doi:10.1016/j.apcatb.2010.08.023
dc.relationLiotta, L. F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., & Boreave, A. &.-F. (2009). Catalytic Removal of Toluene over Co3O4–CeO2 Mixed Oxide Catalysts: Comparison with Pt/Al2O3. Catalysis Letter, 127, 270-276. doi:10.1007/s10562-008-9640-0
dc.relationLitt, G., & Almquist, C. (2009). An investigation of CuO/Fe2O3 catalysts for the gas-phase oxidation of ethanol. Applied Catalysis B: Environmental, 90(1-2), 10-17. doi:10.1016/j.apcatb.2009.02.001
dc.relationLiu, B., Li, W., & Song, W. a. (2018). Carbonate-mediated Mars–van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence. Physical Chemistry Chemical Physics, 20(23), 16045-16059. doi:10.1039/C8CP01694A
dc.relationLiu, L., Sun, J., Ding, J., Zhang, Y., & Jia, J. &. (2019c). Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorganic Chemistry, 58(20), 14275-14283. doi:10.1021/acs.inorgchem.9b02518
dc.relationLiu, P., Wei, G., He, H., Liang, X., Chen, H., Xi, Y., & Zhu, J. (2019a). The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration. Applied Surface Science, 464, 287-293. doi:10.1016/j.apsusc.2018.09.070
dc.relationLiu, Q., Wang, L.-C., Chen, M., Cao, Y., He, H.-Y., & Fan, K.-N. (2019b). Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for the total oxidation of propane. Journal of Catalysis, 263(1), 104-113. doi:10.1016/j.jcat.2009.01.018
dc.relationLiu, Y., Deng, J., Xie, S., Wang, Z., & Dai, H. (2016). Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 37(8), 1193-1205. doi:10.1016/S1872-2067(16)62457-9
dc.relationLiu, Y., Yan, L., Gao, W., Zhu, S.-R., Zhan, J., Cao, R., & Zhou, H. (2020). Samarium doping boosts catalytic oxidation of airborne benzene over todorokite-type MnO2. Applied Surface Science, 500, 144043. doi:10.1016/j.apsusc.2019.144043
dc.relationLu, J., Liu, J., Zhao, Y., He, D., Han, C., He, S., & Luo, Y. (2019). The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement. Journal of Hazardous Materials, 384, 121289. doi:10.1016/j.jhazmat.2019.121289
dc.relationLu, S., Li, K., Huang, F., Chen, C., & Sun, B. (2017a). Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Applied Surface Science, 400, 277-282. doi:10.1016/j.apsusc.2016.12.207
dc.relationLu, S., Wang, F., Chen, C., Huang, F., & Li, K. (2017b). Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts. Journal of Rare Earths, 35(9), 867-874. doi:10.1016/S1002-0721(17)60988-8
dc.relationMa, C., Mu, Z., He, C., Li, P., Li, J., & Hao, Z. (2011). Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences, 23(12), 2078-2086. doi:10.1016/S1001-0742(10)60674-2
dc.relationMa, X., Sun, Q., Feng, X., He, X., Guo, J., Sun, H., & Cao, H. (2013). Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/-Fe2O3 nanocomposite catalysts. Applied Catalysis A: General, 450, 143-151. doi:10.1016/j.apcata.2012.10.019
dc.relationMa, X., Wen, J., Guo, H., & Ren, G. (2020). Facile templates fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene. Chemical Engineering Journal, 382, 122940. doi:10.1016/j.cej.2019.122940
dc.relationManta, C.-M., Banu, I., Bercaru, G., & Bozga, G. (2016). An experimental study of m-xylene combustion over a commercial Pt/alumina catalyst. vUPB Scientific Bulletin, series B: chemistry and materials science, 78(1), 111-120.
dc.relationMarín Figueredo, M. J., Andana, T., Bensaid, S., Dosa, M., Fino, D., Russo, N., & Piumetti, M. (2020). Cerium-Copper-Manganese Oxides Synthesized via Solution Combustion Synthesis (SCS) for Total Oxidation of VOCs. Catalysis Letters, 150, 1-13. doi:10.1007/s10562-019-03094-x
dc.relationMcCluskey, M. D. (2018). Defects in ZnO. En J. Stehr, I. Buyanova, & W. Chen, Defects in Advanced Electronic Materials and Novel Low Dimensional Structures, 1-25. Elsevier.
dc.relationMcDonald, B., de Gouw, J., Gilman, J., Jathar, S., Cappa, C., & Jimenez, J. (2018). Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 760-764. doi: 10.1126/science.aaq0524
dc.relationMeng, L., & Zhao, H. (2020). Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis. Applied Catalysis B: Environmenta, 264, 118427. doi:10.1016/j.apcatb.2019.118427
dc.relationMora-Briceño, P., Jiménez-García, G., Castillo-Araiza, C.-O., González-Rodríguez, H., Huirache-Acuña, R., & Maya-Yescas, R. (2018). Mars van Krevelen mechanism for the selective partial oxidation of ethane. International Journal of Chemical Reactor Engineering, 17(7), 1-13. doi:10.1515/ijcre-2018-0085
dc.relationMorales-Torres, S., Pérez-Cadenas, A. F., Kapteijn, F., Carrasco-Marín, F., Maldonado-Hódar, F. J., & Moulijn, J. A. (2009). Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Applied Catalysis B: Environmental, 89(3-4), 411-419. doi:10.1016/j.apcatb.2008.12.021
dc.relationMorris Jr, J. W. (2013). Defects in crystals. En W. D. Callister Jr, & D. G. Rethwisch, Materials Science and Engineering: An Introduction, 76-107. Wiley.
dc.relationMuñoz-Paez, A. (1994). Transition Metal Oxides: Geometric and Electronic Structures: Introducing Solid State Topics in Inorganic Chesmitry Courses. Journal Chemical Education, 71(5), 381-388. doi:10.1021/ed071p381
dc.relationNakajima, K., Noma, R., Kitano, M., & Hara, M. (2013). Titania as an Early Transition Metal Oxide with a High Density of Lewis Acid Sites Workable in Water. The Journal of Physical Chemistry C, 117(31), 16028-16033. doi:10.1021/jp404523r
dc.relationNilius, N., Sterrer, M., Heyde, M., & Freund, H.-J. (2015). Atomic Scale Characterization of Defects on Oxide Surfaces. En J. Jupille, & G. Thornton, Defects at Oxide Surfaces, 29-80. Springer. doi:10.1007/978-3-319-14367-5_2
dc.relationNiu, H., Mo, Z., Shao, M., Lu, S., & Xie, S. (2016). Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Frontiers of Enviromental Science & Engineering, 10, 1-11. Springer. doi: 10.1007/s11783-016-0828-z
dc.relationNPI. (2009). Volatile Organic Compound. Definition and Information. Departament of the Environment, Water, Heritage and the Arts, 1-5.
dc.relationOrdóñez, S., Bello, L., Sastre, H., Rosal, R., & Dı́ez, F. V. (2002). Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Applied Catalysis B: Enviromental, 38(2), 139-149. doi:10.1016/S0926-3373(02)00036-X
dc.relationMonks, P. S., Tarasova, A. T., Thouret, O., von Schneidemesser, V., Sommariva, E., Wild, R., Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global. Atmos. Chem. Phys., 15(15), 8889–8973. doi:10.5194/acp-15-8889-2015, 2015.
dc.relationPan, L., & Li, L. &. (2011). A general synthesis of transition metal oxides with assistance of organic amines and their electrocatalytic properties. Science China Chemistry, 54, 1454-1460. doi:10.1007/s11426-011-4317-8
dc.relationPrins, R. (2018). Eley-Rideal, the Other Mechanism. Topics in Catalysis, 61, 714-721. doi:10.1007/s11244-018-0948-8
dc.relationProject, M. (2019a). Materials Project. doi:10.17188/1193796
dc.relationProject, M. (2019b). Materials Project. doi:10.17188/1187823
dc.relationProject, M. (2019c). Materials Project. doi:10.17188/1184648
dc.relationProject, M. (2019d). Materials Project. doi:10.17188/1195334
dc.relationProject, M. (2019e). Materials Project. Recuperado el 10 de Junio de 2020, de Materials Project: https://materialsproject.org/materials/mp-1185232/
dc.relationQin, L., Huang, X., Zhao, B., Wang, Y., & Han, J. (2019). Iron oxides as a promoter for Toluene Catalytic Oxidation over Fe-Mn/γ-Al2O3 Catalysts. Catalysis Letters, 150, 802-814. doi:10.1007/s10562-019-02975-5
dc.relationQiu, Y., Ye, N., Situ, D., & Zuo, S. a. (2019). Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeOx/AlFe pillared clay catalyst. Materials, 12(5), 728-740. doi:10.3390/ma12050728
dc.relationQuéléver, Lauriane; Kristensen, Kasper; Jensen, Louise; Rosati, Bernadette; Teiwes, Ricky; Daellenbach, Kaspar; Peräkylä, Otso; Roldin, Pontus; Pedersen, Henrik; Glasius, Marianne; Bilde, Merete; Ehn, Mikael (2018). Effect of temperature on the formation of Highly-oxygenated Organic Molecules (HOMs) from alpha-pinene ozonolysis. Atmospheric Chemistry and Physics, 19(11), 7609-7625. doi:10.5194/acp-19-7609-2019
dc.relationRao, C. N. (1989). Transition Metal Oxides. Annual Review of Physical Chemistry, 40, 291-326. doi:10.1146/annurev.pc.40.100189.001451
dc.relationRao, G. R., & Mishra, B. G. (2003). Structural, redox and catalytic chemistry of ceria based materials. Bulletin of the Catalysis Society of India, 2, 122-134.
dc.relationRaveau, B., & Seikh, M. (2012). Crystal chemistry of cobalt oxides. In B. Raveau, & M. Seikh, Cobalt oxides: from crystal chemistry to physics, 3-70. Wiley. doi:10.1002/9783527645527.ch1
dc.relationRayner-Canham, G. (2000). Química Inorgánica Descriptiva (Segunda ed.). Ciudad de México: S.A. Alhambra Mexicana.
dc.relationRogacehva, A. O., Buzaev, A. A., Brichkov, A. S., Khalipova, O. S., Klestov, S. A., & Paukshtis, E. A. (2019). Catalytically Active Composite Material Based on TiO2/Cr2O3 Hollow Spherical Particles. Kinetics and Catalysis, 60, 484-489. doi:10.1134/S002315841904013X
dc.relationRoss, J. (2012). The kinetics and mechanism of catalytic reactions. In J. R. Ross, Heterogeneous Catalysis, Primera ed., 123-142. Elsevier. doi:10.1016/B978-0-444-53363-0.10006-4
dc.relationRoss, J. R. (2019). The kinetics and mechanisms of catalytic reactions. En J. R. Ross, Contemporany Catalysis. Fundamentals and current applications, 161-186. Elsevier. doi:10.1016/b978-0-444-63474-0.00007-2
dc.relationSarkar, A. (2019). The formation and detection techniques of oxygen vacancies in titanium oxide-based nano-structures. Nanoscale, 11(8), 3414-3444. doi:10.1039/C8NR09666J
dc.relationScholosser, P. M., Bale, A. S., Gibbons, C. F., Wilkins, A., & Cooper, G. S. (Febrero de 2015). Human Health Effects of Dichloromethane: Key Findings and Scientific Issues. Environmental Health Perspectives, 123(2), 114-119. doi:10.1289/ehp.1308030
dc.relationSharma, M., Pathak, M., & Kapoor, P. (2018). The Sol-Gel Method: Pathway to Ultrapure and Homogeneous Mixed Metal Oxide Nanoparticles. Asian Journal of Chemistry, 30(7), 1405-1412. doi:10.14233/ajchem.2018.20845
dc.relationShayegan, Z., Haghighat, F., & Lee, C.-S. (2019). Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chemical Engineering Journal, 357, 533-546. doi: 10.1016/j.cej.2018.09.167
dc.relationShen, Y., Sun, J., Li, l., Yao, Y., Zhou, C., Su, R., & & Yang, Y. (2014, Enero 17). The enhanced magnetodielectric interaction of (1-x)BaTiO3–xCoFe2O4 multiferroic composites. Journal of Materials Chemistry, 2(14), 2545-2551. doi:10.1039/C4TC00008K
dc.relationShirai, T., Watanabe, H., Fuji, M., & Takahashi, M. (2009). Structural Properties and Surface Characteristics on Aluminum Oxide Powders. セラミックス基盤工学研究センター年報, 9, 23-31.
dc.relationShuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U. Jr.; Yang, Wonho (2018). Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health, 18, 528-541. doi:10.1186/s12889-018-5454-1
dc.relationSi, W., Wang, Y., Zhao, S., Hu, F., & & Li, J. (2016). A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environmental Science & Technology, 50(8), 4572-4578. doi:10.1021/acs.est.5b06255
dc.relationSilva, F., Martinez, D., Ruiz, J., Mattos, L., Noronha, F., & Hori, C. (2007). The Effect of Pt Loading and Space Velocity on the perfomance of Pt/CeZrO2/Al2O3 catalyst for the partial oxidation of methane. Natural Gas Conversion VIII, Proceedings of the 8th Natural Gas Conversion Symposium. 167, 427-432. Elsevier. doi:10.1016/S0167-2991(07)80169-8
dc.relationSingh, A., & Kumar, N. (2018). Title study of structural properties of rocksalt (B1). International Journal of Latest Trends in engineering and technology, 9(4), 24-26. doi:10.21172/1.94.05
dc.relationSmallman, R. E., & Ngan, A. H. (2014). Point Defect Behavior. In R. E. Smallman, & A. H. Ngan, Modern Physical Metallurgy. Octava ed., 251-285. Elsevier. doi:10.1016/B978-0-08-098204-5.00006-7
dc.relationSolsona, Benjamín; García, Tomás; Aylón, Elvira; Dejoz, Ana M.; Vásquez, Isabel; Agouram, Said; Davies, Thomas; Taylor, Stuart (2011). Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 175(15), 271-278. doi:10.1016/j.cej.2011.09.104
dc.relationSoni, K. C., & Shekar, S. C. (2019). Catalytic oxidation of bis(2-chloroethyl) ether on vanadia titania nanocatalyst. Arabian Journal of Chemistry, 112(8), 5234-5245. doi:10.1016/j.arabjc.2016.12.023
dc.relationSoni, V., Singh, P., Shree, V. (2018). Effects of VOCs on Human Health. In N. Sharma, A. Agarwal, P. Eastwood, T. Gupta, & A. P. Singh, Air Pollution and Control (pp. 119-142). Singapore: Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-10-7185-0_8
dc.relationSun, Y., Zhou, L., Zhang, L., & Sui, H. (2012). Synergistic effects of non-thermal plasma assisted catalyst and ultrasound on toluene removal. Journal of Environmental Sciences, 24(5), 891-896. doi: 10.1016/S1001-0742(11)60842-5
dc.relationTang, W., Deng, Y., Li, W., Li, S., Wu, X., & Chen, Y. (2015a). Restrictive nanoreactor for growth of transition metal oxides (MnO2, Co3O4, NiO) nanocrystal with enhanced catalytic oxidation activity. Catalysis Communications, 72, 165-169. doi:10.1016/j.catcom.2015.09.034
dc.relationTang, W., Liu, G., Li, D., Liu, H., Wu, X., & Han, N. &. (2015b). Design and synthesis of porous non-noble metal oxides. Science China Chemistry, 58, 1359-1366. doi:10.1007/s11426-015-5469-8
dc.relationTassi, F., Venturi, S., Cabassi, J., Vaselli, O., Gelli, I., Cinti, D., & Capecchiacci, F. (2015). Biodegradation of CO2, CH4 and volatile organic compounds (VOCs) in soil gas from the Vicano–Cimino hydrothermal system (central Italy). Organic Geochemistry, 86, 81-93. doi: 10.1016/j.orggeochem.2015.06.004
dc.relationTatin, R., Moura, L., Dietrich, N., Baig, S., & Hébrard, G. (2015). Physical absortion of volatile organic compounds by spraying emulsion in a spray tower: Experiments and modelling. Chemical Engineering Research and Design, 104, 409-415. doi: 10.1016/j.cherd.2015.08.030
dc.relationTian, Mingjiao; Guo, Xu; Dong, Rui; Guo, Zheng; Shi, Jianwen; Yu, Yanke; Cheng, Mingxing; Albilali, Reem; He, Chi (2019). Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Applied Catalysis B: Environmental, 259, 118018. doi:10.1016/j.apcatb.2019.118018
dc.relationTirone, J. (6 de Noviembre de 2019). Air Pollution. Bloomberg, págs. 1-5.
dc.relationTomatis, M., Moreira, M. T., Xu, H., He, J., & Parvez, A. M. (2019). Removal of VOCs from waste gases using various thermal oxidizers: A comparative study based on life cycle assessment and cost analysis in China. Journal of Cleaner Production, 233, 808-818. doi: 10.1016/j.jclepro.2019.06.131
dc.relationTsuzuki, T. (2013). Properties of Nanoparticulate Materials. En T. Tsuzuki, Nanotechnology Commercialisation (págs. 1-32). Boca Ratón: Taylor & Francis Group.
dc.relationValenzuela Calahorro, C. (1999). Introducción a la química inorgánica (1 ed., Vol. 1). Madrid: McGraw-Hill.
dc.relationVerma, K. C., Kotnala, R. K., & Goyal, N. (2018). Multi-Funcionality of Spinotronic Materials. In B. K. Kaushik, Nanoelectronics, 153-215. Elsevier. doi:10.1016/B978-0-12-813353-8.00004-X
dc.relationVivaldo, G., Masi, E., Taiti, C., Caldarelli, G., & Mancuso, S. (2017, Septiembre 8). The network of plants volatiles organic compounds. Scientific Reports, 7, 1-18. doi:10.1038/s41598-017-10975-x
dc.relationVu, V. H., Belkouch, J., Ould-Dris, A., & Taouk, B. (2009). Removal of hazardous chlorinated VOCs over Mn–Cu mixed oxide based catalyst. Journal of Hazardous Materials, 169(1-3), 758-765. doi:10.1016/j.jhazmat.2009.04.010
dc.relationWagner, P., & Kuttler, W. (2014). Biogenic and anthropogenic isoprene in the near-surface urban. Science of Total Enviroment, 475, 104-115. doi:10.1016/j.scitotenv.2013.12.026
dc.relationWalsh, A., Payne, D. J., Edgell, R. G., & Watson, G. W. (2011). Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chemical Society Reviews, 40(9), 4455-4463. doi:10.1039/C1CS15098G
dc.relationWang, J., Zhao, H., Liu, X., Xu, W., Guo, Y., Song, J., & Zhu, T. (2019). Study on the Catalytic Properties of Ru/TiO2 Catalysts for the Catalytic Oxidation of (Chloro)-Aromatics. Catalysis Letters, 149(38), 2004-2014. doi:10.1007/s10562-019-02802-x
dc.relationWarahena, A. S., Chuah, Y. K. (2009). Energy Recovery Efficiency and Cost Analisys de VOC Thermal Oxidation Pollution Control Technology. Environmental Science & Technology, 43(15), 6101-6105. doi: 10.1021/es900626e
dc.relationWarneck, P. (1988). Photochemical Procesess and Elementary Reactions. En P. Warneck, & P. Warneck (Ed.), Chemistry of the Natural Atmosphere, 41, 46-90). Elsevier. doi:10.1016/s0074-6142(08)60627-0
dc.relationWatanabe, T., Izumi, T., & Matsuyama, H. (2016). Accumulated phytotoxic ozone dose estimation for deciduous forest in Kanto, Japan in summer. Atmospheric Environment, 129, 176-185. doi: 10.1016/j.atmosenv.2016.01.016
dc.relationWeng, X., Xue, Y., Chen, J., Meng, Q., & Wu, Z. (2020). Elimination of chloroaromatic congeners on a commercial V2O5-WO3/TiO2 catalyst: The effect of heavy metal Pb. Journal of Hazardous Materials, 387, 121705. doi:10.1016/j.jhazmat.2019.121705
dc.relationWu, Y., Shi, S., Yuan, S., Bai, T., & Xing, S. (2019). Insight into the enhanced activity of Ag/NiOx-MnO2 for catalytic oxidation of o-xylene at low temperatures. Appied Surface Science, 479, 1262-1269. doi:10.1016/j.apsusc.2019.01.134
dc.relationXia, Y., Wang, Z., Feng, Y., Xie, S., Liu, Y., Dai, H., & Deng, J. (2019). In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catalysis Today, 351, 30-36. doi:10.1016/j.cattod.2019.01.076
dc.relationXiang, Y., Zhu, Y., Lu, J., Zhu, C., Zhu, M., Xie, Q., & Chen, T. (2019). Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: Preparation, characterization and its catalytic properties. Solid States Sciences, 93, 79-86. doi:10.1016/j.solidstatesciences.2019.05.008
dc.relationYagi, S., Ichikawa, Y., Yamada, I., Doi, T., Ichitsubo, T., & Matsubara, E. (2013). Synthesis of Binary Magnesium–Transition Metal Oxides via Inverse Coprecipitation. Japanese Journal of Applied Physics, 52(2R), 1-6. doi:10.7567/JJAP.52.025501
dc.relationYan, Z., Xu, Z., Cheng, B., & Jiang, C. (2017). Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Applied Surface Science, 404, 426-434. doi:10.1016/j.apsusc.2017.02.010
dc.relationYang, G., & Park, S.-J. (2019a). Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: Areview. Materials, 12(7), 1177-1195. doi:10.3390/ma12071177
dc.relationYang, Yang; Li, Hao, Haitao; Qu, Ruiyang; Zhang, Shuo; Hu, Wenshuo; Yu, Xinning; Zhu, Xinbo; Liu, Shaojun; Zheng, Chenghang; Gao, Xiang (2019b). Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition. Journal of Hazardous Materials, 371, 156-164. doi:10.1016/j.jhazmat.2019.02.103
dc.relationYang, Yang; Li, Hao; Zhang, Shuo; Yu, Xinning; Liu, Shaojun; Qu, Ruiyang; Zheng, Chenchang; Gao, Xiang (2019c). Different reacive behaviours of dichloromethane over anatase TiO2 supported RuO2 and V2O5. Catalysis Today, In Press, 2-28. doi:10.1016/j.cattod.2019.11.009
dc.relationYoshikawa, M., Zhang, M., & Kurisu, F. &. (2017a). Bacterial Degraders of Coexisting Dichloromethane, Benzene, and Toluene, Identified by Stable-Isotope Probing. Water, Air, & Soil Pollution, 228(11), 418. doi: 10.1007/s11270-017-3604-1
dc.relationYoshikawa, M., Zhang, M., & Toyota, K. (2017b). Biodegradation of Volatile Organic Compounds and their effects on biodegradbility under Co-existing conditions. Microbes and Environments, 32(3), 188-200. doi: 10.1264/jsme2.ME16188
dc.relationYu, F., Ma, J., & Wu, Y. (2011). Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Journal of Hazardous Materials, 192(3), 1370-1379. doi: 10.1016/j.jhazmat.2011.06.048
dc.relationZeng, Xiaohong; Cheng, Gao; Liu, Qi; Yu, Weixiong; Yang, Runnong; Wu, Huajie; Li, Yongfeng; Sun, Ming; Zhang, Canyang; Yu, Lin (2019a). Novel Ordered Mesoporous γ-MnO2 Catalyst for High-Performance Catalytic Oxidation of Toluene and o-Xylene. Industrial & Engineering Chemistry Research, 58(31), 13926-13934. doi:10.1021/acs.iecr.9b02087
dc.relationZeng, Y., Wang, Y., Meng, Y., Song, F., Zhang, S., & Zhong, Q. (2019b). The effect of preparation method on oxygen activation over Pt/TiO2. Chemical Physics Letters, 730, 95-99. doi:10.1016/j.cplett.2019.05.048
dc.relationZhang, Y., Liu, J., Qin, Y., Yang, Z., Cao, J., Xing, Y., & Li, J. (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. Journal of Hazardous Materials, 365, 642-649. doi: 10.1016/j.jhazmat.2018.11.062
dc.relationZhao, F., Zhang, G., Zeng, P., Yang, X., & Ji, S. f. (2011). Preparation of CuxCo1-x/Al2O3/Cordierite Monolithic Catalysts and the Catalytic Combustion of Toluene. Chinese Journal of Catalysis, 32(5), 821-826. doi:10.1016/S1872-2067(10)60184-2
dc.relationZhao, Q., Ge, Y., Fu, K. Z., Liu, Q., & Song, C. (2019). Catalytic performance of the Pd/TiO2 modified with MnOx catalyst for acetone total oxidation. Applied Surface Science, 496, 143579. doi:10.1016/j.apsusc.2019.143579
dc.relationZhou, B., Zhang, X., Wang, Y., Xie, J., Xi, K., Zhou, Y., & Lu, H. (2019). Effect of Ni-V loading on the performance of hollow anatase TiO2 in the catalytic combustion of dichlorometane. Journal of Environmental Sciences, 84, 59-68. doi:10.1016/j.jes.2019.04.013
dc.relationZhu, Y., Liu, X., Jin, S., Chen, H., Lee, W., Liu, M., & Chen, Y. (2019). Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 7(11), 5875-5897. doi:10.1039/C8TA12477A
dc.relationZou, L., Luo, Y., & Hopper, M. H. (2006). Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing: Process Intensification, 45(11), 959-964. doi: 10.1016/j.cep.2006.01.014
dc.rightsReconocimiento 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleÓxidos de Metales de Transición como catalizadores para la oxidación total de Compuestos Orgánicos Volátiles (COVs) en fase gaseosa
dc.typeOtro


Este ítem pertenece a la siguiente institución