dc.contributor | Ramírez Hernández, María Helena | |
dc.contributor | LIBBIQ UN | |
dc.creator | Villamil Silva, Sharon Eliana | |
dc.date.accessioned | 2021-10-07T13:21:27Z | |
dc.date.available | 2021-10-07T13:21:27Z | |
dc.date.created | 2021-10-07T13:21:27Z | |
dc.date.issued | 2021-05-05 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80406 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El parásito intracelular Leishmania compite con sus hospederos para la adquisición de compuestos esenciales y, por lo tanto, debe desarrollar mecanismos eficientes de captación. Este proceso es mediado por proteínas transportadoras que desempeñan un papel fundamental en la homeostasis celular, no solo permiten que el parásito compita de manera eficiente con los tejidos, si no también que estos compuestos sean distribuidos de manera competente al interior celular. Múltiples familias de proteínas tienen la capacidad de movilizar moléculas de relevancia metabólica para este tipo organismos, en particular, el trasporte del dinucleótido de nicotinamida y adenina, NAD+ una molécula que desempeña un rol clave en funciones esenciales ha sido descrito principalmente por las proteínas SLC25A, una familia de transportadores mitocondriales (MCF) presente únicamente en eucariotas. En respuesta a la creciente tasa de desarrollo de resistencia a los medicamentos, así como los numerosos efectos secundarios de los mismos para el control de organismos de gran importancia en la salud pública de nuestro país como lo es Leishmania; caracterizar las proteínas responsables de esta translocación, con base en homologías, ya sea de secuencia o estructura con sus ortólogos, promete proporcionar información sobre muchos aspectos básicos de su biología, determinantes para el desarrollo de nuevas terapias en el tratamiento de estas parasitemias. En este trabajo se estudiaron en Leishmania braziliensis, dos candidatos a transportador de NAD+; esto mediante el uso de herramientas bioinformáticas, donde se encontró que las proteínas denominadas LbNDT2 y LbNDT3, poseen todas las características estructurales y de secuencia propias de la familia de transportadores mitocondriales (MCF). Presentando potenciales sitios de modificación postraduccional mediante fosforilación, acetilación y glicosilación. De igual manera, al compararlas con los ortólogos descritos en otros organismos, se evidencia que estas proteínas son altamente conservadas a nivel estructural. Por otro lado, de manera experimental, con el fin de evaluar su capacidad transportadora fueron desarrollados tres acercamientos de manera paralela; el primero involucró el uso del sistema heterólogo algal Chlamydomonas reinhardtii; permitiendo insertar el candidato LbNDT2 en una membrana eucariota; el segundo, mediante la manipulación del vector bacteriano pETx28Mistic, se logró la inserción de las proteínas de interés, en la membrana plasmática de un sistema procariota, realizando una aproximación a su estudio in vivo; y finalmente, ensayos de complementación llevados a cabo en la levadura Saccharomyces cerevisiae, donde fue reestablecido el retraso en el crecimiento de los mutantes, con la inserción de los genes de interés, corroborando de manera indirecta la actividad de las proteínas. Asimismo, utilizando la tecnología del ADN recombinante y el sistema de expresión heterólogo Escherichia coli se obtuvo el antígeno necesario para la producción de una herramienta inmunológica desarrollada en el modelo aviar, que permitió su estudio in situ, encontrando que estas proteínas se ubican a nivel mitocondrial en el estadio de promastigote. En general, corroborar la función de este tipo de proteínas representa un reto; sin embargo, gracias a estos acercamientos se puede concluir que la LbNDT2 y LbNDT3, desempeñan un papel importante para el metabolismo energético en este parásito intracelular. De manera adicional, se estudió mediante la clonación, expresión y purificación, la Triparredoxina peroxidasa citosólica de L. braziliensis (LbTXNPxII) a partir del sistema heterólogo E. coli; permitiendo generar una herramienta inmunológica en modelo aviar, para el estudio in situ de esta proteína y la determinación de posibles interacciones moleculares en el parásito, mediante ensayos de co-inmunoprecipitación. (Texto tomado de la fuente). | |
dc.description.abstract | The intracellular parasite Leishmania competes with its hosts for the acquisition of essential compounds and, therefore, must develop efficient uptake mechanisms. This process is mediated by transporter proteins that play a fundamental role in cellular homeostasis, not only allowing the parasite to compete efficiently with the tissues, but also for these compounds to be distributed competently within the cell. Multiple families of proteins can mobilize molecules of metabolic relevance for this type of organisms the transport of the nicotinamide and adenine dinucleotide, NAD+ a molecule that plays a key role in essential functions has been described mainly by the SLC25A proteins, a family of mitochondrial transporters (MCF) present only in eukaryotes. In response to the increasing rate of development of resistance to drugs, as well as the numerous side effects of the same for the control of organisms of great importance in the public health of our country such as Leishmania; characterizing the proteins responsible for this translocation, based on homologies, either in sequence or structure with their orthologs, promises to provide information on many basic aspects of their biology, determining factors for the development of new therapies in the treatment of these parasitemias. In this work, two candidates for the NAD + transporter were studied in Leishmania braziliensis; this using bioinformatic tools, where it was found that the proteins called LbNDT2 and LbNDT3, possess all the structural and sequence characteristics of the family of mitochondrial transporters (MCF). Presenting potential post-translational modification sites by phosphorylation, acetylation, and glycosylation. Similarly, when comparing them with the orthologs described in other organisms, it is evident that these proteins are highly conserved at the structural level. On the other hand, in an experimental way, in order to evaluate its transport capacity, three approaches were developed in parallel; the first involved the use of the heterologous algal system Chlamydomonas reinhardtii; allowing the candidate LbNDT2 to be inserted into a eukaryotic membrane; the second, by manipulating the bacterial vector pETx28Mistic, the proteins of interest were inserted into the plasma membrane of the prokaryotic system, making an approach to their in vivo study; and finally, complementation tests carried out in the yeast Saccharomyces cerevisiae, where the growth retardation of the mutants was reestablished, with the insertion of the genes of interest, indirectly corroborating the activity of the proteins. Likewise, using recombinant DNA technology and the Escherichia coli heterologous expression system, the necessary antigen was obtained to produce an immunological tool developed in the avian model, which allowed the candidates to be studied in situ, finding that these proteins were located at the mitochondrial level in the promastigote stage. In general, corroborating the function of this type of protein represents a challenge; however, thanks to these approaches it can be concluded that LbNDT2 and LbNDT3 play an important role for energy metabolism in this intracellular parasite. Additionally, the cytosolic Triparredoxin peroxidase of L. braziliensis (LbTXNPxII) from the heterologous E. coli system was studied by means of cloning, expression, and purification, allowing the generation of an immunological tool in an avian model, for the in-situ study of this protein and the determination of possible molecular interactions in the parasite, through co-immunoprecipitation assays. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Departamento de Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Bireme | |
dc.relation | [1] Grupo de Investigaciones Microbiológicas-UR (GIMUR), “Colombia, el país con más especies de parásitos de Leishmania,” Programa de Comunicación de la Ciencia Universidad Ciencia y Desarrollo - Universidad del Rosario, pp. 2–8, 2017. | |
dc.relation | [2] J. Sunter and K. Gull, “Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding,” Open Biology, vol. 7, no. 9, p. 170165, 2017, doi: 10.1098/rsob.170165. | |
dc.relation | [3] A. G. M. Tielens and J. J. van Hellemond, “Surprising variety in energy metabolism within Trypanosomatidae,” Trends in Parasitology, vol. 25, no. 10, pp. 482–490, 2009, doi: 10.1016/j.pt.2009.07.007. | |
dc.relation | [4] P. Kaye and P. Scott, “Leishmaniasis: Complexity at the host-pathogen interface,” Nature Reviews Microbiology, vol. 9, no. 8, pp. 604–615, 2011, doi: 10.1038/nrmicro2608. | |
dc.relation | [5] L. Monzote, “Current Treatment of Leishmaniasis: A Review,” The Open Antimicrobial Agents Journal, vol. 1, pp. 9–19, 2009, doi: 10.2174/1876518100901010009. | |
dc.relation | [6] L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expression and Purification, vol. 115, pp. 26–33, 2015, doi: 10.1016/j.pep.2015.08.022. | |
dc.relation | [7] N. Forero-Baena, D. Sánchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramírez-Hernández, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),” Biochimie Open, vol. 1, pp. 61–69, 2015, doi: 10.1016/j.biopen.2015.11.001. | |
dc.relation | [8] C. H. Niño, N. Forero-Baena, L. E. Contreras, D. Sánchez-Lancheros, K. Figarella, and M. H. Ramírez, “Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi,” Memorias do Instituto Oswaldo Cruz, vol. 110, no. 7, pp. 890–897, 2015, doi: 10.1590/0074-02760150175. | |
dc.relation | [9] M. Molina-Arcas, F. Casado, and M. Pastor-Anglada, “Nucleoside Transporter Proteins,” Current Vascular Pharmacology, vol. 7, no. 4, pp. 426–434, 2009, doi: 10.2174/157016109789043892. | |
dc.relation | [10] S. M. Landfear, “Nutrient transport and pathogenesis in selected parasitic protozoa,” Eukaryotic Cell, vol. 10, no. 4, pp. 483–493, 2011, doi: 10.1128/EC.00287-10. | |
dc.relation | [11] R. C. and H. F. A. Boswell-Casteel, “Equilibrative Nucleoside Transporters – A Review,” Nucleosides Nucleotides Nucleic Acids, vol. 0, no. 0, pp. 1–24, 2016, doi: 10.1080/15257770.2016.1210805. | |
dc.relation | [12] J.-S. Choi and A. J. Berdis, “Nucleoside transporters: biological insights and therapeutic applications,” Future Medicinal Chemistry, vol. 4, no. 11, pp. 1461–1478, 2012, doi: 10.4155/fmc.12.79. | |
dc.relation | [13] P. Major, T. M. Embley, and T. A. Williams, “Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes,” Genome Biol. Evol, vol. 9, no. 2, pp. 480–487, 2017, doi: doi:10.1093/gbe/evx015. | |
dc.relation | [14] I. Haferkamp and S. Schmitz-Esser, “The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects,” Frontiers in Plant Science, vol. 3, no. 2, pp. 1–19, 2012, doi: 10.3389/fpls.2012.00002. | |
dc.relation | [15] D. S. Morales, L. E. Contreras, C. C. Rubiano, and M. H. R. Hernandez, “Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis (LbNDT1),” Heliyon, vol. 6, no. 7, p. e04331, 2020, doi: 10.1016/j.heliyon.2020.e04331. | |
dc.relation | [16] G. F. Esteban, B. J. Finlay, and A. Warren, Free-Living Protozoa, Fourth Edi., vol. 1. Elsevier, 2014. | |
dc.relation | [17] S. P. Mayfield and S. E. Franklin, “Expression of human antibodies in eukaryotic micro-algae,” Vaccine, vol. 23, no. 15 SPEC. ISS., pp. 1828–1832, 2005, doi: 10.1016/j.vaccine.2004.11.013. | |
dc.relation | [18] M. L. Ginger, “Niche metabolism in parasitic protozoa,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 361, no. 1465, pp. 101–118, 2006, doi: 10.1098/rstb.2005.1756. | |
dc.relation | [19] A. Y. Kostygov et al., “Euglenozoa: taxonomy , diversity and ecology , symbioses and viruses,” Open Biology, vol. 11, p. 200407, 2021, doi: https://doi.org/10.1098/rsob.200407. | |
dc.relation | [20] D. A. Maslov, F. R. Opperdoes, A. Y. Kostygov, H. Hashimi, J. Luke, and V. Yurchenko, “Recent advances in trypanosomatid research: genome organization , expression , metabolism , taxonomy and evolution,” Parasitology, pp. 1–27, 2018, doi: https://doi.org/10.1017/ S0031182018000951. | |
dc.relation | [21] D. A. Maslov, J. Votýpka, V. Yurchenko, and J. Lukeš, “Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed,” Trends in Parasitology, vol. 29, no. 1, pp. 43–52, 2013, doi: 10.1016/j.pt.2012.11.001. | |
dc.relation | [22] A. L. S. Santos, C. M. d’Avila-Levy, C. G. R. Elias, A. B. Vermelho, and M. H. Branquinha, “Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens,” Microbes and Infection, vol. 9, no. 8, pp. 915–921, 2007, doi: 10.1016/j.micinf.2007.03.018. | |
dc.relation | [23] A. Kaufer, J. Ellis, D. Stark, and J. Barratt, “The evolution of trypanosomatid taxonomy.,” Parasites & Vectors, vol. 10, no. 287, pp. 1–17, 2017, doi: 10.1186/s13071-017-2204-7. | |
dc.relation | [24] A. P. Jackson et al., “Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism,” Current Biology, vol. 26, no. 2, pp. 161–172, 2016, doi: 10.1016/j.cub.2015.11.055. | |
dc.relation | [25] Á. D. L. C. Pech-Canul, V. Monteón, and R. L. Solís-Oviedo, “A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi,” Journal of Parasitology Research, vol. 2017, 2017, doi: 10.1155/2017/3751403. | |
dc.relation | [26] R. M. L. Queiroz et al., “Cell surface proteome analysis of human-hosted trypanosoma cruzi life stages,” Journal of Proteome Research, vol. 13, no. 8, pp. 3530–3541, 2014, doi: 10.1021/pr401120y. | |
dc.relation | [27] W. De Souza, T. M. U. De Carvalho, and E. S. Barrias, “Review on Trypanosoma cruzi: Host cell interaction,” International Journal of Cell Biology, vol. 2010, 2010, doi: 10.1155/2010/295394. | |
dc.relation | [28] D. M. Walker, S. Oghumu, G. Gupta, B. S. McGwire, M. E. Drew, and A. R. Satoskar, “Mechanisms of cellular invasion by intracellular parasites,” Cellular and Molecular Life Sciences, vol. 71, no. 7, pp. 1245–1263, 2013, doi: 10.1007/s00018-013-1491-1. | |
dc.relation | [29] M. Molina-Arcas, F. Casado, and M. Pastor-Anglada, “Nucleoside Transporter Proteins,” Current Vascular Pharmacology, vol. 7, no. 4, pp. 426–434, 2009, doi: 10.2174/157016109789043892. | |
dc.relation | [30] S. M. Landfear, “Nutrient transport and pathogenesis in selected parasitic protozoa,” Eukaryotic Cell, vol. 10, no. 4, pp. 483–493, 2011, doi: 10.1128/EC.00287-10. | |
dc.relation | [33] P. One, S. A. N. Francisco, C. A. Pereira, and A. M. Silber, “On the Evolution of Hexose Transporters in Kinetoplastid Potozoans On the Evolution of Hexose Transporters in Kinetoplastid,” pp. 413–420, 2012, doi: 10.1371/journal.pone.0036303. | |
dc.relation | [34] T. D. Serafim et al., “Leishmania Metacyclogenesis Is Promoted in the Absence of Purines,” PLoS Neglected Tropical Diseases, vol. 6, no. 9, 2012, doi: 10.1371/journal.pntd.0001833. | |
dc.relation | [35] C. Cantó, K. J. Menzies, and J. Auwerx, “NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus,” Cell Metabolism, vol. 22, no. 1, pp. 31–53, 2015, doi: 10.1016/j.cmet.2015.05.023. | |
dc.relation | [36] W. Ying, “NAD +/NADH and NADP +/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences,” Antioxidants & Redox Signaling, vol. 10, no. 2, pp. 179–206, 2008, doi: 10.1089/ars.2007.1672. | |
dc.relation | [37] S. J. Lin and L. Guarente, “Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 241–246, 2003, doi: 10.1016/S0955-0674(03)00006-1. | |
dc.relation | [38] P. Poltronieri, “Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems,” Challenges, vol. 9, no. 1, p. 3, 2018, doi: 10.3390/challe9010003. | |
dc.relation | [39] L. J. Ortiz Joya, “Caracterización de la nicotinamida / nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) mediante análisis estructural y de interacción proteína-proteína Caracterización de la nicotinamida / nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis,” 2017. | |
dc.relation | [40] L. Contreras, “Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT),” 2016. | |
dc.relation | [41] A. W. Ravna, G. Sager, S. G. Dahl, and I. Sylte, “Membrane Transporters : Structure , Function and Targets for Drug Design,” no. May 2008, pp. 15–51, 2009, doi: 10.1007/7355_2008_023. | |
dc.relation | [42] W. Busch and M. H. Saier, “The Transporter Classification (TC) System , 2002,” vol. 37, no. 5, pp. 287–337, 2002. | |
dc.relation | [43] A. Kumar, P. Misra, B. Sisodia, A. K. Shasany, S. Sundar, and A. Dube, “Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry,” Parasitology International, vol. 64, no. 4, pp. 36–42, 2015, doi: 10.1016/j.parint.2015.01.004. | |
dc.relation | [44] F. Palmieri, “The mitochondrial transporter family SLC25: Identification, properties and physiopathology,” Molecular Aspects of Medicine, vol. 34, no. 2–3, pp. 465–484, 2013, doi: 10.1016/j.mam.2012.05.005. | |
dc.relation | [45] F. Palmieri, “Mitochondrial transporters of the SLC25 family and associated diseases: A review,” Journal of Inherited Metabolic Disease, vol. 37, no. 4, pp. 565–575, 2014, doi: 10.1007/s10545-014-9708-5. | |
dc.relation | [46] D. M. Sánchez-Lancheros, L. F. Ospina-Giraldo, and M. H. Ospina-Giraldo, “Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): A cytosol protein target for serine kinases,” Memorias do Instituto Oswaldo Cruz, vol. 111, no. 11, pp. 670–675, 2016, doi: 10.1590/0074-02760160103. | |
dc.relation | [47] C. A. Kulkarni and P. S. Brookes, “Cellular Compartmentation and the Redox/Nonredox Functions of NAD+,” Antioxidants and Redox Signaling, vol. 31, no. 9, pp. 623–642, 2019, doi: 10.1089/ars.2018.7722. | |
dc.relation | [48] D. Morales Herrera, “Contribución Al Estudio De Transportadores En Tripanosomátidos: Clonación De Por Lo Menos Un Gen Codificante Para Proteínas Transportadoras De Nad,” 2016. | |
dc.relation | [49] F. A. M. Paez, “PLAN ESTRATEGICO LEISHMANIASIS 2018 – 2022 Direccion de Promocion y Prevencion Subdireccion Enfermedades Transmsibles,” 2018. | |
dc.relation | [50] Instituto nacional de salud, “Boletín Epidemiológico Semanal: Leishmaniasis,” 2019. | |
dc.relation | [51] L. Ortiz-joya, L. E. Contreras-rodríguez, and M. H. Ramírez-Hernández, “Protein-protein interactions of the nicotinamide / nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis,” vol. 114, no. 6, pp. 1–9, 2019, doi: 10.1590/0074-02760180506. | |
dc.relation | [52] QIAGEN, CLC Main Workbench. 2016. | |
dc.relation | [53] G. Agrimi, A. Russo, P. Scarcia, and F. Palmieri, “The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD +,” Biochemical Journal, vol. 443, no. 1, pp. 241–247, 2011, doi: 10.1042/bj20111420. | |
dc.relation | [54] S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200. | |
dc.relation | [55] C. W. T. van Roermund et al., “The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP,” Plant Physiology, vol. 171, no. 3, pp. 2127–2139, 2016, doi: 10.1104/pp.16.00540. | |
dc.relation | [56] A. Krogh, B. Larsson, G. Von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001, doi: 10.1006/jmbi.2000.4315. | |
dc.relation | [57] L. Käll, A. Krogh, and E. L. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1027–1036, 2004, doi: 10.1016/j.jmb.2004.03.016. | |
dc.relation | [58] H. Viklund and A. Elofsson, “OCTOPUS: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar,” Bioinformatics, vol. 24, no. 15, pp. 1662–1668, 2008, doi: 10.1093/bioinformatics/btn221. | |
dc.relation | [59] TS. M. Reynolds, L. Käll, M. E. Riffle, J. A. Bilmes, and W. S. Noble, “Transmembrane topology and signal peptide prediction using dynamic Bayesian networks,” PLoS Computational Biology, vol. 4, no. 11, 2008, doi: 10.1371/journal.pcbi.1000213. | |
dc.relation | [60] L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. E. Sternberg, “Europe PMC Funders Group The Phyre2 web portal for protein modelling , prediction and analysis,” Nature protocols, vol. 10, no. 6, pp. 845–858, 2015, doi: 10.1038/nprot.2015.053. | |
dc.relation | [61] M. Blum et al., “The InterPro protein families and domains database: 20 years on,” Nucleic Acids Research, vol. 49, no. D1, pp. D344–D354, 2021, doi: 10.1093/nar/gkaa977. | |
dc.relation | [62] T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, “SWISS-MODEL: An automated protein homology-modeling server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3381–3385, 2003, doi: 10.1093/nar/gkg520. | |
dc.relation | [63] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “The I-TASSER suite: Protein structure and function prediction,” Nature Methods, vol. 12, no. 1, pp. 7–8, 2014, doi: 10.1038/nmeth.3213. | |
dc.relation | [64] Y. Z. Ambrish Roy, Alper Kucukural, et al,. “I-TASSER: a unified platform for automated protein structure and function prediction,” Current protocols in bioinformatics, vol. 9, no. December, pp. 5–9, 2011, doi: 10.1038/nprot.2010.5.I-TASSER. | |
dc.relation | [65] Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 8, pp. 1–8, 2008, doi: 10.1186/1471-2105-9-40. | |
dc.relation | [66] D. E. Kim, D. Chivian, and D. Baker, “Protein structure prediction and analysis using the Robetta server,” Nucleic Acids Research, vol. 32, no. WEB SERVER ISS., pp. 526–531, 2004, doi: 10.1093/nar/gkh468. | |
dc.relation | [67] E. C. Meng, E. F. Pettersen, G. S. Couch, C. C. Huang, and T. E. Ferrin, “Tools for integrated sequence-structure analysis with UCSF Chimera,” BMC Bioinformatics, vol. 7, no. 339, pp. 1–10, 2006, doi: 10.1186/1471-2105-7-339. | |
dc.relation | [68] E. F. Pettersen et al., “UCSF Chimera — A Visualization System for Exploratory Research and Analysis,” 2004, doi: 10.1002/jcc.20084. | |
dc.relation | [69] D. Bhattacharya, J. Nowotny, R. Cao, and J. Cheng, “3Drefine: an interactive web server for efficient protein structure refinement,” Nucleic acids research, vol. 44, no. W1, pp. W406–W409, 2016, doi: 10.1093/nar/gkw336. | |
dc.relation | [70] S. C. Lovell et al., “Structure validation by C alpha Geometry: phi, psi and C beta Deviation,” Proteins-Structure Function and Genetics, vol. 50, no. August 2002, pp. 437–450, 2003, doi: 10.1002/prot.10286. | |
dc.relation | [71] J. J. Almagro Armenteros et al., “SignalP 5.0 improves signal peptide predictions using deep neural networks,” Nature Biotechnology, vol. 37, no. 4, pp. 420–423, 2019, doi: 10.1038/s41587-019-0036-z. | |
dc.relation | [72] J. J. A. Armenteros et al., “Detecting sequence signals in targeting peptides using deep learning,” Life Science Alliance, vol. 2, no. 5, pp. 1–14, 2019, doi: 10.26508/lsa.201900429. | |
dc.relation | [73] K. C. Chou and H. Bin Shen, “A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0,” PLoS ONE, vol. 5, no. 4, pp. 1–9, 2010, doi: 10.1371/journal.pone.0009931. | |
dc.relation | [74] J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, and O. Winther, “DeepLoc: prediction of protein subcellular localization using deep learning,” Bioinformatics (Oxford, England), vol. 33, no. 21, pp. 3387–3395, 2017, doi: 10.1093/bioinformatics/btx431. | |
dc.relation | [75] W. Z. Lin, J. A. Fang, X. Xiao, and K. C. Chou, “ILoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins,” Molecular BioSystems, vol. 9, no. 4, pp. 634–644, 2013, doi: 10.1039/c3mb25466f. | |
dc.relation | [76] N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites,” Journal of Molecular Biology, vol. 294, no. 5, pp. 1351–1362, 1999, doi: 10.1006/jmbi.1999.3310. | |
dc.relation | [77] L. Kiemer, J. D. Bendtsen, and N. Blom, “NetAcet: Prediction of N-terminal acetylation sites,” Bioinformatics, vol. 21, no. 7, pp. 1269–1270, 2005, doi: 10.1093/bioinformatics/bti130. | |
dc.relation | [78] C. Steentoft et al., “Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology,” EMBO Journal, vol. 32, no. 10, pp. 1478–1488, 2013, doi: 10.1038/emboj.2013.79. | |
dc.relation | [79] R. Gupta and S. Brunak, “Prediction of glycosylation across the human proteome and the correlation to protein function.,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, vol. 322, pp. 310–322, 2002, doi: 10.1142/9789812799623_0029. | |
dc.relation | [80] J. S. Chauhan, A. Rao, and G. P. S. Raghava, “In silico Platform for Prediction of N-, O- and C-Glycosites in Eukaryotic Protein Sequences,” PLoS ONE, vol. 8, no. 6, pp. 1–10, 2013, doi: 10.1371/journal.pone.0067008. | |
dc.relation | [81] S. Eliana, V. Silva, D. María, H. Ramírez, H. Mcs, and D. de Biología, “DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA PARA EXPRESIÓN DE PROTEÍNAS RECOMBINANTES EN ALGAS,” pp. 1–68. | |
dc.relation | [82] T. Pröschold, E. H. Harris, and A. W. Coleman, “Portrait of a species: Chlamydonomas reinhardtii,” Genetics, vol. 170, no. 4, pp. 1601–1610, 2005, doi: 10.1534/genetics.105.044503. | |
dc.relation | [83] E. Specht, S. Miyake-Stoner, and S. Mayfield, “Micro-algae come of age as a platform for recombinant protein production,” Biotechnology Letters, vol. 32, no. 10, pp. 1373–1383, 2010, doi: 10.1007/s10529-010-0326-5. | |
dc.relation | [84] Invitrogen by Life Technologies, GeneArt TM Chlamydomonas Protein Expression Vector. | |
dc.relation | [85] A. Romo, “Manual para el cultivo de microalgas,” Universidad Autónoma de baja California Sur, 2002. | |
dc.relation | [86] J. K. Hoober and Harris.Elizabeth H., The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use., Academic P., no. 246(4936). San Diego, 1989. | |
dc.relation | [87] QIAGEN, Manual del Kit QIAamp(R) DSP DNA Blood Mini, Versión 2. 2012. | |
dc.relation | [88] Promega, “pGEM®- T and pGEM®- T Easy Vector Systems,” Technical Manual, pp. 1–28, 2010. | |
dc.relation | [89] D. W. & C. S. H. L. Sambrook, Joseph. & Russell, Molecular cloning: a laboratory manual. 2001. | |
dc.relation | [90] Invitrogen by Life Technologies, “PureLink® HiPure Plasmid Filter Purification Kits,” Protocols, vol. MAN0000545, no. Publication part number 25-0880, pp. 2–28, 2011. | |
dc.relation | [91] Invitrogen by Life Technologies, T4 DNA Ligase Handbook, Technical. 2002. | |
dc.relation | [92] C. Scarbrough and M. Wirschell, “Comparative analysis of cryopreservation methods in Chlamydomonas reinhardtii,” Cryobiology, vol. 73, no. 2, pp. 291–295, 2016, doi: 10.1016/j.cryobiol.2016.07.011. | |
dc.relation | [93] J. G. Day and M. R. McLellan, Cryopreservation and freeze-drying protocols., Second edi., vol. 368. 2007. | |
dc.relation | [94] N. S. Alves et al., “MISTIC-fusion proteins as antigens for high quality membrane protein antibodies,” Scientific Reports, vol. 7, no. February, pp. 1–12, 2017, doi: 10.1038/srep41519. | |
dc.relation | [95] H. Dvir, M. E. Lundberg, S. K. Maji, R. Riek, and S. Choe, “Mistic: Cellular localization, solution behavior, polymerization, and fibril formation,” Protein Science, vol. 18, no. 7, pp. 1564–1570, 2009, doi: 10.1002/pro.148. | |
dc.relation | [96] H. Dvir and S. Choe, “Bacterial expression of a eukaryotic membrane protein in fusion to various Mistic orthologs,” Protein Expression and Purification, vol. 68, no. 1, pp. 28–33, 2009, doi: 10.1016/j.pep.2009.06.007. | |
dc.relation | [97] M. Wolfsberg, Tyra G. Bethesda, “Using the NCBI Map Viewer to Browse Genomic Sequence Data,” Current protocols in bioinformatics, vol. 1.5.1-1.5., pp. 1–25, 2010, doi: 10.1002/0471250953.bi0105s29. | |
dc.relation | [98] J. M. Butler, “DNA Amplification (The Polymerase Chain Reaction),” in Fundamentals of Forensic DNA Typing, 2010, pp. 125–146. | |
dc.relation | [99] D. Santiago and M. H. Ramirez-Hernandez, “Estudio del transporte de nucleótidos en parásitos intracelulares: caracterización de un posible transportador de NAD + en Leishmania braziliensis,” 2019. | |
dc.relation | [100] F. M. Ausubel et al., Current Protocols in Molecular Biology, vol. 1. 2003. | |
dc.relation | [101] Invitrogen by Life Technologies, ChampionTM pET Directional TOPO® Expression Kits, no. 25. 2010. | |
dc.relation | [102] H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.,” Proceedings of the National Academy of Sciences, vol. 76, no. 9, pp. 4350–4354, 1979, doi: 10.1073/pnas.76.9.4350. | |
dc.relation | [103] Z. Q. Liu, T. Mahmood, and P. C. Yang, “Western blot: Technique, theory and trouble shooting,” North American Journal of Medical Sciences, vol. 6, no. 3, p. 160, 2014, doi: 10.4103/1947-2714.128482. | |
dc.relation | [104] J. W. Wimpenny and A. Firth, “Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen.,” Journal of Bacteriology, vol. 111, no. 1, pp. 24–32, 1972, doi: 10.1128/jb.111.1.24-32.1972. | |
dc.relation | [105] Y. Zhou, L. Wang, F. Yang, X. Lin, S. Zhang, and Z. K. Zhao, “Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD +-auxotrophic mutant,” Applied and Environmental Microbiology, vol. 77, no. 17, pp. 6133–6140, 2011, doi: 10.1128/AEM.00630-11. | |
dc.relation | [106] Invitrogen by Life Technologies, pYES2 Manual (Cat. no. V825–20), no. 28–0053. 2008. | |
dc.relation | [107] J. Piškur and C. Compagno, Molecular mechanisms in yeast carbon metabolism. 2014. | |
dc.relation | [108] T. Vincze, J. Posfai, and R. J. Roberts, “NEBcutter: A program to cleave DNA with restriction enzymes,” Nucleic Acids Research, vol. 31, no. 13, pp. 3688–3691, 2003, doi: 10.1093/nar/gkg526. | |
dc.relation | [109] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, vol. 72, pp. 248–254, 1976, doi: doi: 10.1006/abio.1976.9999. | |
dc.relation | [110] H. F. Stils, “Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund’s Complete and Other Adjuvants,” ILAR Journal, vol. 46, no. 3, pp. 280–293, 2005, doi: 10.1093/ilar.46.3.280. | |
dc.relation | [111] W. A. Amro, W. Al-Qaisi, and F. Al-Razem, “Production and purification of IgY antibodies from chicken egg yolk,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 1, pp. 99–103, 2018, doi: 10.1016/j.jgeb.2017.10.003. | |
dc.relation | [112] D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation,” Journal of Visualized Experiments, vol. 51, no. i, p. e3084, 2011, doi: 10.3791/3084. | |
dc.relation | [113] F. Palmieri et al., “Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD + Carrier Proteins,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31249–31259, 2009, doi: 10.1074/jbc.M109.041830. | |
dc.relation | [114] INVITROGEN, “pET SUMO,” vol. 5474, no. C, p. 5474. | |
dc.relation | [115] T. Vincze, J. Posfai, and R. J. Roberts, “NEBcutter: A program to cleave DNA with restriction enzymes,” Nucleic Acids Research, vol. 31, no. 13, pp. 3688–3691, 2003, doi: 10.1093/nar/gkg526. | |
dc.relation | [116] The QIAexpressionistTM, A handbook for high-level expression and purification of 6xHis-tagged proteins, Fifth Edit., no. June. 2003. | |
dc.relation | [117] JOSHUA A. BORNHORST and JOSEPH J. FALKE, “Purification of proteins using polyhistidine affinity tags.,” Bulletin de l’Academie Nationale de Medecine, vol. 150, no. 23, pp. 446–453, 1966. | |
dc.relation | [118] T. F. Scientific, “Pierce ® Silver Stain Kit,” 2016. | |
dc.relation | [119] P. van der Geer, Analysis of protein-protein interactions by coimmunoprecipitation, 1st ed., vol. 541. Elsevier Inc., 2014. | |
dc.relation | [120] T. S. Luongo et al., “SLC25A51 is a mammalian mitochondrial NAD+ transporter,” Nature, vol. 588, no. 7836, pp. 174–179, 2021, doi: 10.1038/s41586-020-2741-7. SLC25A51. | |
dc.relation | [121] J. Kuan and M. H. Saier, “The Mitochondrial Carrier Family of Transport Proteins : Structural , Functional , and Evolutionary Relationships,” Critical reviews in biochemistry and molecular biology, vol. 28, no. 3, pp. 209–33, 1993, doi: 10.3109/10409239309086795. | |
dc.relation | [122] F. Madeira et al., “The EMBL-EBI search and sequence analysis tools APIs in 2019,” Nucleic Acids Research, vol. 47, no. W1, pp. W636–W641, 2019, doi: 10.1093/nar/gkz268. | |
dc.relation | [123] Hannaert, Bringaud, and Michels, “Kinetoplastid Biology and Disease,” Kinetoplastid Biology and Disease, vol. 10, pp. 1–10, 2007, doi: 10.1186/1475-9292-6-4. | |
dc.relation | [124] L. C. Czuba, K. M. Hillgren, and P. W. Swaan, “Post-translational modifications of transporters,” Pharmacology and Therapeutics, vol. 192, pp. 88–99, 2018, doi: 10.1016/j.pharmthera.2018.06.013. | |
dc.relation | [125] C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, “Post-translational protein modifications in malaria parasites,” Nature Reviews Microbiology, vol. 13, no. 3, pp. 160–172, 2015, doi: 10.1038/nrmicro3402. | |
dc.relation | [126] N. B. Pedersen, M. C. Carlsson, and S. F. Pedersen, “Glycosylation of solute carriers: mechanisms and functional consequences,” Pflugers Archiv European Journal of Physiology, vol. 468, no. 2, pp. 159–176, 2016, doi: 10.1007/s00424-015-1730-4. | |
dc.relation | [127] Amanda R. Burnham-Marusich and P. M. Berninsone, “Multiple proteins with essential mitochondrial functions have glycosylated isoforms,” Mitochondrion., vol. 12, no. 4, pp. 423–427, 2012, doi: 10.1016/j.mito.2012.04.004.Multiple. | |
dc.relation | [128] N. Q. K. Le, G. A. Sandag, and Y. Y. Ou, “Incorporating post translational modification information for enhancing the predictive performance of membrane transport proteins,” Computational Biology and Chemistry, vol. 77, pp. 251–260, 2018, doi: 10.1016/j.compbiolchem.2018.10.010. | |
dc.relation | [129] L. de L. de L. Balico et al., “Heterologous expression of mitochondrial nicotinamide adenine dinucleotide transporter (Ndt1) from Aspergillus fumigatus rescues impaired growth in Δndt1Δndt2 Saccharomyces cerevisiae strain,” Journal of Bioenergetics and Biomembranes, vol. 49, no. 6, pp. 423–435, 2017, doi: 10.1007/s10863-017-9732-x. | |
dc.relation | [130] F. Palmieri and C. L. Pierri, “Structure and function of mitochondrial carriers - Role of the transmembrane helix P and G residues in the gating and transport mechanism,” FEBS Letters, vol. 584, no. 9, pp. 1931–1939, 2010, doi: 10.1016/j.febslet.2009.10.063. | |
dc.relation | [131] F. Palmieri and M. Monné, Discoveries, metabolic roles and diseases of mitochondrial carriers: A review, vol. 1863, no. 10. Elsevier B.V., 2016. | |
dc.relation | [132] F. Palmieri, C. L. Pierri, A. De Grassi, A. Nunes-Nesi, and A. R. Fernie, “Evolution, structure and function of mitochondrial carriers: A review with new insights,” Plant Journal, vol. 66, no. 1, pp. 161–181, 2011, doi: 10.1111/j.1365-313X.2011.04516. x. | |
dc.relation | [133] M. S. King, M. Kerr, P. G. Crichton, R. Springett, and E. R. S. Kunji, “Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1857, no. 1, pp. 14–22, 2016, doi: 10.1016/J.BBABIO.2015.09.013. | |
dc.relation | [134] C. Peña, “Métodos de inferencia filogenética,” Revista Peruana de Biologia, vol. 18, no. 2, pp. 265–267, 2011, doi: 10.15381/rpb.v18i2.243. | |
dc.relation | [135] N. Kory et al., “MCART1/SLC25A51 is required for mitochondrial NAD transport,” Science Advances, vol. 6, no. 43, pp. 1–20, 2020, doi: 10.1126/sciadv.abe5310. | |
dc.relation | [136] L. Palmieri et al., “Identification and Characterization of ADNT1, a Novel Mitochondrial Adenine Nucleotide Transporter from Arabidopsis,” Plant Physiology, vol. 148, no. 4, pp. 1797–1808, 2008, doi: 10.1104/pp.108.130310. | |
dc.relation | [137] O. Trentmann, C. Decker, H. H. Winkler, and H. E. Neuhaus, “Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties,” European Journal of Biochemistry, vol. 267, no. 13, pp. 4098–4105, 2000, doi: 10.1046/j.1432-1033.2000.01468.x. | |
dc.relation | [138] S. S. Merchant et al., “The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions,” Science, vol. 318, no. 5848, pp. 245–250, 2010, doi: 10.1126/science.1143609. | |
dc.relation | [139] Gustavo Adolfo Garzón Fajardo, “Estudio de un candidato a NAD quinasa en Leishmania sp,” 2018. | |
dc.relation | [140] L. Invitrogen, “GeneArt Chlamydomonas Engineering Kits,” Tools.Lifetechnologies.Com, 2013, [Online]. Available: http://tools.lifetechnologies.com/content/sfs/manuals/geneart_chlamy_kits_man.pdf%5Cnpapers2://publication/uuid/F9E00F25-FDDF-4070-84B1-CD50853BA789. | |
dc.relation | [141] D. Barrera and S. Mayfield, High‐value Recombinant Protein Production in Microalgae. 2013. | |
dc.relation | [142] S. Rosales-Mendoza, L. M. T. Paz-Maldonado, and R. E. Soria-Guerra, “Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives,” Plant Cell Reports, vol. 31, no. 3, pp. 479–494, 2012, doi: 10.1007/s00299-011-1186-8. | |
dc.relation | [143] J. H. Mussgnug, “Genetic tools and techniques for Chlamydomonas reinhardtii,” Applied Microbiology and Biotechnology, vol. 99, no. 13, pp. 5407–5418, 2015, doi: 10.1007/s00253-015-6698-7. | |
dc.relation | [144] E. H. Harris, “CHLAMYDOMONAS AS A MODEL ORGANISM,” Plant Physiol. Plant Mol. Biol., vol. 52, pp. 363–406, 2001. | |
dc.relation | [145] S. Sasso, H. Stibor, M. Mittag, and A. R. Grossman, “The natural history of model organisms from molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature,” eLife, vol. 7, no. e39233, pp. 1–14, 2018, doi: 10.7554/eLife.39233. | |
dc.relation | [146] P. Kathir et al., “Molecular map of the Chlamydomonas reinhardtii nuclear genome,” Eukaryotic Cell, vol. 2, no. 2, pp. 362–379, 2003, doi: 10.1128/EC.2.2.362. | |
dc.relation | [147] S. Noboru, “Mitotic Replication of Deoxyribonucleic Acid in Chlamydomonas reinhardi,” National Academy of Sciences, vol. 46, no. 1, pp. 83–91, 1960. | |
dc.relation | [148] A. Hallmann, “Evolution of reproductive development in the volvocine algae,” Sexual Plant Reproduction, vol. 24, no. 2, pp. 97–112, 2011, doi: 10.1007/s00497-010-0158-4. | |
dc.relation | [149] Y. K. Lee et al., Basic Culturing and Analytical Measurement Techniques, no. April. 2013. | |
dc.relation | [150] J. M. Bateman and S. Purton, “Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker,” Molecular and General Genetics, vol. 263, no. 3, pp. 404–410, 2000, doi: 10.1007/s004380051184. | |
dc.relation | [151] S. Kim et al., “A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii,” PLoS ONE, vol. 9, no. 7, pp. 1–9, 2014, doi: 10.1371/journal.pone.0101018. | |
dc.relation | [152] L. E. Brown, S. L. Sprecher, and L. R. Keller, “Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation.,” Molecular and Cellular Biology, vol. 11, no. 4, pp. 2328–2332, 1991, doi: 10.1128/mcb.11.4.2328. | |
dc.relation | [153] M. Schroda, “Good News for Nuclear Transgene Expression in Chlamydomonas,” Cells, vol. 8, no. 12, p. 1534, 2019, doi: 10.3390/cells8121534. | |
dc.relation | [154] J. M. Coll, “Review. Methodologies for transferring DNA into eukaryotic microalgae,” Spanish Journal of Agricultural Research, vol. 4, no. 4, pp. 316–330, 2006, doi: 10.5424/sjar/2006044-209. | |
dc.relation | [155] K. L. Kindle, “High-frequency nuclear transformation of Chlamydomonas reinhardtii,” Methods in Enzymology, vol. 297, no. February, pp. 27–38, 1998, doi: 10.1016/S0076-6879(98)97005-7. | |
dc.relation | [156] A. E. Rawlings, “Membrane proteins: always an insoluble problem?,” Biochemical Society Transactions, vol. 44, no. 3, pp. 790–795, 2016, doi: 10.1042/bst20160025. | |
dc.relation | [157] E. Psachoulia, P. J. Bond, and M. S. P. Sansom, “MD simulations of mistic: Conformational stability in detergent micelles and water,” Biochemistry, vol. 45, no. 30, pp. 9053–9058, 2006, doi: 10.1021/bi0608818. | |
dc.relation | [158] A. Deniaud et al., “Expression of a chloroplast ATP/ADP transporter in E. coli membranes: Behind the Mistic strategy,” Biochimica et Biophysica Acta - Biomembranes, vol. 1808, no. 8, pp. 2059–2066, 2011, doi: 10.1016/j.bbamem.2011.04.011. | |
dc.relation | [159] T. P. Roosild, J. Greenwald, M. Vega, S. Castronovo, R. Riek, and S. Choe, “NMR structure of mistic, a membrane-integrating protein for membrane protein expression,” Science, vol. 307, no. 5713, pp. 1317–1321, 2005, doi: 10.1126/science.1106392. | |
dc.relation | [160] Balducci E, Emanuelli M, Raffaelli N, et al,. “Assay methods for nicotinamide mononucleotide adenylyltransferase of wide applicability,” Anal Biochem, vol. 228, pp. 64–68, 1995. | |
dc.relation | [161] S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200. | |
dc.relation | [162] A. Uscanga. B, S. P. J, and F. J, “Estudio de la variación de la composición de los polisacáridos contenidos en la pared celular de la levadura Saccharomyces Cerevisiae,” Revista Electrónica y Tecnológica e-Gnosis, vol. 3, no. 12, p. e-Gnosis, 2005. | |
dc.relation | [163] S. Kawai, W. Hashimoto, and K. Murata, “Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism.,” Bioengineered bugs, vol. 1, no. 6, pp. 395–403, 2010, doi: 10.4161/bbug.1.6.13257. | |
dc.relation | [164] C. H. Schein, “Production of soluble recombinant proteins in bacteria,” Nature Biotechnology, vol. 7, no. 11, pp. 1141–1149, 1989. | |
dc.relation | [165] L. Invitrogen, ChampionTM pET Directional TOPO® Expression Kits, no. 25–0400. 2011. | |
dc.relation | [166] E. P. V. Pereira, M. F. van Tilburg, E. O. P. T. Florean, and M. I. F. Guedes, “Egg yolk antibodies (IgY)and their applications in human and veterinary health: A review,” International Immunopharmacology, vol. 73, no. May, pp. 293–303, 2019, doi: 10.1016/j.intimp.2019.05.015. | |
dc.relation | [167] D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation,” Journal of Visualized Experiments, vol. 51, no. e3084, pp. 1–6, 2011, doi: 10.3791/3084. | |
dc.relation | [168] C. Colasante, P. Peña Diaz, C. Clayton, and F. Voncken, “Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation,” Molecular and Biochemical Parasitology, vol. 167, no. 2, pp. 104–117, 2009, doi: 10.1016/j.molbiopara.2009.05.004. | |
dc.relation | [169] D. Santiago and M. H. Ramirez-Hernandez, “Estudio del transporte de nucleótidos en parásitos intracelulares: caracterización de un posible transportador de NAD + en Leishmania braziliensis,” 2019. | |
dc.relation | [170] M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic Acids Research, vol. 45, no. W1, pp. W24–W29, 2017, doi: 10.1093/nar/gkx346. | |
dc.relation | [171] N. Lehninger, Principios de Bioquímica. 2009. | |
dc.relation | [172] E. B. Taylor, “Functional Properties of the Mitochondrial Carrier System,” Trends in Cell Biology, vol. 27, no. 9, pp. 633–644, 2017, doi: 10.1016/j.tcb.2017.04.004. | |
dc.relation | [173] A. H. Fairlamb and A. Cerami, “Metabolism and funtions of Trypanothione in the kinetoplastida,” Annu. Rev. Microbial., vol. 46, pp. 695–729, 1992. | |
dc.relation | [174] S. D. Barr and L. Gedamu, “Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi. Evidence for an enzymatic detoxification of hydroxyl radicals,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 34279–34287, 2001, doi: 10.1074/jbc.M104406200. | |
dc.relation | [175] J. P. Iyer, A. Kaprakkaden, M. L. Choudhary, and C. Shaha, “Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence,” Molecular Microbiology, vol. 68, no. 2, pp. 372–391, 2008, doi: 10.1111/j.1365-2958.2008.06154.x. | |
dc.relation | [176] A. Fiorillo, G. Colotti, A. Boffi, P. Baiocco, and A. Ilari, “The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of Leishmania Detoxification Pathway,” PLoS Neglected Tropical Diseases, vol. 6, no. 8, p. e1781, 2012, doi: 10.1371/journal.pntd.0001781. | |
dc.relation | [177] L. Ortiz-Joya, L. E. Contreras-rodríguez, and M. H. Ramírez-Hernández, “Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis,” Memorias do Instituto Oswaldo Cruz, vol. 114, no. 2, pp. 1–9, 2019, doi: 10.1590/0074-02760180506. | |
dc.relation | [178] V. de La Torre Russis, A. Valles, R. Gómez, G. Chinea, and T. Pons, “Interacciones proteína-proteína: Bases de datos y métodos teóricos de predicción,” Biotecnologia Aplicada, vol. 20, no. 4, pp. 201–208, 2003. | |
dc.relation | [179] A. Kumar, B. Saha, and S. Singh, “Dataset generated for Dissection of mechanisms of Trypanothione Reductase and Tryparedoxin Peroxidase through dynamic network analysis and simulations in leishmaniasis,” Data in Brief, vol. 15, pp. 757–769, 2017, doi: 10.1016/j.dib.2017.10.031. | |
dc.relation | [180] L. Flohé et al., “Tryparedoxin peroxidase of Leishmania donovani: Molecular cloning, heterologous expression, specificity, and catalytic mechanism,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 324–335, 2002, doi: 10.1006/abbi.2001.2688. | |
dc.relation | [181] M. A. B. de Morais, T. de A. C. B. de Souza, and M. T. Murakami, “Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the mitochondrial tryparedoxin peroxidase from Leishmania braziliensis,” Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol. 69, no. 4, pp. 408–411, 2013, doi: 10.1107/s1744309113003989. | |
dc.relation | [182] J. König and A. H. Fairlamb, “A comparative study of type I and type II tryparedoxin peroxidases in Leishmania major,” FEBS Journal, vol. 274, no. 21, pp. 5643–5658, 2007, doi: 10.1111/j.1742-4658.2007.06087.x. | |
dc.relation | [183] J. Ko, H. Park, L. Heo, and C. Seok, “GalaxyWEB server for protein structure prediction and refinement,” Nucleic Acids Research, vol. 40, no. W1, pp. 294–297, 2012, doi: 10.1093/nar/gks493. | |
dc.relation | [184] M. Brindisi et al., “Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking,” Scientific Reports, vol. 5, no. 9705, pp. 1–10, 2015, doi: 10.1038/srep09705. | |
dc.relation | [185] M. C. Gretes, L. B. Poole, and P. A. Karplus, “Peroxiredoxins in Parasites,” Antioxidants & Redox Signaling, vol. 17, no. 4, pp. 608–633, 2012, doi: 10.1089/ars.2011.4404. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Exploración de un transportador de NAD+ y/o sus precursores en Leishmania | |
dc.type | Trabajo de grado - Maestría | |