dc.contributorOrrego Alzate, Carlos Eduardo
dc.contributorGRUPO DE ALIMENTOS-FRUTALES
dc.creatorCaicedo García, Maria Alejandra
dc.date.accessioned2021-10-09T17:56:16Z
dc.date.accessioned2022-09-21T15:04:24Z
dc.date.available2021-10-09T17:56:16Z
dc.date.available2022-09-21T15:04:24Z
dc.date.created2021-10-09T17:56:16Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80472
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3375084
dc.description.abstractEl objetivo de la presente investigación fue obtener concentrados ricos en fibra dietaría a partir del albedo con aprovechamiento de residuos agroindustriales de maracuyá obtenidos de una empresa procesadora de frutas de la región. Luego de caracterizado el residuo se procesó, se optimizaron las alternativas y se realizó una evaluación preliminar de los aspectos técnicos, de costos y ambientales del proceso productivo a nivel industrial, usando el software de simulación Super Pro Designer ®. La optimización de la extracción de las fracciones de fibra a partir del uso de etanol y agua como solventes a diferentes temperaturas de extracción y de secado por medio del análisis estadístico de un diseño central compuesto desarrollado en el software de diseño de experimentos y optimización Design Expert®, para así elegir el mejor solvente (agua) que brindara ventajas económicas, ambientales y de rendimiento del producto de interés. La etapa experimental se desarrolló alrededor de las condiciones de temperatura de extracción y de secado de 60 °C, bajo las cuales se logró el mayor contenido de fibra soluble del 16% aproximadamente. Las temperaturas de extracción y secado optimizadas por medio del análisis de superficie de respuesta para la obtención de las fracciones ricas en fibra fueron 63°C y 61°C, respectivamente, condiciones que permitieron obtener rendimientos del 26% de fibra dietaría soluble (FDS), 61% de fibra Insoluble (FDI) y 87 % de Fibra Total (FDT). Las propiedades de hidratación, absorción de aceite de la fracción obtenida muestran valores altos que indican que son potenciales para ser aplicada en diferentes procesos industriales y/o tecnológicos o enriquecimiento de alimentos. En el análisis preliminar de costos del proceso productivo la inversión inicial del proyecto está alrededor de $ 2,147,137,750.00, cifra obtenida al valorar las etapas de la ingeniería del proceso tales como el costo total de equipos, maquinaria, muebles, infraestructura, instalaciones eléctricas, tuberías y conexiones, aislamiento, adaptación del terreno, edificios auxiliares, costos de materia prima, mano de obra, servicios, gastos de estos valores anuales. Luego del primer año en el que se realizaría el montaje y arranque de la planta, el volumen de las ventas estimadas del producto es de 648,867.00 unidades por año y el tiempo de recuperación de la inversión se calculó en 3 años
dc.description.abstractThe objective of this research was to obtain concentrates rich in dietary fiber from albedo with the use of agro-industrial residues of passion fruit obtained from a fruit processing company in the region. After characterizing the waste, it was processed, the alternatives were optimized and a preliminary evaluation of the technical, cost and environmental aspects of the production process at an industrial level was carried out, using the Super Pro Designer simulation software. The optimization of the extraction of fiber fractions from the use of ethanol and water as solvents at different extraction and drying temperatures through the statistical analysis of a composite central design developed in the optimization and design-of-experiments software Design Expert® in order to choose the solvent that will provide economic, environmental and performance of the product of interest. The experimental stage that was developed around the extraction and drying temperature conditions of 60 ° C, under which it was achieved the highest soluble fiber content of approximately 16%. The extraction and drying temperatures, optimized by means of the response surface analysis to obtain the fractions rich in fiber were 63 ° C and 61 ° C, respectively, conditions that allowed obtaining yields of 26% of soluble dietary fiber (FDS) , 61% Insoluble fiber (FDI) and 87% Total Fiber (FDT). The hydration and oil absorption properties of the fraction obtained show high values that indicate that they are potential to be applied in different industrial and / or technological processes or food enrichment. In the preliminary cost analysis of the production process, the initial investment of the project is around $ 2,147,137,750.00, a figure obtained by evaluating the stages of the process engineering such as the total cost of equipment, machinery, furniture, infrastructure, electrical installations, pipes and connections, insulation, adaptation of the terrain, auxiliary buildings, costs of raw materials, labor, services, expenses of these annual values. After the first year in which the assembly and start-up of the plant would be carried out, the estimated sales volume of the product is 648,867.00 units per year and the payback time for the investment was calculated in 3 years.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationPeñaranda, L. Montenegro, S. y Giraldo P. Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental. Rev Investig Agrar Y Ambient 2017;8(2):141–150.
dc.relationIglesias D. Costos económicos por la generación y manejo de residuos sólidos en el municipio de Toluca, Estado de México. Rev Equilibrio Económico 2007;3 (2):131–48.
dc.relationVargas Y. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Editor Neogranadina 2018;14.
dc.relationJaramillo , M. Cardenas J, Orozco J. Manual sobre el cultivo del maracuyá ( Passiflora edulis ) en Colombia. 2008.
dc.relationMatos, A. Chambilla E. Importancia de la Fibra Dietética , sus Propiedades Funcionales en la Alimentación Humana y en la Industria Alimentaria. Cienc Y Tecnol Aliment 2010;1:4–17.
dc.relationCórdoba A. Caracterización de Propiedades Relacionadas con la Textura de Suspensiones de Fibras Alimentarias. [Tesis de Doctorado]. Univ Politécnica Val Dep Tecnol Aliment 2005:205.
dc.relationPreving G. ¿Qué es la glucemia postprandial? 2018:https://www.preving.com/glucemia-postprandial/.
dc.relationZúñiga, S. Peña, Á. y Chiffelle I. Caracterización de Fibra Dietaria en Orujo y Capacidad Antioxidante en vino, hollejo y semilla de uva. 2005.
dc.relationCruz M. Caracterización fisicoquímica, fisiológica y funcional de residuos fibrosos de cáscara de maracuyá (Pasiflora edulis). 2002.
dc.relationSánchez B. Caracterización Fisicoquímica y funcional de la fibra Dietética del Fruto del Níspero y de Cáscara de Mango Obo. 2005.
dc.relationGarcía Á, Vargas, M. López, H. Molina, J. Restrepo, A. Ángel D, García, M. Alarcón H, Vargas, J. López A. Caracterización de la Funcionalidad Tecnológica de una Fuente Rica en Fibra Dietaria Obtenida a partir de Cáscara de Plátano. Fac Nac Agron 2013;66.
dc.relationLarrauri J. Procesos para la Obtención de Productos en Polvo con Altos Contenidos en Fibra Dietetica. Rev Aliment 1994;19:25–30.
dc.relationVillarroel, M. Acevedo, C. Yañez, E. Biolley E. Propiedades funcionales de la fibra del musgo Sphagnum magellanicum y su utilización en la formulación en productos de panadería. Arch Latinoam Nutr 2003;53 (4):1–14.
dc.relationMateu X. La fibra en la alimentación Farmacia Hospitalaria. Barcelona. Gráfiques Celler SA 2004:19.
dc.relationNTC 5986. SALVADO, GERMEN Y OTRAS HARINAS DE TRIGO PARA CONSUMO HUMANO. 050 Prod Molin 2013.
dc.relationN. R. Manejo de residuos en la agroindustria Cafetera. Cenicafe n.d.:http://infocafes.com/portal/wp-content/uploads/201.
dc.relationPROCAÑA. Asociación Colombiana de Productores y Proveedores de Caña de Azúcar 2020:https://procana.org/site/.
dc.relationTECNOSOLUCIONES. Economia de desechos y subproductos en Colombia 2019:https://tecnosolucionescr.net/blog/75-economia-de-.
dc.relationRamírez V. Revalorización de residuos en la cadena de valor de las industrias frutícolas en Manizales 2011:https://www.researchgate.net/publication/281526329.
dc.relationRodriguez N. Manejo de residuos en la agroindustria Cafetera. Cenicafe n.d.:http://infocafes.com/portal/wp-content/uploads/201.
dc.relationGutierrez, E. Medina, G. Roman, M. Florez, O. Martinez O. Obtención y Cuantificación de fibra dietaria a partir de residuos de algunas frutas comunes en Colombia. Redalcy, Vitae, Univ Antioquia 2002.
dc.relationCañas, Z. Restrepo, D. Cortes M. Revisión : Productos Vegetales como Fuente de Fibra Dietaria en la Industria de Alimentos 2011;64:6023–35.
dc.relationCastilllo M. Fibra dietaria en subproductos de mango , maracuyá , guayaba y palmito 2017.
dc.relationAGROINDUSTRIAL C. Alternativas de aprovechamiento del Maracuyá 2018:https://issuu.com/citeagroindustrialica/docs/bo-18.
dc.relationEL, TIEMPO. Colombia Viene Creciendo En Reciclaje. REDACCIÓN VIDA 2019:https://www.eltiempo.com/vida/medio-ambiente/que-p.
dc.relationDANE. Cuenta ambiental y económica de flujos de materiales - residuos sólidos. Boletín Técnico 2020.
dc.relationMinAgricultura. Cadena del PASIFLORAS , INDICADORES E INSTRUMENTOS 2020:https://sioc.minagricultura.gov.co/Pasifloras/Docu.
dc.relationDNP. Rellenos sanitarios de 321 municipios colapsarán en cinco años , advierte el DNP 2016:https://www.dnp.gov.co/Paginas/-Rellenos-sanitario.
dc.relationMonterrosa H. Colombia podría aprovechar 40% de las toneladas de residuos que genera anualmente 2019:https://www.larepublica.co/responsabilidad-social/.
dc.relationDNP. Informe Nacional de Aprovechamiento 2016:http://www.andi.com.co/Uploads/22.%20Informa%20de%.
dc.relationUniversidad Nacional de Colombia SP. De residuos del maracuyá obtienes compuestos que prevendrían el cáncer 2018:https://www.palmira.unal.edu.co/index.php/noticias.
dc.relationOMS. ¿Residuos de plaguicidas en los alimentos? https://www.who.int/features/qa/87/es/ 2016.
dc.relationMolina, J. Martínez H, Andrade M. Potencial Agroindustrial del Epicarpio de Maracuyá como Ingrediente Alimenticio Activo. Inf Tecnológica 2019;30 (2):245–56.
dc.relationMolina, J. Martinez, H. Andrade M. Potencial Agroindustria del Epicarpio de Maracuya como Ingrediente Alimenticio Activo. Inf Tecnol 2019;30.
dc.relationFlórez, O. Roman, O. Martínez, O. Gutierrez, L. y Medina G. Optimización de un preparado Sólido de Fibra Dietaria a partir de diferentes residuos de Frutas. Rev La Fac Química Farm 2006;13:10–5.
dc.relationGrossi GV. DETERMINACIÓN DE FIBRA DIETÉTICA TOTAL , SOLUBLE E INSOLUBLE EN HONGOS COMESTIBLES DE CULTIVO Pleurotus ostreatus 2015.
dc.relationCanteria, M. Moreno, L. Scheer A. Pectina: da Matéria-Prima ao Produto Final. Polimeros 2012;22:149–57.
dc.relationRural M de A y D. CADENA DE PASIFLORAS , Indicadores e Instrumentos. 2020.
dc.relationFONTAGRO. Residuos del proyecto “Modelo de Plataforma para el aprovechamiento integral, adición de valor y competitividad de frutales comerciales andinos.” 2013.
dc.relationComisión de Regulación de Agua Potable y Saneamiento Básico. Resolución CRA 720 de 2015. 2015.
dc.relationAcevedo, V. Ramirez D. ANÁLISIS TÉCNICO Y ECONÓMICO DE LA PECTINA, A PARTIR DE LA CÁSCARA DE LA NARANJA (Citrus sinensis). 2011.
dc.relationSilva C. Passion Fruit (Passiflora spp.). Adv Plant Breed Strateg Fruits 2018;3:920–51.
dc.relationAltendorf S. Biannual report on global food markets minor. Food Agric Organ United Nations 2017:69–81.
dc.relationAffairs. The European market potential for exotic tropical fruit. CBI Minist Foreing Https//www.cbi.eu/market-Information/fresh-Fruit-Vegetables/exotic-Tropical-Fruit/market-Potential 2020.
dc.relationTropicals It. Quicornac, IT IS Tropicals, supply and demand. http://www.passionfruitjuice.com/supply.php?MENU=5 2016.
dc.relationCasierra, F JA. Chapter 22-Nutritional composition of Passiflora species. MSJ Simmonds, VR Preedy (Eds), Nutr Compos Fruit Cultiv Acad Press San Diego 2016:517–34.
dc.relationTransparency Market Research In depth Analysis AR. Passion Fruit Peel Market - Global Industry Analysis, Size, Share, Trends, and Forecast 2019-2027. Https://www.transparencymarketresearch.com/passion-Fruit-Peel-Market.html 2020.
dc.relationOlivo, G. Finkler, L. Finkler C. Orange and Passion Fruit Wastes Characterization, Substrate Hydrolysis and Cell Growth of Cupriavidus necator, as Proposal to Converting of Residues in High Value Added Product. Scielo 2019;91.
dc.relationMonteiro, E. Guttierres, R. Souza, B. Santos, R. Dos Santos, M. Cavalcanti, L. Umsza M. Passion Fruit Peel Flour - Technological properties and application in food products. FOOD Hydrocoll 2017;62:158–64.
dc.relationZilly, A. Coelho, J. Bracht, A. Marquez, C. Carvajal, A. Koehnlein, E. Peralta R. Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int Biodeterior Biodegradation 2011;65:340–4.
dc.relationZilly, A. Dos Santos, B, Helm, C . Vaz, C. Marques, C. Bracht, A. Peralta R. Solid-state bioconversion of passion fruit waste by white-rot fungi for production of oxidative and hydrolytic enzymes. Food Bioprocess Technol 2011;5:1573–80.
dc.relationAlmeida , J. Lima, V. Giloni, P. Knob A. Passion fruit peel as novel substrate for enhanced β-glucosidases production by Penicillium verruculosum: Potential of the crude extract for biomass hydrolysis. Biomass Bioenergy 2015;72:2216–26.
dc.relationPinheiro, E. Silva, I. Gonzaga, L. Amante, E. Teófilo, E. Ferreira M et al. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresour Technol 2008;99:5561–6.
dc.relationKulkarni, S. Vijayanand P. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT - Food Sci Technol 2010;43:1026–31.
dc.relationCanteri, M. Scheer, A. Ginies, C. Reich, M. Renard, C. Wosiacki G. Rheological and macromolecular quality of pectin extracted with nitric acid from passion fruit rind. J Food Process Eng 2012;35:800–9.
dc.relationLiew, S. Chin, N, Yusof A. Extraction and characterization of pectin from passion fruit peels. Agric Agric Sci Procedia 2014;2:231–6.
dc.relationSeixas, F. Fukuda, D. Turbiani, F. Garcia, P. Petkowicz, C. Jagadevan S et al. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll 2014;38:186–92.
dc.relationYapo, B. Koffi L. Yellow passion fruit rinds - A potential source of lowmethoxyl pectin. J Agric Food Chem 2006;54:2738–44.
dc.relationKliemann, E. Simas, K. Amante, E. Prudêncio, E. Teófilo, R. Ferreira, M et al. Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. Int J Food Sci Technol 2009;44:476–83.
dc.relationNascimento, T. Calado, V. Carvalho C. Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res Int 2012;49:588–95.
dc.relationEspírito Santo, A. Perego, P. Converti, A. Oliveira M. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Sci Technol 2012;47:393–9.
dc.relationLópez, J. Fernández, J. Pérez J, Viuda M. Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Meat Sci 2014;97:270–6.
dc.relationLourith, N. Kanlayavattanakul M. Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue. J Oleo Sci 2013;62:235–40.
dc.relationLeão, K. Sampaio, K. Pagani, A. da Silva M. Odor potency, aroma profile and volatiles composition of cold pressed oil from industrial passion fruit residues. Ind Crops Prod 2014;58:280–6.
dc.relationGerola, G. Boas, N. Caetano, J. Tarley, C. Gonçalves, A. Dragunski D. Utilization of passion fruit skin by-product as Lead(II) ion biosorbent. Water, Air, Soil Pollut 2013;224:1–11.
dc.relationPavan, F. Lima, E.Dias, S. Mazzocato A. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 2008;150 (3):703–12.
dc.relationMuneiro K. Ogura, Y. Maruki, H., Sai, M. Susuki, T. Kanasaki, K. Hara , Y. Seto, H. Kuroshima, Y. Monno, I. Koya D. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients 2017;9(10):1142.
dc.relationRoss, R. Zibadi, S. Rafatpanah, H. Jabbari, F. Ghasemi, R. Ghafari, J. Afrasabi, H.Yeap L, Faridhosseini R. Oral administration of the purple passion fruit peel extract reduces wheeze and cough and improves shortness of breath in adults with asthma. Nutr Res Rev 2008;28(3):166-.
dc.relationGrover, A. Samson S. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J 2016;5;15:1.
dc.relationStephen, A. Champ, M. Cloran, S. Fleith, M. Lieshout, L. Mejborn H et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev 2017;30 (2):149–90.
dc.relationVerspreet, J.Damen, B. Broekaert, W. Verbeke, K. Delcour, J. Courtin C. A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol 2016;7:167–90.
dc.relationFDA. Review of the scientific evidence on the physiological effects of certain non-digestible carbohydrates 2018:https://www.fda.gov/food/food-labeling-nutrition/r.
dc.relationSciences B of N. List of dietary fibres reviewed and accepted by health Canada’s food directorate 2017:https://www.canada.ca/en/health-canada/services/pu.
dc.relationDelzenne N, Olivares MN, A., Beaumont M, Kjølbæk L, Meinert T, et al. Nutritional interest of dietary fi ber and prebiotics in obesity : Lessons from the MyNewGut consortium 2019. doi:10.1016/j.clnu.2019.03.002.
dc.relationDai, F. Chau C. Classification and regulatory perspectives of dietary fiber. J Food Drug Anal 2017;25:37–42.
dc.relationThreapleton, D. Greenwood, D. Evans, C. Cleghorn, C. Nykjaer, C. Woodhead C et A. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013;347:Article f6879.
dc.relationElleuch, M. Bedigian, D. Roiseux, O. Besbes, S. Blecker, C. Attia H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem 2011;124:411–21.
dc.relationZheng, Y. Li Y. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem 2018;257:135–42.
dc.relationBhise, S. Kaur A. Synergistic effect of polyols and fibres on baking, sensory and textural quality of bread with improved shelf life. Int J Curr Microbiol Appl Sci 2017;6(11):1–12.
dc.relationChu J, Zhao H, Lu, Z. Lu F, Bie XZ, C. Improved physicochemical and functional properties of dietary fi ber from millet bran fermented by Bacillus natto. Food Chem 2019;294:79–86. doi:10.1016/j.foodchem.2019.05.035.
dc.relationMa, M. Mu T. Modification of deoiled cumin dietary fiber with laccase and cellulose under high hydrostatic pressure. Carbohydr Polym 2016;136:87–94.
dc.relationElleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C. Dietary fibre and fibre-rich by-products of food processing : Characterisation , technological functionality and commercial applications : A review. Food Chem 2011;124:411–21. doi:10.1016/j.foodchem.2010.06.077.
dc.relationRaghavendra, S. Ramachandra, S. Rastogi N, Raghavarao, K. Kumar, S. and Tharanathan R. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J Food Eng 2006;72 (3):281–6.
dc.relationFerguson, R. and Fox K. Dietary Citrus Fibers’ in Trans. ASME Citrus. Eng Conf, 1978;24:Winterhaven, FL.
dc.relationLarrauri J. New approaches in the preparation of high dietary fibre powders from fruit. Trends Food Sci Technol 1999;10:6–11.
dc.relationDhingra, D. Michael, M. Rajput, H. Patil R. Dietary fibre in foods: a review. J Food Sci Technol 2012;49 (3):255–66.
dc.relationPérez, F. Vílchez C. Dietary fiber: New definitions, functional properties and health benefits. ALAN - Arch Latinoam Nutr 2017;67 (2).
dc.relationLópez J, Fernández J-, Pérez J, Viuda M. Chemical, Physico-chemical, Technological, Antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Res Int 2013;51:756–63. doi:10.1016/j.foodres.2013.01.055.
dc.relationYaich, H. Garna, H. Besbe, H. Paquot, M. Blecker, C. Attia H. Chemical composition and functional properties of Ulva lactuca seawed collected in Tunisia. Food Chem 2011;128 (4):895–901.
dc.relationMoraes, C. Jablonski, A. De Oliveira, A. Rech, R. Flores S. Dietary fiber from orange byproducts as a potential fat replacer. LWT-Food Sci Tech 2013;53 (1):9–14.
dc.relationMa, M. Mu T. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem 2016;194:237–46.
dc.relationProsky, L. Asp, N. Scheweizer, T. DeVries, J. Furda I. Determination of insoluble and soluble, and total dietary fibre in foods and food products: Interlaboratory study. J Assoc Off Anal Chem 1988;71:1017–23.
dc.relationEnglyst, H. Quigley, M. Hudson G. Determination of dietary fiber as non-starch polysaccharides with gas–liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst 1994;119:1497–509.
dc.relationSoest, P. Van J. Use of detergents in the analysis of fibrous feeds. II. Determination of plant cell-wall constituents. J Assoc Off Anal Chem 1963;48:829–35.
dc.relationLee, S. Prosky, L. DeVries J. Determination of total, soluble, and insoluble dietary fiber in foods: Enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J Assoc Off Anal Chem 1992;75:395–416.
dc.relationMcCleary, B. De Vries, J. Rader, I. Cohen, G. Prosky L et al. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J AOAC Int 2010;93:221–33.
dc.relationProsky, L. Asp, G. Scheweizer, T. De Vries J et A. Determination of insoluble and soluble dietary fiber in foods and food products: collaborative study. J Assoc Anal Chem Int 1992;75:360–7.
dc.relationGordon, D. Okuma K. Determination of total dietary fiber in selected foods containing resistant maltodextrin by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J AOAC Int 2002;85:435–44.
dc.relationMcCleary, B. Monaghan D. Measurement of resistant starch. J AOAC Int 2002;85:665–75.
dc.relationOhkuma, K. Matsuda, I. Katta, Y. Tsuji K. New method for determining total dietary fiber by liquid chromatography. J AOAC Int 2000;83:1013–9.
dc.relationQuemener, J. Thibault P. Determination of inulin and oligofructose in food products and integration in the AOAC method for the measurement of total dietary fibre. Leb Und Technol 1994;27:125–32.
dc.relationCraig, S. Holden, J. Khaled M. Determination of polydextrose as dietary fiber in foods. J AOAC Int 2000;83:1006–12.
dc.relationGoñi, I. García, E. Mañas, E. Saura F. Analysis of resistant starch: a method for foods and food products. Food Chem 1996;56:445–9.
dc.relationGoñi, I. Díaz, M. Pérez, J. Saura F. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res Int 2009;42:840–6.
dc.relationGupta R, Gigras P, Mohapatra H, Goswami V, Chauhan B. Microbial α-amylases: A biotechnological perspective. Process Biochem 2003;38:1599–616. doi:10.1016/S0032-9592(03)00053-0.
dc.relationAlagarsamy S, Larroche C, Pandey A. Microbiology and Industrial Biotechnology of Food-Grade Proteases : A Microbiology and Industrial Biotechnology of Food-Grade Proteases : A Perspective 2006.
dc.relationBox G, Draper N. Response surfaces, mixtures, and ridge analyses. Wiley-Interscience; 2007.
dc.relationCanizales, L. Rojas, F. Pizarro, C. Caicedo, N. y Villegas F. SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia. Processes 2020;8:1180.
dc.relationAl F et. Fiber concentrates form Apple pomace and citrus peel as potential fiber sources for food enrichment. Food Chem 2005;9:10–7.
dc.relationFAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2016. Rome: 2016.
dc.relationFinancial crime There’s a market conundrum developing that casts a shadow over risk taking: Bank of America technical analyst 2021:https://www.marketwatch.com/.
dc.relationLópez J, Fernández J, Pérez J, Viuda M. Chemical , physico-chemical , technological , antibacterial and antioxidant properties of dietary fi ber powder obtained from yellow passion fruit ( Passi fl ora edulis var . fl avicarpa ) co-products. FRIN 2013;51:756–63. doi:10.1016/j.foodres.2013.01.055.
dc.relationJúnior AMB and MRM. Yellow passionfruit: General characteristics and by-products usage. Food Nutr Dep Fac Food Eng n.d.:http://alimentos-autoctonos.fabro.com.mx/yellow-pa.
dc.relationCazarin, C. Da Silva, J. Colomeu, T. Zollner L. Antioxidant capacity and chemical composition of passion fruit peel (Passiflora edulis). Tecnol Aliment 2014;44:9.
dc.relationVigano, J. Brumer, Z. Campos, P. Da Silva, J. Junior, M. Reyes, F. Martines J. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food Bioprod Process 2016;100 PARTE:38–900.
dc.relationOliveira, D. Angonese, M. Gomes, C. Ferreira S. Valorization of passion fruit (Passiflora edulis sp.) by-products: Sustainable recovery and biological activities. J Supercrit Fluids 2016;111:55–62.
dc.relationA KY. High methoxyl pectin from the soluble dietary fiber of passion fruit peel forms weak gel without the requirement of sugar addition. ELSERVIER 2020;246.
dc.relationMoura FA de. Metabolic properties of partially hydrolyzed pectin from passion fruit peel. Bioact Carbohydrates Diet Fibre 2021;25.
dc.relationMonteiro J, Lima E, Morais D, Galeno L. NIH Public Access 2013.
dc.relationCasarotti, S. Borgonovi, T. Batista, C. Penna A. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. EL SERVIER 2018;98:69–76.
dc.relationChau, C. Huang Y. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J Agric Food Chem 2003;51:2615–8.
dc.relationTeixeira FL, Sampaio., Moura F et A. Bioactive Carbohydrates and Dietary Fibre Biological properties of apple pomace , orange bagasse and passion fruit peel as alternative sources of dietary fi bre. Bioact Carbohydrates Diet Fibre 2015;6:1–6. doi:10.1016/j.bcdf.2015.04.001.
dc.relationLópez J, Fernández J, Pérez J, Viuda M. Chemical, Physico-chemical, Technological, Antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Res Int 2013;51:756–63. doi:10.1016/j.foodres.2013.01.055.
dc.relationMatsuura F. Estudo do albedo de maracujá e de seu aproveitamento em barra decereais. (Tese de doutorado inédito).Universidade Estadual de Campinas. São Paulo, Brasil. 2005.
dc.relationGerschenson N. Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocoll 2021;118.
dc.relationGarcia, M. V., Milani, M. S. & R. Production optimization of passion fruit peel flour and its incorporation into dietary food. Food Sci Technol Int 2019.
dc.relationBarrales, F. Rezende, C. Martínez J. Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. J Supercrit Fluids 2015;104:183–92.
dc.relationMalacrida C. Yellow Passion Fruit Seed Oil (Passiflora edulis f. flavicarpa): Physical and Chemical Characteristics. Brazilian Arch Biol Technol 2012;55:127–34.
dc.relationViganó, J. Coutinho, J. Souza, D. Baroni, N, Godoy, H, Macedo, J. Martinez J. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. J Supercrit Fluids 2016;110:1–10.
dc.relationMatsui, Y. Sugiyama, K. Kamei, M. Takahashi, T. Suzuki, T. Katagata, Y. Ito T. Extract of Passion Fruit (Passiflora edulis) Seed Containing High Amounts of Piceatannol Inhibits Melanogenesis and Promotes Collagen Synthesis. Agric Food Chem 2010;58, 20,:11112–11118.
dc.relationMisuzaki, A. Nishi, K. Nishiwaki, H. Ishida, M. Tamamoto, T. Sugahara T. Suppressive effect of ethanol extract from passion fruit seeds on IgE production. J Funct Foods 2017;32:176–84.
dc.relationChau, C, Huang Y. Characterization of passion fruit seed fibres—a potential fibre source. Food Chem 2004;85:189–94.
dc.relationAlbuquerque, M. Levit, R. Beres, C. Bedanni, R. Isay SG. Tropical fruit by-products water extracts as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. J Funct Foods 2019;52:724–33.
dc.relationRomero, M. Osorio, P. Bello, L. Tovar, J. Benardino A. Fiber Concentrate from orange (Citrus Sinensis L.) bagase: Characterization and application as bakery product ingredient. PubMed 2011;12.
dc.relationMartínez R, Torres P, Meneses M, Figueroa J, Pérez J, Viuda M. Chemical , technological and in vitro antioxidant properties of cocoa ( Theobroma cacao L .) co-products. FRIN 2012;49:39–45. doi:10.1016/j.foodres.2012.08.005.
dc.relationMartínez R, Torres P, Meneses M, Figueroa J, Pérez J, Viuda M. Chemical , technological and in vitro antioxidant properties of mango , guava , pineapple and passion fruit dietary fibre concentrate. Food Chem 2012;135:1520–6. doi:10.1016/j.foodchem.2012.05.057.
dc.relationThu, T. Webb, H. Malherbe F. Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocoll 2021;113.
dc.relationCho, Y. Hwang J. Modeling the yield and intrinsic viscosity of pectin in acidic solubilization of apple pomace. J Food Eng 2000;44:85–9.
dc.relationMing, X. Changbao, L. Jiemin, L. Yinru, H. Yu, S. Yayuan, T. Jinfeng, S. Li, L. Jun D. Optimization of Extraction Technology of High Methoxyl Pectin from Passion Fruit Peel by Ultrasound Assisted with Citric Acid Extraction and Its Physicochemical Properties. Agro-Food Sci Technol Res Institute, Guangxi Acad Agric Sci 2018.
dc.relationZaid, R. Mishra, P. Noredyani, s. Tabassum S. Proximate characteristics and statistical optimization of ultrasound-assisted extraction of high-methoxyl-pectin from Hylocereus polyrhizus peels. Food Bioprod Process 2020;123:134–49.
dc.relationMaran, P. Sivakumar, V. Thirugnanasambandhama, K.Sridharb R. Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr Polym 2014;101:786–91.
dc.relationBouaziz, A. Masmoudi M. Optimization of Insoluble and Soluble Fibres Extraction from Agave americana L. Using Response Surface Methodology. E-Journal Chem 2014.
dc.relationMasmoudi, M. Besbes, S. Chaabouni, M. Robert, C. Paquot, M. Blecker, C. Attia H. Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydr Polym 2008;74:185–92.
dc.relationCasas, D. Luz, A. Bustamante, F. Gonzales L. Process development and simulation of pectin extraction from orange peels. Food Bioprod Process 2015;96:86–98.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleObtención de una fuente de fibra dietaría a partir de residuos agroindustriales de pasifloras
dc.typeTesis


Este ítem pertenece a la siguiente institución