Trabajo de grado - Doctorado
El problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov sobre el cilindro
Fecha
2021-07Registro en:
Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
Autor
Albarracin Hernandez, Carolina
Institución
Resumen
In this work, we study questions related to the local well-posedness for the initial value problem associated to the partial differential equation,
u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, where 0 ≤ α, β ≤ 1 and p ∈ Z ^{+}, in the standard, anisotropic and weighted Sobolev spaces in R × T and T^{2}. For this purpose, we use parabolic regularization, localized Strichartz and energy estimates, together with a compactness argument, as well as, commutator estimates and remarkable properties of the Stein derivative. In addition, we show the existence of certain type of solitary wave in the cylinder. En el presente trabajo, estudiamos cuestiones relacionadas al buen planteamiento local, del problema de valor inicial asociado a la ecuación diferencial parcial, u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, donde 0 ≤ α, β ≤ 1 y p ∈ Z^{+}, en los espacios de Sobolev estandar, anisotrópicos y con pesos en R×T y en T^{2}. Para dicho fin, usamos regularización parabólica, estimativas de Strichartz localizadas y de energía, junto con un argumento de compacidad, como también estimativas del conmutador y propiedades notables de la derivada de Stein. Además, probamos la existencia de cierto tipo de onda solitaria en el cilindro. (Texto tomado de la fuente).