dc.contributor | Orjuela Londoño, Álvaro | |
dc.contributor | Universidad Nacional de Colombia | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Suaza Montalvo, Andrea | |
dc.date.accessioned | 2020-08-14T03:12:48Z | |
dc.date.available | 2020-08-14T03:12:48Z | |
dc.date.created | 2020-08-14T03:12:48Z | |
dc.date.issued | 2020-02-14 | |
dc.identifier | Suaza Montalvo, Andrea. (2020). Desarrollo de una estrategia de escalamiento para la producción de emulsiones (Tesis de maestría). Universidad Nacional de Colombia, Bogotá; Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78034 | |
dc.description.abstract | The growing market interest in formulated products (e.g. cosmetics, personal care products, etc.) has led to the rapid development of new strategies for product design. However, despite some progress in developing strategies to accelerate design and prototyping has been achieved, process up-scaling remains a limiting stage for the industrial implementation of new products. Currently, up-scaling in the production of formulated products (e.g. emulsions) is carried out by mean of trial and error methodologies. These procedures are intensive in the use of resources and energy, so it is required to develop strategies for their optimization.
In this context, this work studied the influence of various processing variables at different scales on the manufacture of an emulsion-type formulated product. For this, physicochemical analysis methodologies were developed to characterize the emulsions, and the influence of the process variables was analyzed through dimensionless numbers. Finally, a scale up strategy was developed for the process, separating it into two stages: emulsification and cooling. This separation allowed an independent understanding of the changes in the properties of the emulsion due to the change in the phenomena associated with mixing and heat transfer. Finally, the dimensionless numbers to keep during manufacturing at the different production scales were identified. In this case, an adequate scaling strategy is based on the conservation of the Froude number in the two stages. The conservation of the Froude number allows the microscopic characteristics of the emulsion to be maintained at the different scales. | |
dc.description.abstract | El interés creciente del mercado por productos formulados (e.g. cosméticos, productos de cuidado personal, etc.) ha conllevado al rápido desarrollo de nuevas estrategias para el diseño de productos. Sin embargo, a pesar de lograr avances que aceleran el diseño y el prototipado, el escalamiento de los procesos sigue siendo una etapa limitante para la implementación industrial de nuevos productos. Actualmente, el escalado en la elaboración de productos formulados (e.g. emulsiones) se lleva a cabo mediante metodologías de ensayo y error. Estos procedimientos son intensivos en el uso de recursos y energía, por lo que se requiere desarrollar estrategias para su optimización.
En este contexto, este trabajo estudió la influencia de diversas variables de proceso a diferentes escalas en la manufactura de un producto formulado tipo emulsión. Para esto, se desarrollaron metodologías de análisis físico químico para caracterizar las emulsiones, y se analizó la influencia de las variables del proceso a través de números adimensionales. Finalmente, se desarrolló una estrategia de escalamiento para el proceso, separando el mismo en dos etapas: emulsificación y enfriamiento. Esta separación permitió comprender de forma independiente los cambios en las propiedades de la emulsión por efecto del cambio en los fenómenos asociados al mezclado y la trasferencia de calor. Finalmente, se identifican los números adimensionales a conservar durante la manufactura en las diferentes escalas de producción. En este caso se identificó que una estrategia adecuada de escalamiento se basa en la conservación del número de Froude en las dos etapas. La conservación del número de Froude permite mantener las características microscópicas de la emulsión en las diferentes escalas. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Raconteur, Global cosmetics market, 2016. | |
dc.relation | D.J. McClements, Emulsion Design to Improve the Delivery of Functional Lipophilic Components, Annu. Rev. Food Sci. Technol. 1 (2010) 241–269. | |
dc.relation | L. Gilbert, C. Picard, G. Savary, M. Grisel, Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data, Colloids Surfaces A Physicochem. Eng. Asp. 421 (2013) 150–163. | |
dc.relation | F.R. Lupi, L. Gentile, D. Gabriele, S. Mazzulla, N. Baldino, B. de Cindio, Olive oil and hyperthermal water bigels for cosmetic uses, J. Colloid Interface Sci. 459 (2015) 70–78. | |
dc.relation | E. Dickinson, Colloids in Food: Ingredients, Structure, and Stability, Annu. Rev. Food Sci. Technol. 6 (2015) 211–233. | |
dc.relation | A. Pajouhandeh, A. Kavousi, M. Schaffie, M. Ranjbar, Experimental measurement and modeling of nanoparticle-stabilized emulsion rheological behavior, Colloids Surfaces A Physicochem. Eng. Asp. 520 (2017) 597–611. | |
dc.relation | L. Gilbert, V. Loisel, G. Savary, M. Grisel, C. Picard, Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions, Carbohydr. Polym. 93 (2013) 644–650. | |
dc.relation | P. Andrea, L. Alonso, C. Elizabeth, M. Huertas, Efecto de las fragancias en el desempeño sensorial de productos cosméticos tipo champú, Rev. Colomb. Ciencias Químico-Farmacéuticas. 42 (2013) 260–283. | |
dc.relation | K.A. Ramisetty, A.B. Pandit, P.R. Gogate, Ultrasound assisted preparation of emulsion of coconut oil in water: Understanding the effect of operating parameters and comparison of reactor designs, Chem. Eng. Process. Process Intensif. 88 (2015) 70–77. | |
dc.relation | R. Grace, Commercial Emulsion Breaking, Emulsions. (1992) 313–339. | |
dc.relation | A.S. Peshkovsky, S. Bystryak, Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up, Chem. Eng. Process. Process Intensif. 82 (2014) 132–136. | |
dc.relation | K.A. Woodrow, K.M. Bennett, D.D. Lo, Mucosal Vaccine Design and Delivery, (2012). | |
dc.relation | Drug development services, Emulsions and Emulsification, Part. Sci. - Tech. Br. 9 (2009). | |
dc.relation | S. Hall, M. Cooke, A. El-Hamouz, A.J. Kowalski, Droplet break-up by in-line Silverson rotor-stator mixer, Chem. Eng. Sci. 66 (2011) 2068–2079. | |
dc.relation | M.A. Suárez, G. Gutiérrez, J. Coca, C. Pazos, Geometric parameters influencing production of O/W emulsions using flat metallic membranes and scale-up, J. Memb. Sci. 430 (2013) 140–149. | |
dc.relation | I. Solè, C.M. Pey, A. Maestro, C. González, M. Porras, C. Solans, J.M. Gutiérrez, Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up, J. Colloid Interface Sci. 344 (2010) 417–423. | |
dc.relation | T.F. Tadros, Emulsion science and technology: A general introduction (Capítulo 1), en Emulsion Science and Technology, 2009. | |
dc.relation | L. Wei, M. Zhang, X. Zhang, H. Xin, H. Yang, Pickering Emulsion as an Efficient Platform for Enzymatic Reactions without Stirring, ACS Sustain. Chem. Eng. (2016) | |
dc.relation | S.A. Chime, F.C. Kenechukwu, A.A. Attama, Nanoemulsions — Advances in Formulation , Characterization and Applications in Drug Delivery, (2014). | |
dc.relation | P. Szabó-révész, Sucrose esters as natural surfactants in drug delivery systems — A mini-review, 433 (2012) 1–9. | |
dc.relation | A. Taneja, H. Singh, Challenges for the delivery of long-chain n-3 fatty acids in functional foods., Annu. Rev. Food Sci. Technol. 3 (2012) 105–23. | |
dc.relation | P. Sona, Nanoparticulate drug delivery systems for the treatment of diabetes, Dig. J. Nanomater. Biostructures. 5 (2010) 411–418. | |
dc.relation | S. Gupta, M. Chakraborty, Z.V.P. Murthy, Removal of Mercury by Emulsion Liquid Membranes: Studies on Emulsion Stability and Scale Up, J. Dispers. Sci. Technol. 34 (2013) 1733–1741. | |
dc.relation | F.P. Bernardo, P.M. Saraiva, Integrated Process and Product Design Optimization : a Cosmetic Emulsion Application, Quality. (2005) 1507–1512. | |
dc.relation | P. Glampedaki, V. Dutschk, J. Sjoblom, T. Skodvin, T. Jakobsen, S.S. Dukhin, Dielectric-Spectroscopy and Emulsions - a Theoretical and Experimental Approach, Colloids Surfaces A Physicochem. Eng. Asp. 15 (2014) 306–311. | |
dc.relation | S. Aryafar, N. Sheibat-Othman, T.F.L. McKenna, Coupling of CFD Simulations and Population Balance Modeling to Predict Brownian Coagulation in an Emulsion Polymerization Reactor, Macromol. React. Eng. (2017). | |
dc.relation | H. Butler, W.A. Poucher, Poucher’s perfumes, cosmetics, and soaps., Kluwer Academic Publishers, 2000. | |
dc.relation | A.R. Baby, D.M. Santoro, M.V.R. Velasco, C.H. dos Reis Serra, Emulsified systems based on glyceryl monostearate and potassium cetyl phosphate: Scale-up and characterization of physical properties, Int. J. Pharm. 361 (2008) 99–103. | |
dc.relation | Euromonitor, Skin care in colombia, 2016. | |
dc.relation | Nosis trade, Comercio Exterior de Colombia de NCE aceites esenciales y resinoides; preparaciones de perfumeria, de tocador o de cosmetica, (2019). https://trade.nosis.com/es/Comex/Importacion-Exportacion/Colombia/aceites-esenciales-y-resinoides-preparaciones-de-perfumeria-de-tocador-o-de-cosmetica/CO/33 (accessed August 12, 2019). | |
dc.relation | Portafolio, Cosméticos, un mercado que vale en Colombia 3.280 millones de dólares, Portafolio. (2018). https://www.portafolio.co/negocios/cosmeticos-un-mercado-que-vale-en-colombia-3-280-millones-de-dolares-521285 (accessed August 12, 2019). | |
dc.relation | C. Mejía Zapata, Corporación Biointropic, ANEXO 4. ANÁLISIS SECTOR COSMÉTICO Y ASEO, Medellin, 2018. | |
dc.relation | Dinero, El negocio de cosméticos y productos de belleza en Colombia, Rev. Dinero. (2018). https://www.dinero.com/edicion-impresa/negocios/articulo/el-negocio-de-cosmeticos-y-productos-de-belleza-en-colombia/264421 (accessed August 12, 2019). | |
dc.relation | L’Oréal, Cosmetics market - L’Oréal Finance: Annual Report 2018, (2019). https://www.loreal-finance.com/en/annual-report-2018/cosmetics-market-2-1/ (accessed August 9, 2019). | |
dc.relation | Euromonitor, Beauty and personal care in Colombia, 2016. | |
dc.relation | Diferencias entre las BB creams y las CC creams | L’Oréal Paris, (n.d.). http://www.loreal-paris.es/tendencias/maquillaje/bb-cream-vs-cc-cream.aspx (accessed August 20, 2016). | |
dc.relation | L’Oréal Paris, Qué es y cómo aplicar el sérum facial | L’Oréal Paris, (n.d.). http://www.loreal-paris.es/tendencias/cuidados/serum-facial.aspx (accessed May 23, 2017). | |
dc.relation | Mordor Intelligence, Global Beauty and Personal Care Products Market | Growth | Trends | Forecast, (2019). https://www.mordorintelligence.com/industry-reports/global-beauty-and-personal-care-products-market-industry (accessed August 6, 2019). | |
dc.relation | P. Glampedaki, V. Dutschk, Stability studies of cosmetic emulsions prepared from natural products such as wine, grape seed oil and mastic resin, Colloids Surfaces A Physicochem. Eng. Asp. 460 (2014) 306–311. | |
dc.relation | L. Zhang, D.K. Babi, R. Gani, New Vistas in Chemical Product and Process Design, Annu. Rev. Chem. Biomol. Eng. 7 (2016) 557–582. | |
dc.relation | B. V. Smith, M. Ierapepritou, Framework for consumer-integrated optimal product design, Ind. Eng. Chem. Res. 48 (2009) 8566–8574. | |
dc.relation | B. Tal-Figiel, The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field, Chem. Eng. Res. Des. 85 (2007) 730–734. | |
dc.relation | M.J. Geerken, Emulsification With Micro- Engineered Devices, 2006. | |
dc.relation | H.S. Melito, C.R. Daubert, Rheological Innovations for Characterizing Food Material Properties, Annu. Rev. Food Sci. Technol. 2 (2011) 153–179. | |
dc.relation | N. Schwesinger, M. Tromeur, C. Mahe, Micromixers to produce cosmetic emulsions, (2003) 1–4. | |
dc.relation | L. Lachman, H.A. Lieberman, The Theory and Practice of Industrial Pharmacy, Special In, Satish Kumar Jain, New Delhi, 2009. | |
dc.relation | R. Brummer, Rheology Essentials of Cosmetic and Food Emulsions, 1st ed., Springer, Hamburg, 2006. | |
dc.relation | J. Zhang, J. Xu, Rheological behaviour of oil and water emulsions and their flow characterization in horizontal pipes, Can. J. Chem. Eng. 94 (2016) 324–331. | |
dc.relation | R. Brummer, S. Godersky, Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin, Colloids Surfaces A Physicochem. Eng. Asp. 152 (1999) 89–94. | |
dc.relation | Science Direct Topics, Flow Behaviour Index - an overview, (n.d.). https://www.sciencedirect.com/topics/engineering/flow-behaviour-index (accessed August 14, 2019). | |
dc.relation | Dennis Laba, Rheological Properties of Cosmetics and Toiletries, Marcel Dekker, New York, 1993. | |
dc.relation | K.M. Valdez Trejo, Descripción del arrastre de partículas en un sistema de extracción de polvos generados en la fabricación de papel sanitario, Universidad de las Américas Puebla, 2004. | |
dc.relation | International Organization for Standardization, ISO 13322 Part 1, (2014). | |
dc.relation | L. Goibier, S. Lecomte, F. Leal-Calderon, C. Faure, The effect of surfactant crystallization on partial coalescence in O/W emulsions, J. Colloid Interface Sci. 500 (2017) 304–314. | |
dc.relation | I. Aranberri, B.P. Binks, J.H. Clint, P.D.I. Fletcher, ELABORACION Y CARACTERIZACIÓN DE EMULSIONES ESTABILIZADAS POR POLIMEROS Y AGENTES TENSIOACTIVOS, Rev. Iberoam. Polímeros. 7 (2006) 211–231. | |
dc.relation | N. Delgado, F. Ysambert, E. Padilla, G. Chávez, B. Bravo, N. Márquez, Estabilización de emulsiones con mezclas de un surfactante no-iónico y derivados de lignina sintetizados con asistencia de microondas, Rev. La Univ. Zulia. 5 (2014) 40–56. | |
dc.relation | S. (Ehsan) Shahidi, C.R. Koch, S. Bhattacharjee, M. Sadrzadeh, Dielectric behavior of oil-water emulsions during phase separation probed by electrical impedance spectroscopy, Sensors Actuators B Chem. 243 (2016) 460–464. | |
dc.relation | J. Sjoblom, T. Skodvin, T. Jakobsen, S.S. Dukhin, Dielectric-Spectroscopy and Emulsions - a Theoretical and Experimental Approach, J. Dispers. Sci. Technol. 15 (1994) 401–421. | |
dc.relation | E.M. Kirschner, Producers Raise High-Tech Stakes In Personal Care Ingredients, Markets, C&EN. (1996). | |
dc.relation | D.G. Hayes, Biobased Surfactants : A Useful Biorefinery Product That Can Be Prepared Using Green Manufacturing, (n.d.). | |
dc.relation | M. Patel, Surfactants Based on Renewable Raw Materials, 7 (2004) 47–62. | |
dc.relation | E.D. Goddard, Surfactants and interfacial phenomena, 1989. | |
dc.relation | A.M. Opportunity, S. Update, A Market Opportunity Study Update, (2008). | |
dc.relation | ¿Qué es un surfactante o tensioactivo aniónico? - Curiosoando, (n.d.). https://curiosoando.com/surfactante-o-tensioactivo-anionico (accessed August 25, 2019). | |
dc.relation | SURFACTANTS Types and Uses, 2 (2002). | |
dc.relation | F. Caruso, Colloids and Colloid Assemblies: Synthesis, Modification, Organization and utillization of Colloid particles, John Wiley and Sons, 2006. | |
dc.relation | R. V Calabrese, M.K. Francis, V.P. Mishra, S. Phongikaroon, Measurement and Analysis of Drop Size in a Batch Rotor-Stator Mixer, (2000) 149–156. | |
dc.relation | E.M. Varka, T.D. Karapantsios, Global versus local dynamics during destabilization of eco-friendly cosmetic emulsions, Colloids Surfaces A Physicochem. Eng. Asp. 391 (2011) 195–200. | |
dc.relation | L. Salvia-Trujillo, R.C. Soliva-Fortuny, M.A. Rojas-Graü, D.J. McClements, O. Martín-Belloso, Edible Nanoemulsions as Carriers of Active Ingredients: A Review, Annu. Rev. Food Sci. Technol. 8 (2017). | |
dc.relation | F.A. Holand, F.S. Chapman, Liquid Mixing and Processing in Stirred Tanks, Reinhold Publishing Corporation, New York, 1966. | |
dc.relation | V. Uhl, J. Gray, MIXING, Theory and Practice, Vol. I, Academic Press, Inc., New York, 1966. | |
dc.relation | H. Iwata, K. Shimada, Emulsions, in: Formulas, Ingredients Prod. Cosmet. Technol. Ski. Hair-Care Prod. Japan, Springer, Japan, 2013: pp. 87, 102. | |
dc.relation | V. Uhl, J. Gray, Mixing Theory and Practice, Academic Press, Inc., New York, 1967. | |
dc.relation | IKA, Manual ULTRA-TURRAX T25 digital, (n.d.) 30. | |
dc.relation | A. Anaya-Duran, H. Pedroza-Flores, Escalamiento, el arte de la ingeniería química: Plantas piloto, el paso entre el huevo y la gallina, Tecnol. Ciencia, Educ. 23 (2008) 31–39. | |
dc.relation | R. de la Peña Manrique, Técnicas de escalamiento aplicadas al diseño de procesos químicos, Academia de Ingeniería de Mexico, Monterrey, 1978. | |
dc.relation | J.M. Bonem, Chemical projects scale up: how to go from laboratory to commercial, Susan Dennis, Amsterdam, 2018. | |
dc.relation | W. Tittle, Project Scale-up: Lab to Industrial Plant Implementation, (n.d.). https://www.lawbc.com/share/bcs2013/BioManufacturing and Scale-Up/tittle-presentation.pdf (accessed May 7, 2019). | |
dc.relation | R.E. Johnstone, M.W. Thring, Pilot plants, models, and scale-up methods in chemical engineering, McGraw-Hill, 1957. | |
dc.relation | E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, HANDBOOK OF INDUSTRIAL MIXING, Science and practice, John Wiley & Sons, Ltd, Holanda, 2004. | |
dc.relation | J.A. Arrieta-Escobar, F.P. Bernardo, A. Orjuela, M. Camargo, L. Morel, Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion, Comput. Chem. Eng. 122 (2019) 265–274. | |
dc.relation | V. Uhl, J. Gray, MIXING Theory and Practice, Vol. III, Academic Press, Inc., Orlando, 1986. | |
dc.relation | IKA, IKA ® magicLAB ® User Manual, (2010) 112. | |
dc.relation | M. Levin, Pharmaceutical Process Scale-Up, Marcel Dekker, New York, 2006. | |
dc.relation | R. Oliver, J.G.B. Smith, The role of turbulent fluid dynamics in water/oil emulsion formation, Phys. Fluids A Fluid Dyn. 3 (1991) 1456. | |
dc.relation | R.J. Wilkens, L.E. Gates, How to Scale-Up Mixing Processes in Non-Newtonian Fluids, (2003) 44–52. | |
dc.relation | A. May-Masnou, J. Ribó-Besolí, M. Porras, A. Maestro, C. González, J.M. Gutiérrez, Scale-up model obtained from the rheological analysis of highly concentrated emulsions prepared at three scales, Chem. Eng. Sci. 111 (2014) 410–420. | |
dc.relation | A. May-masnou, A. Maestro, C. González, Scale invariants in the preparation of reverse high internal phase ratio emulsions, 101 (2013) 721–730. | |
dc.relation | M.T. Timko, S. Marre, A.R. Maag, Formation and characterization of emulsions consisting of dense carbon dioxide and water: Ultrasound, J. Supercrit. Fluids. 109 (2016) 51–60. | |
dc.relation | M. Eggersdorfer, W. Zheng, S. Nawar, C. Mercandetti, A. Ofner, I. Leibacher, S. Koehler, D.A. Weitz, Tandem emulsification for high-throughput production of double emulsions, Lab Chip. (2017). | |
dc.relation | C. Holtze, Large-scale droplet production in microfluidic devices—an industrial perspective, J. Phys. D. Appl. Phys. 46 (2013) 114008. | |
dc.relation | H.H. Jeong, D. Issadore, D. Lee, Recent developments in scale-up of microfluidic emulsion generation via parallelization, Korean J. Chem. Eng. 33 (2016) 1757–1766. | |
dc.relation | G. Lévai, J.Q. Albarelli, D.T. Santos, M.A.A. Meireles, Á. Martín, S. Rodríguez-Rojo, M.J. Cocero, Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: process scale-upstudy and thermo-economic evaluation, Food Bioprod. Process. 103 (2017) 27–38. | |
dc.relation | R. Sánchez-Sánchez, E. Manzanares-Papayanopoulos, J.R. Herrera-Velarde, A.M. Arriola-Medellín, M. V. Peralta-Martínez, Scaling up an Emulsions Production System of Heavy Oil Liquid Residuals in Water, Pet. Sci. Technol. 27 (2009) 1480–1493. | |
dc.relation | K. Landfester, Synthesis of Colloidal Particles in Miniemulsions, Annu. Rev. Mater. Res. 36 (2006) 231–279. | |
dc.relation | G.D. Turnbow, P.H. Tracy, L.A. Raffetto, The ice cream industry, 2nd ed., John Wiley & Sons Chapman & Hall, New York, n.d. | |
dc.relation | H. Sommer, The theory and practice of ice cream making, 5th ed., Madison Olsen Publishing, 1946. | |
dc.relation | T. Truong, N. Bansal, R. Sharma, M. Palmer, B. Bhandari, Effects of emulsion droplet sizes on the crystallisation of milk fat, Food Chem. 145 (2014) 725–735. | |
dc.relation | V. Vasile, H. Necula, A. Badea, R. Revellin, J. Bonjour, P. Haberschill, Experimental study of the heat transfer characteristics of a paraffin-in-water emulsion used as a secondary refrigerant, Int. J. Refrig. 88 (2018) 1–7. | |
dc.relation | L. Huang, M. Petermann, C. Doetsch, Evaluation of paraffin / water emulsion as a phase change slurry for cooling applications, Energy. 34 (2009) 1145–1155. | |
dc.relation | T. Morimoto, T. Ikeda, H. Kumano, Study on natural convection characteristics of oil / water emulsions inside a rectangular vessel with vertical heating / cooling walls, Int. J. Heat Mass Transf. 127 (2018) 616–628. | |
dc.relation | K. Nomura, H. Kumano, Experimental study on flow and heat transfer characteristics of oil-in-water emulsions in microchannels, Int. J. Heat Mass Transf. 116 (2018) 1026–1035. | |
dc.relation | K. Nomura, H. Kumano, Experimental study on flow and heat transfer characteristics of oil-in-water emulsions in microchannels, Int. J. Heat Mass Transf. 116 (2018) 1026–1035. | |
dc.relation | S.A. Vanapalli, J. Palanuwech, J.N. Coupland, Stability of emulsions to dispersed phase crystallization : effect of oil type , dispersed phase volume fraction , and cooling rate, Colloids Surfaces A Physicochem. Eng. Asp. 204 (2002) 227–237. | |
dc.relation | D.J. Mcclements, Crystals and crystallization in oil-in-water emulsions : Implications for emulsion-based delivery systems, Adv. Colloid Interface Sci. 174 (2012) 1–30. | |
dc.relation | M. Tippetts, S. Martini, Effect of cooling rate on lipid crystallization in oil-in-water emulsions, Food Res. Int. 42 (2009) 847–855. | |
dc.relation | F. Chen, X. Du, Y. Zu, L. Yang, F. Wang, Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proanthocyanidins and polysaccharides by one-pot process from Cinnamomi Cortex, Sep. Purif. Technol. 164 (2016) 1–11. | |
dc.relation | B. Liu, S. Sun, M. Zhang, H. Zhang, Synthesis of large-scale, narrowly dispersed, highly cross-linked, and spherical latex particles via one-step emulsion polymerization through particle coagulation, J. Dispers. Sci. Technol. 38 (2017) 1147–1153. | |
dc.relation | M. Levin, Pharmaceutical Process Scale-Up, Second, Taylor & Francis Group, Boca Ratón, 2006. | |
dc.relation | D.K. Kern, Process heat transfer, 21st ed., Tokyo, 1983. | |
dc.relation | D. Annaratone, Engineering Heat Transfer, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. | |
dc.relation | J.E. Nowrey, E.E. Woodams, K. Longree, Thermal conductivity of a vegetable oil-in-water emulsion, J. Chem. Eng. Data. 13 (1968) 297–301. | |
dc.relation | R.H. Wang, J.G. Knudsen, Thermal Conductivity of Liquid-Liquid Emulsions, Ind. Eng. Chem. 50 (1958) 1667–1670. | |
dc.relation | T.G. Mezger, Applied Rheology, 5th ed., Anton Paar, Austria, 2018. | |
dc.relation | R.P. Chhabra, J.F. Richarson, Non-newtonian flow and applied rheology, 2nd ed., Elsevier, Burlington, 2008. | |
dc.relation | M. Bekker, G. V. Webber, N.R. Louw, Relating rheological measurements to primary and secondary skin feeling when mineral-based and Fischer-Tropsch wax-based cosmetic emulsions and jellies are applied to the skin, Int. J. Cosmet. Sci. 35 (2013) 354–361. | |
dc.relation | H.A. Barnes, Rheology of emulsions - a review, Colloids Surfaces A Physicochem. Eng. Asp. 91 (1994) 89–95. | |
dc.relation | C. Almeida-Rivera, P. Bongers, Modelling and experimental validation of emulsification processes in continuous rotor-stator units, Comput. Chem. Eng. 34 (2010) 592–597. | |
dc.relation | T. Tadros, Encyclopedia of Colloid and Interface Science, 2013. | |
dc.relation | Young Living Group, Exploring Consumer Drivers & Their Implications, in: In-Cosmetics Global, 2019. | |
dc.relation | D.J. McClements, Food emulsions: principles, practices, and techniques, Taylor & Francis Group, 2016. | |
dc.relation | W. Charteris, K. Keogh, Grasas y aceites en las cremas de untar de mesa, Palmas. 12 (1991) 69–79. | |
dc.relation | R.A. Benvenuto Ardiles, Estudio de la dinámica de cristalización de tres aceites de interés industrial, y caracterización de su microestructura final, Universidad de Chile, 2017. | |
dc.relation | F.J. Medellin Rodriguez, L.A. Baldenegro Perez, P.J. Phillips, A. Aragon, Cristalización dinámica de homopolimeros de poli(etilen tereftalato), Inf. Tecnol. 13 (2002) 45–49. | |
dc.relation | Froude Number - an overview, Sci. Top. (2020). https://www.sciencedirect.com/topics/earth-and-planetary-sciences/froude-number (accessed January 23, 2020). | |
dc.relation | B. RAY, G. BISWAS, A. SHARMA, Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface, J. Fluid Mech. 655 (2010) 72–104. | |
dc.relation | M.F. Gutiérrez, Á. Orjuela, J.L. Rivera, A. Suaza, Production of sucroesters using solvent-free reactive systems containing emulsifiers, Ing. e Investig. 38 (2018). | |
dc.relation | P. Forschner, R. Krebs, EP 0 515 852 A1, 92107225.2, 1992. | |
dc.relation | Ekato, Plantas de laboratorio y piloto EKATO UNIMIX - Ekato, (n.d.). https://www.ekato.com/es/productos/plantas-de-proceso/plantas-piloto/plantas-de-proceso-en-vacio-unimix/ (accessed January 4, 2020). | |
dc.relation | T. Mitsui, 1 – Cosmetics and skin, New Cosmet. Sci. (1997) 13–46. | |
dc.relation | M.F. Gutiérrez, J.L. Rivera, A. Suaza, A. Orjuela, Kinetics of the transesterification of methyl palmitate and sucrose using surfactants, Chem. Eng. J. 347 (2018) 877–888. | |
dc.relation | De Dietrich Process Systems, Evaporador de película delgada, (n.d.). https://www.dedietrich.com/es/soluciones-y-productos/destilacion/evaporador-de-pelicula-delgada (accessed January 4, 2020). | |
dc.relation | J.D. Fonseca, A. Suaza, R.F. Cortes, I.D. Gil, G. Rodríguez, A. Orjuela, Rapid feasibility assessment for the use of wiped-film evaporation in the purification of thermally labile products, Chem. Eng. Res. Des. (2019). | |
dc.relation | J.D. Fonseca Gamboa, Modelamiento y optimización de un proceso batch para la producción de tributil citrato, Universidad Nacional de Colombia, 2016. | |
dc.relation | Pope INC, Wiped Film Still Configurations: High Vacuum Still | Medium Vacuum Stills, (n.d.). https://www.popeinc.com/still-products/wiped-film-stills-evaporators/still-versions/ (accessed January 4, 2020). | |
dc.relation | Irestal Group, TUBO DE ACERO INOXIDABLE TUBO REDONDO MILIMÉTRICO TUBO REDONDO ISO, n.d. | |
dc.relation | Pope INC, Technical data sheet: Pope 20" PRODUCTION SERIES, WIPED-FILM MOLECULAR STILLS, n.d. | |
dc.relation | Pope INC, Wiped-Film Stills Introduction and Description of Basic Technology, n.d. | |
dc.relation | Bush, TURBO - Busch Bombas y Sistemas de Vacío Global, (n.d.). https://www.buschvacuum.com/global/es/products/turbo (accessed January 5, 2020). | |
dc.relation | PFaudler Engineered systems, Wiped Film Evaporator-WFE, (2002) 12. | |
dc.relation | LCI Corporation, Short Path Evaporator, (n.d.). https://lcicorp.com/short_path_evaporators/short_path_evaporator/ (accessed January 5, 2020). | |
dc.relation | SMS, Short Path Evaporator, (n.d.). https://www.sms-vt.com/technologies/evaporation-technology/short-path-evaporator/ (accessed January 5, 2020). | |
dc.relation | M.F. Gutiérrez, J.L. Rivera, A. Suaza, A. Orjuela, Kinetics of the transesterification of methyl palmitate and sucrose using surfactants, Chem. Eng. J. 347 (2018). | |
dc.relation | P.E. Jurandir Primo, Shell and Tube Heat Exchangers Basic Calculations, (2012). | |
dc.relation | Vanssoil, Technical Data Sheet V-term, Bogotá, n.d. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones | |
dc.type | Otro | |