dc.contributorSoto Sedano, Johana Carolina
dc.contributorMosquera Vásquez, Teresa De Jesús
dc.contributorUniversidad Nacional de Colombia
dc.contributorGenética de Rasgos de Interés Agronómico
dc.creatorParra Galindo, Maria Angelica
dc.date.accessioned2020-04-06T16:54:54Z
dc.date.available2020-04-06T16:54:54Z
dc.date.created2020-04-06T16:54:54Z
dc.date.issued2019-12-16
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77404
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractPotato is considered a basic crop worldwide and is the third source of antioxidants in the human diet, due to its per capita consumption. Some of the most relevant antioxidant compounds in potatoes within dietary polyphenols are anthocyanin pigments. The anthocyanin compounds’ synthesis implies a chain of potentially superimposed regulatory signals. Since their synthesis cannot be seen exclusively from the transcription of the genes included in the synthesis of the enzymes involved in the biosynthetic pathway but it is important to consider different allelic variants not associated in the pathway and / or transcription factors that may be playing an important role in the regulation of the synthesis of the enzymes and, therefore, in the production and accumulation of these bioactive compounds in different plant tissues. To approach the understanding of the genetic architecture that controls complex traits such as nutritional quality, specifically the dietary polyphenols compounds. In different species and also in potato, the genome wide association mapping strategy (GWAS) has been implemented, in order to identify genes and sequences that control different traits of agronomic interest, especially quantitative traits to apply in genetic breeding programs. Thus, since regulation and accumulation of bioactive compounds in plants is governed by multiple genes organized within complex biological networks, the genome-wide association study approach presents a limitation does not offer direct evidence about the biological process that link the variant associated with the trait. In this way, the integration of the biological pathway approach is considered in the study of the genetic association of anthocyanin compounds in potatoes. The objective of this research was the integration of allelic variants / genes obtained by a study of wide genome association and allelic variants of genes putatively related in the biosynthetic pathway of anthocyanin compounds. The approach integrating the genetic participation of each associated genomic regions, allowing a biological interpretation of each association. An association panel of 109 Phureja Group diploid potato genotypes was used. which phenotyping for the five-anthocyanin content by means of High Performance Liquid Chromatography (HPLC) and genotyping under the genotyping by sequencing (GBS) methodology with a matrix of 87,657 single nucleotide polymorphic markers. Promising biosinthetic pathway models were established that integrated the gene participation of each associated gene. Promising biosynthetic pathway models were established that integrated the gene involvement of each associated gene. As a result, a region of interest on chromosome 10 was identified, identifying genes associated with the anthocyanin biosynthetic pathway in a 4Mpb region on the final arm of chromosome 10; a marker linked to the phenylalanine ammonia lyase gene, which encodes the first enzyme in the phenylpropanoid biosynthetic pathway, was associated with the five anthocyanin compounds evaluated, explaining the greater phenotypic variation of the trait. The L-methionine biosynthetic pathway was identified as being important for the late anthocyanin pathway. This investigation confirmed genomic regions whose allelic variability is associated with the analyzed compounds and which had previously been detected. It also allowed the identification of other new genomic regions in a “biological pathways” approach complementing existing knowledge. The results contribute to the understanding of anthocyanin regulation in potatoes and can be used in future studies for integration into potato improvement programs.
dc.description.abstractLa papa es considerada un cultivo básico a nivel mundial y constituye la tercera fuente de antioxidantes en la dieta humana, debido a su consumo per cápita. Algunos de los compuestos antioxidantes más relevantes en papa dentro de los polifenoles dietarios son los pigmentos antociánicos. La síntesis de los compuestos antociánicos implica una matriz de señales reguladoras potencialmente superpuestas, por lo que, no se puede ver su síntesis exclusivamente a partir de la transcripción de los genes incluidos en la síntesis de las enzimas involucradas en la ruta biosintética, sino que, es importante considerar diferentes variantes alélicas no asociadas en las rutas y/o factores de transcripción que pueden estar desempeñando un papel importante en la regulación y acumulación de estos compuestos en diferentes tejidos vegetales. Para entender la arquitectura genética que gobierna rasgos complejos relacionados con la composición nutricional de los alimentos, como es la composición de antocianinas en diferentes especies y en papa; se han implementado estrategias como los estudios de mapeo de asociación amplia del genoma (GWAS), en programas de mejoramiento genético, con el fin de identificar loci de caracteres cuantitativos asociados al rasgo, para luego aplicar en programas de mejoramiento genético. En el caso de polifenoles dietarios, debido a que su síntesis y acumulación en plantas está regulada por múltiples genes que se organizan dentro de redes biológicas complejas, la metodología de GWAS presenta una limitante y es que no ofrece evidencia directa acerca del proceso biológico que liga la variante asociada con el rasgo. Esta investigación plantea la integración de la aproximación de rutas biológicas “biological pathway” en un estudio de asociación genética de compuestos de antocianinas en papa. El objetivo de esta investigación fue la integración de variantes alélicas/genes obtenidos por un estudio de asociación amplia del genoma y variantes alélicas de genes putativamente relacionados en la ruta biosintética de los compuestos antociánicos, integrando la participación génica de cada una de las regiones genómicas asociadas, permitiendo una interpretación biológica de cada asociación. Para lo cual, se empleó un panel de asociación de 109 genotipos de papa diploide Grupo Phureja, fenotipado para el rasgo del contenido de cinco antocianindinas por medio de cromatografía liquida de alta precisión (HPLC) y, genotipado bajo la metodología de “genotyping by sequencing” con una matriz de 87,657 marcadores polimórficos de un solo nucleótido. Se establecieron modelos de rutas biosintéticas promisorias que integraron la participación génica de cada gen asociado. Como resultado se identificó una región de interés en el cromosoma 10, identificando genes asociados a la ruta biosintética de las antocianinas en una región de 4Mpb en el brazo final del cromosoma 10; un marcador ligado al gen de fenilalanina amoniaco-liasa, que codifica la primera enzima en la ruta biosintética de fenilpropanoides, se asoció a los cinco compuestos antociánicos evaluados explicando la mayor variación fenotípica del rasgo. Se identificó que la ruta biosintética de la L-metionina es importante para la ruta tardía de las antocianinas. Esta investigación confirmó regiones genómicas cuya variabilidad alélica está asociada con los compuestos analizados y que ya previamente habían sido detectadas. También permitió la identificación de otras nuevas regiones genómicas en un enfoque de “rutas biológicas” complementando el conocimiento existente. Los resultados contribuyen a la comprensión de la regulación de las antocianinas en la papa y pueden usarse en futuros estudios para la integración en programas de mejoramiento de papa. (Texto tomado de la fuente).
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAfrin, Sadia, and Mohammed Nuruzzaman. 2014. “Combinatorial Interactions of MYB and bHLH in Flavonoid Biosynthesis and Their Function in Plants Combinatorial Interactions of MYB and bHLH in Flavonoid Biosynthesis and Their Function in Plants,” no. January.
dc.relationAllan, AC, RP Hellens, and WA Laing. 2008. “MYB Transcription Factors That Colour Our Fruit.” Trends in Plant Science 13: 99–102.
dc.relationAlves-Pinto, M. 2004. Caracterización de fracciones polifenólicas de la fresa y sus implicaciones tecnológicas. Trabajo de grado para la obtención de doctor. Universidad de Salamanca. Departamento de Química.
dc.relationAndré, C.M, M Oufir, L Hoffmann, J.F Hausman, H Rogez, and Y Larondelle. 2009. “Influence of Environment and Genotype on Polyphenol Compounds and in Vitro Antioxidant Capacity of Native Andean Potatoes (Solanum Tuberosum L.).” J. Food Compos. Anal. 22: 517–524.
dc.relationAndré, Christelle M, Roland Schafleitner, Sylvain Legay, Isabelle Lefèvre, Carlos A Alvarado Aliaga, Giannina Nomberto, Lucien Hoffmann, Jean-François Hausman, Yvan Larondelle, and Danièle Evers. 2009. “Gene Expression Changes Related to the Production of Phenolic Compounds in Potato Tubers Grown under Drought Stress.” Phytochemistry 70 (9). Elsevier: 1107–16.
dc.relationAndre, CM., M. Ghislain, P. Bertin, M. Oufir, M. Herrera, and L. Hoffmann. 2007. “Andean Potato Cultivars (Solanum Tuberosum L.) as a Source of Antioxidant and Mineral Micronutrients.” J. Agric. Food Chem. 55: 366–378.
dc.relationAngelovici, R., A. E. Lipka, N. Deason, S. Gonzalez-Jorge, H. Lin, J. Cepela, R. Buell, M. A. Gore, and D. DellaPenna. 2013. “Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds.” The Plant Cell 25 (12): 4827–43. https://doi.org/10.1105/tpc.113.119370.
dc.relationBackes, Christina. 2014. “Systematic Permutation Testing in GWAS Pathway Analyses : Identification of Genetic Networks in Dilated Cardiomyopathy and Ulcerative Colitis,” 1–16.
dc.relationBaudry, Antoine, Michel Caboche, and Loic Lepiniec. 2006. “TT8 Controls Its Own Expression in a Feedback Regulation Involving TTG1 and Homologous MYB and bHLH Factors, Allowing a Strong and Cell-Specific Accumulation of Flavonoids in Arabidopsis Thaliana.” The Plant Journal 46 (5). Wiley Online Library: 768–79.
dc.relationBenjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B (Methodological) 57 (1). Wiley Online Library: 289–300.
dc.relationBerdugo-Cely, Jhon, Raúl Iván Valbuena, Erika Sánchez-Betancourt, Luz Stella Barrero, and Roxana Yockteng. 2017. “Genetic Diversity and Association Mapping in the Colombian Central Collection of Solanum Tuberosum L. Group Andigenum Using SNPs Markers.” PloS One 12 (3). Public Library of Science: e0173039.
dc.relationBonilla, M.E., Cardozo, F., Morales, A., 2009. Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia con énfasis en papa criolla, Ministerio de Agricultura y Desarrollo Rural.
dc.relationBox, George E P, and David R Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society: Series B (Methodological) 26 (2). Wiley Online Library: 211–43.
dc.relationBrachi, Benjamin, Geoffrey P Morris, Justin O Borevitz, and Geoffrey P Morris and Justin O Borevitz Benjamin Brachi. 2011. “Genome-Wide Association Studies in Plants: The Missing Heritability Is in the Field\r.” Genome Biology 12 (232): 232. https://doi.org/10.1186/gb-2011-12-10-232.
dc.relationBradbury, Zhang, Kroon, Casstevens, Ramdoss, Buckler. 2007. “TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples.” Bioinformatics 23 (19). Oxford University Press: 2633–35.
dc.relationBroglie, Richard, and Karen Broglie. 2018. “Ethylene and Gene Expression.” In The Plant Hormone Ethylene, 101–13. CRC Press.
dc.relationBrown, C. R. 2005. “Antioxidants in Potato.” American Journal of Potato Research 82 (2): 163–72. https://doi.org/10.1007/BF02853654.
dc.relationBrown, C.R., D. Culley, M. Bonierbale, and W. Amoros. 2007. “Anthocyanin, Carotenoid Content, and Antioxidant Values in Native South American Potato Cultivars.” Horticultural Science 42: 1733–1736.
dc.relationBrown, C.R., R. Wrolstad, R. Durst, C.P. Yang, and B. Clevidence. 2003. “Breeding Studies in Potatoes Containing High Concentrations of Anthocyanins.” American Journal of Potato Research 80: 241–249.
dc.relationBrown, K. J. 1993. Roots and Tubers Galore: The Story of CIP´s Global Research Program and the People Who Shaped It. CIP. Lima.
dc.relationBrush, Stephen B, Heath J Carney, and Zósimo Humán. 1981. “Dynamics of Andean Potato Agriculture.” Economic Botany 35 (1). Springer: 70–88.
dc.relationBurmeister, Annika, Sabine Bondiek, Lena Apel, Claudia Kühne, Silke Hillebrand, and Peter Fleischmann. 2011. “Comparison of Carotenoid and Anthocyanin Profiles of Raw and Boiled Solanum Tuberosum and Solanum Phureja Tubers.” Journal of Food Composition and Analysis 24 (6): 865–72. https://doi.org/10.1016/j.jfca.2011.03.006.
dc.relationBush, William S., and Jason H. Moore. 2012. “Chapter 11: Genome-Wide Association Studies.” PLoS Computational Biology 8 (12). https://doi.org/10.1371/journal.pcbi.1002822.
dc.relationCamire, M., S. Kubow y D. Donnelly. 2009. Potatoes and human health. Critical Reviews in Food Science and Nutrition 49, 823-840. https://doi.org/10.1016/B978-0-12-800002-1.00023-6.
dc.relationCamire, Mary E. 2016. “Potatoes and Human Health.” Advances in Potato Chemistry and Technology: Second Edition, no. October 2014: 685–704. https://doi.org/10.1016/B978-0-12-800002-1.00023-6.
dc.relationChae, Lee, Taehyong Kim, Ricardo Nilo-Poyanco, and Seung Y Rhee. 2014. “Genomic Signatures of Specialized Metabolism in Plants.” Science 344 (6183). American Association for the Advancement of Science: 510–13.
dc.relationChampagne, Antoine, Ghislaine Hilbert, Laurent Legendre, and Vincent Lebot. 2011. “Diversity of Anthocyanins and Other Phenolic Compounds among Tropical Root Crops from Vanuatu, South Pacific.” Journal of Food Composition and Analysis 24 (3): 315–25. https://doi.org/10.1016/j.jfca.2010.12.004.
dc.relationCheynier, Véronique, Gilles Comte, Kevin M Davies, Vincenzo Lattanzio, and Stefan Martens. 2013. “Plant Physiology and Biochemistry Plant Phenolics : Recent Advances on Their Biosynthesis , Genetics , and Ecophysiology.” Plant Physiology et Biochemistry 72. Elsevier Masson SAS: 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009.
dc.relationChun, Ock Kyoung, Dae Ok Kim, Nancy Smith, David Schroeder, Jae Taek Han, and Yong Lee Chang. 2005. “Daily Consumption of Phenolics and Total Antioxidant Capacity from Fruit and Vegetables in the American Diet.” Journal of the Science of Food and Agriculture 85 (10): 1715–24. https://doi.org/10.1002/jsfa.2176.
dc.relationColmenares, G.A. 2000. “Stratified/PCA: Un Método de Preprocesamiento de Datos Y Variables Para La Construcción de Modelos de Redes Neuronales.” Revista Economía 16: 1–31.
dc.relationConsortium, Potato Genome Sequencing, and others. 2011. “Genome Sequence and Analysis of the Tuber Crop Potato.” Nature 475 (7355). Nature Publishing Group: 189.
dc.relationCuéllar-Gálvez, D., Aranda-Camacho, Y. and Mosquera-Vásquez, T. 2018. A Model to Promote Sustainable Social Change Based on the Scaling up of a High-Impact Technical Innovation. Sustainability 2018, 10, 4532; doi:10.3390/su10124532.
dc.relationD’Auria, J.C, and J Gershenzon. 2005. “The Secondary Metabolism of Arabidopsis Thaliana: Growing like a Weed. Curr. Opin.” Plant Biol. 8: 308–16.
dc.relationD’hoop, Björn B., Paul L.C. Keizer, M. João Paulo, Richard G.F. Visser, Fred A. van Eeuwijk, and Herman J. van Eck. 2014. “Identification of Agronomically Important QTL in Tetraploid Potato Cultivars Using a Marker-Trait Association Analysis.” TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 127 (3): 731–48. https://doi.org/10.1007/s00122-013-2254-y.
dc.relationDancs, Gábor, Mihály Kondrák, and Zsófia Bánfalvi. 2008. “The Effects of Enhanced Methionine Synthesis on Amino Acid and Anthocyanin Content of Potato Tubers.” BMC Plant Biology 8 (Figure 1): 1–10. https://doi.org/10.1186/1471-2229-8-65.
dc.relationDe Jong, H. 1991. “Inheritance of Anthocyanin Pigmentation in the Cultivated Potato: A Critical Review.” American Potato Journal 68 (9). Springer: 8.
dc.relationDeikman, Jill, and Philip E Hammer. 1995. “Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis Thaliana.” Plant Physiology 108 (1). Am Soc Plant Biol: 47–57.
dc.relationDillard, Cora J, and J Bruce German. 2000. “Review Phytochemicals : Nutraceuticals and Human Health” 1756 (January).
dc.relationDodds, E S, and D H Long. 1956. “The Inheritance Oe Colour in Diploid Potatoes II. A Three-Factor Linkage Group.” Journal of Genetics 54 (1). Springer: 27.
dc.relationDuarte-Delgado, Diana, Carlos Eduardo Ñústez-López, Carlos Eduardo Narváez-Cuenca, Luz Patricia Restrepo-Sánchez, Sandra E. Melo, Felipe Sarmiento, Ajjamada C. Kushalappa, and Teresa Mosquera-Vásquez. 2016. “Natural Variation of Sucrose, Glucose and Fructose Contents in Colombian Genotypes of Solanum Tuberosum Group Phureja at Harvest.” Journal of the Science of Food and Agriculture 96 (12): 4288–94. https://doi.org/10.1002/jsfa.7783.
dc.relationDuitama, Jorge, Juan Camilo Quintero, Daniel Felipe Cruz, Constanza Quintero, Georg Hubmann, Maria R Foulquie-Moreno, Kevin J Verstrepen, Johan M Thevelein, and Joe Tohme. 2014. “An Integrated Framework for Discovery and Genotyping of Genomic Variants from High-Throughput Sequencing Experiments.” Nucleic Acids Research 42 (6). Oxford University Press: e44--e44.
dc.relationDumitriu, Alexandra, Javad Golji, Adam T. Labadorf, Benbo Gao, Thomas G. Beach, Richard H. Myers, Kenneth A. Longo, and Jeanne C. Latourelle. 2016. “Integrative Analyses of Proteomics and RNA Transcriptomics Implicate Mitochondrial Processes, Protein Folding Pathways and GWAS Loci in Parkinson Disease.” BMC Medical Genomics 9 (1): 1–18. https://doi.org/10.1186/s12920-016-0164-y.
dc.relationEck, Herman J. Van, Jeanne M.E. Jacobs, Petra M.M.M. Van Den Berg, Willem J. Stiekema, and Evert Jacobsen. 1994. “The Inheritance of Anthocyanin Pigmentation in Potato (Solatium Tuberosum L.) and Mapping of Tuber Skin Colour Loci Using RFLPs.” Heredity 73 (4): 410–21. https://doi.org/10.1038/hdy.1994.189.
dc.relationEichhorn, S., and P. Winterhalter. 2005. “Anthocyanins from Pigmented Potato (Solanum Tuberosum L.) Varieties.” Food Research International 38 (8–9): 943–48. https://doi.org/10.1016/j.foodres.2005.03.011.
dc.relationEl-kereamy, Ashraf, Christian Chervin, Jean-paul Roustan, Veronique Cheynier, and Jean-marc Souquet. 2003. “Exogenous Ethylene Stimulates the Long-Term Expression of Genes Related to Anthocyanin Biosynthesis in Grape Berries,” 175–82.
dc.relationEstrada, R. N. (1996). Recursos genéticos en el mejoramiento de la papa en los países andinos. In Papas colombianas: con el mejor entorno ambiental (pp. 1e14). Bogotá, Colombia: Comunicaciones y asociados publisching.
dc.relationEstrada, R.N. 2004. La Biodiversidad En El Mejoramiento Genético de La Papa. Edited by E. Martínez and H. Bill Bolivia.
dc.relationEzekiel, R., N. Singh, S. Sharma, and A. Kaur. 2013. “Beneficial Phytochemicals in potato—A Review.” Food Research International 50: 487–496.
dc.relationFAOSTAT. FAOSTAT. In: FAOSTAT [Internet]. 2018 [cited 19 march 2019]. Available: http://www.fao.org/faostat/en/#home. n.d. “No Title.”
dc.relationFeller, Antje, Katja MacHemer, Edward L. Braun, and Erich Grotewold. 2011. “Evolutionary and Comparative Analysis of MYB and bHLH Plant Transcription Factors.” Plant Journal 66 (1): 94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x.
dc.relationFogelman, Edna, Sivan Tanami, and Idit Ginzberg. 2015. “Anthocyanin Synthesis in Native and Wound Periderms of Potato.” Physiologia Plantarum 153 (4): 616–26. https://doi.org/10.1111/ppl.12265.
dc.relationFossen, Torgils, Dag Olav Øvstedal, Rune Slimestad, and Øyvind M. Andersen. 2003. “Anthocyanins from a Norwegian Potato Cultivar.” Food Chemistry 81 (3): 433–37. https://doi.org/10.1016/S0308-8146(02)00473-9.
dc.relationFossen, Torgils. 2016. “Anthocyanins from Tubers and Shoots of the Purple Potato , Solanum Tuberosum” 316 (April). https://doi.org/10.1080/14620316.2000.11511251.
dc.relationFraser, Christopher M., and Clint Chapple. 2011. “The Phenylpropanoid Pathway in Arabidopsis.” The Arabidopsis Book 9: e0152. https://doi.org/10.1199/tab.0152.
dc.relationFriedrichs, Stefanie, Juliane Manitz, Patricia Burger, Christopher I. Amos, Angela Risch, Jenny Chang-Claude, Heinz Erich Wichmann, Thomas Kneib, Heike Bickeböller, and Benjamin Hofner. 2017. “Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.” Computational and Mathematical Methods in Medicine 2017. https://doi.org/10.1155/2017/6742763.
dc.relationGhislain, M., D. Andrade, F. Rodriguez, R. Hijmans, and D. Spooner. 2006. “Genetic Analysis of the Cultivated Potato Sola- Num Tuberosum L. Phureja Group Using RAPDs and Nuclear SSRs.” Theor. Appl. Genet 113 (8): 1515–1527. https://doi.org/10.1007/s00122-006-0399-7.
dc.relationGiacalone, G., F. Clarelli, A. M. Osiceanu, C. Guaschino, P. Brambilla, M. Sorosina, G. Liberatore, et al. 2015. “Analysis of Genes, Pathways and Networks Involved in Disease Severity and Age at Onset in Primary-Progressive Multiple Sclerosis.” Multiple Sclerosis Journal 21 (11): 1431–42. https://doi.org/10.1177/1352458514564590.
dc.relationGianfagna, Thomas J, and Gerald A Berkowitz. 1986. “GLUCOSE CATABOLISM AND ANTHOCYANIN PRODUCTION IN APPLE” 25 (3): 607–9.
dc.relationGodfray, H.C., and T. Garnett. 2014. “Food Security and Sustainable Intensification.” Philos Trans R Soc Lond B Biol Sci. 369 (1639): 1–10. https://doi.org/10.1098/rstb.2012.0273.
dc.relationGong, Z, M Yamazaki, and K Saito. 1999. “A Light-Inducible Myb-like Gene That Is Speci ® Cally Expressed in Red Perilla Frutescens and Presumably Acts as a Determining Factor of the Anthocyanin Forma.” Molecular and General Genetics MGG 262: 65–72.
dc.relationGonzalez, A, M Zhao, JM Leavitt, and AM Lloyd. 2008. “Regulation of the Anthocyanin Biosynthetic Pathway by the TTG1/bHLH/Myb Transcriptional Complex in Arabidopsis Seedlings.” The Plant Journal 53: 814–827.
dc.relationGrotewold, E. 2006. “The Genetics and Biochemistry of Floral Pigments.” Rev. Plant Biol 57: 761–80. https://doi.org/10.1146/annurev.arplant.57.032905.105248.
dc.relationGutaker, Rafal M, Clemens L Weiß, David Ellis, Noelle L Anglin, Sandra Knapp, José Luis Fernández-Alonso, Salomé Prat, and Hernán A Burbano. 2019. “The Origins and Adaptation of European Potatoes Reconstructed from Historical Genomes.” Nature Ecology & Evolution. Nature Publishing Group, 1.
dc.relationHall, Robert D, and Jules Beekwilder. 2014. “Control of Anthocyanin and Non-Flavonoid Compounds by Anthocyanin-Regulating MYB and bHLH Transcription Factors in Nicotiana Benthamiana Leaves” 5 (October): 1–9. https://doi.org/10.3389/fpls.2014.00519.
dc.relationHamouz, K., J. Lachman, K. Pazderů, J. Tomášek, K. Hejtmánková, and V. Pivec. 2011. “Differences in Anthocyanin Content and Antioxidant Activity of Potato Tubers with Different Flesh Colour.” Plant, Soil and Environment 57 (10): 478–85.
dc.relationHan, Kyu-Ho, Mitsuo Sekikawa, Ken-ichiro Shimada, Makoto Hashimoto, Naoto Hashimoto, Takahiro Noda, Hisashi Tanaka, and Michihiro Fukushima. 2006. “Anthocyanin-Rich Purple Potato Flake Extract Has Antioxidant Capacity and Improves Antioxidant Potential in Rats.” British Journal of Nutrition 96 (6). Cambridge University Press: 1125–34.
dc.relationHardigan, Michael A, Emily Crisovan, John P Hamilton, Jeongwoon Kim, Parker Laimbeer, Courtney P Leisner, Norma C Manrique-Carpintero, et al. 2016. “Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum Tuberosum.” The Plant Cell 28 (2). Am Soc Plant Biol: 388–405.
dc.relationHatlestad, Gregory J, Rasika M Sunnadeniya, Neda A Akhavan, Antonio Gonzalez, Irwin L Goldman, J Mitchell Mcgrath, and Alan M Lloyd. 2012. “The Beet R Locus Encodes a New Cytochrome P450 Required for Red Betalain Production” 44 (7). Nature Publishing Group: 10–15. https://doi.org/10.1038/ng.2297.
dc.relationHawkes, J. G. 1990. The Potato: Evolution, Biodiversity, and Genetic Resources. Belhaven P. London.
dc.relationHe, Fei, Lin Mu, Guo Liang Yan, Na Na Liang, Qiu Hong Pan, Jun Wang, Malcolm J. Reeves, and Chang Qing Duan. 2010. “Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes.” Molecules 15 (12): 9057–91. https://doi.org/10.3390/molecules15129057.
dc.relationHejtmánková, Kateřina, Zora Kotíková, Karel Hamouz, Vladimír Pivec, Josef Vacek, and Jaromír Lachman. 2013. “Influence of Flesh Colour, Year and Growing Area on Carotenoid and Anthocyanin Content in Potato Tubers.” Journal of Food Composition and Analysis 32 (1): 20–27. https://doi.org/10.1016/j.jfca.2013.07.001.
dc.relationHolton, Timothy A., and Edwina C. Cornish. 1995. “Genetics and Biochemistry of Anthocyanin Biosynthesis.” The Plant Cell 7 (7): 1071. https://doi.org/10.2307/3870058.
dc.relationHu, Yijie, Liqing Deng, Jinwu Chen, Siyu Zhou, Shuang Liu, Yufan Fu, Chunxian Yang, Zhihua Liao, and Min Chen. 2016. “An Analytical Pipeline to Compare and Characterise the Anthocyanin Antioxidant Activities of Purple Sweet Potato Cultivars.” Food Chemistry 194. Elsevier Ltd: 46–54. https://doi.org/10.1016/j.foodchem.2015.07.133.
dc.relationHuamán, Zósimo, and David M Spooner. 2002. “Reclassification of Landrace Populations of Cultivated Potatoes (Solanum Sect. Petota).” American Journal of Botany 89 (6). Wiley Online Library: 947–65.
dc.relationHwang, Yong Pil, Jae Ho Choi, Jun Min Choi, Young Chul Chung, and Hye Gwang Jeong. 2011. “Protective Mechanisms of Anthocyanins from Purple Sweet Potato against Tert-Butyl Hydroperoxide-Induced Hepatotoxicity.” Food and Chemical Toxicology 49 (9). Elsevier Ltd: 2081–89. https://doi.org/10.1016/j.fct.2011.05.021.
dc.relationIngvarsson, P??r K., and Nathaniel R. Street. 2011. “Association Genetics of Complex Traits in Plants.” New Phytologist 189 (4): 909–22. https://doi.org/10.1111/j.1469-8137.2010.03593.x.
dc.relationJi, Liyao, Kalenahalli N. Yogendra, Kareem A. Mosa, Ajjamada C. Kushalappa, Clara Piñeros-Niño, Teresa Mosquera, and Carlos-Eduardo Narváez-Cuenca. 2016. “Hydroxycinnamic Acid Functional Ingredients and Their Biosynthetic Genes in Tubers of Solanum Tuberosum Group Phureja.” Cogent Food & Agriculture 2 (1): 1–14. https://doi.org/10.1080/23311932.2016.1138595.
dc.relationJia, Hui-Juan, Aritomo Araki, and Goro Okamoto. 2005. “Influence of Fruit Bagging on Aroma Volatiles and Skin Coloration of ‘Hakuho’peach (Prunus Persica Batsch).” Postharvest Biology and Technology 35 (1). Elsevier: 61–68.
dc.relationJia, Peilin, Chung-Feng Kao, Po-Hsiu Kuo, and Zhongming Zhao. 2011. “A Comprehensive Network and Pathway Analysis of Candidate Genes in Major Depressive Disorder.” BMC Systems Biology 5 (Suppl 3): S12. https://doi.org/10.1186/1752-0509-5-S3-S12.
dc.relationJiang, Z., C. Chen, J. Wang, W. Xie, M. Wang, X.Li y X. Zhan. 2016. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. J Nat Med 70:45–53.
dc.relationJiao, Yuzhi, Yanjie Jiang, Weiwei Zhai, and Zhendong Yang. 2012. “Studies on Antioxidant Capacity of Anthocyanin Extract from Purple Sweet Potato ( Ipomoea Batatas L .).” African Journal of Biotechnology Vol. 11 (27): 7046–54. https://doi.org/10.5897/AJB11.3859.
dc.relationJohnson, Randall C., George W. Nelson, Jennifer L. Troyer, James A. Lautenberger, Bailey D. Kessing, Cheryl A. Winkler, and Stephen J. O’Brien. 2010. “Accounting for Multiple Comparisons in a Genome-Wide Association Study (GWAS).” BMC Genomics 11 (1). BioMed Central Ltd: 724. https://doi.org/10.1186/1471-2164-11-724.
dc.relationJong, H De. 19991. “Inheritance of Anthocyanin Pigmentation in the Cultivated Potato: A Critical Review.” American Potato Journal 68 (9). Springer: 8.
dc.relationJong, W S De, D M De Jong, H De Jong, J Kalazich, and M Bodis. 2003. “An Allele of Dihydroflavonol 4-Reductase Associated with the Ability to Produce Red Anthocyanin Pigments in Potato (Solanum Tuberosum L.).” Theoretical and Applied Genetics 107 (8). Springer: 1375–83. 1375–83. https://doi.org/10.1007/s00122-003-1395-9.
dc.relationJong, W. S. De, N. T. Eannetta, D. M. De Jong, and M. Bodis. 2004. “Candidate Gene Analysis of Anthocyanin Pigmentation Loci in the Solanaceae.” Theoretical and Applied Genetics 108 (3): 423–32. https://doi.org/10.1007/s00122-003-1455-1.
dc.relationJu, Zhi-Guo, Yong-Bing Yuan, Cheng-Lian Liou, and Shi-Hai Xin. 1995. “Relationships among Phenylalanine Ammonia-Iyase Activity, Simple Phenol Concentrations and Anthocyanin Accumulation in Apple.” Scientia Horticulturae 61 (3–4). Elsevier: 215–26.
dc.relationJung, Chun Suk, Helen M Griffiths, Darlene M De Jong, Shuping Cheng, Mary Bodis, and Walter S De Jong. 2005. “The Potato P Locus Codes for Flavonoid 3′, 5′-Hydroxylase.” Theoretical and Applied Genetics 110 (2). Springer: 269–75.
dc.relationJung, Chun Suk, Helen M. Griffiths, Darlene M. De Jong, Shuping Cheng, Mary Bodis, Tae Sung Kim, and Walter S. De Jong. 2009. “The Potato Developer (D) Locus Encodes an R2R3 MYB Transcription Factor That Regulates Expression of Multiple Anthocyanin Structural Genes in Tuber Skin.” Theoretical and Applied Genetics 120 (1): 45–57. https://doi.org/10.1007/s00122-009-1158-3.
dc.relationJuyó, Deissy, Felipe Sarmiento, María Álvarez, Helena Brochero, Christiane Gebhardt, and Teresa Mosquera. 2015. “Genetic Diversity and Population Structure in Diploid Potatoes of Solanum Tuberosum Group Phureja.” Crop Science 55 (2): 760–69. https://doi.org/10.2135/cropsci2014.07.0524.
dc.relationJuyo-Rojas, Deissy Katherine, Johana Carolina Soto Sedano, Agim Ballvora, Jens Léon, and Teresa Mosquera Vásquez. 2019. “Novel Organ-Specific Genetic Factors for Quantitative Resistance to Late Blight in Potato.” BioRxiv. Cold Spring Harbor Laboratory, 567289.
dc.relationKao, Patrick Y.P., Kim Hung Leung, Lawrence W.C. Chan, Shea Ping Yip, and Maurice K.H. Yap. 2017. “Pathway Analysis of Complex Diseases for GWAS, Extending to Consider Rare Variants, Multi-Omics and Interactions.” Biochimica et Biophysica Acta - General Subjects 1861 (2). The Authors: 335–53. https://doi.org/10.1016/j.bbagen.2016.11.030.
dc.relationKaspar, Kerrie L, Jean Soon Park, Charles R Brown, Karen Weller, Carolyn F Ross, Bridget D Mathison, and Boon P Chew. 2013. “Sensory Evaluation of Pigmented Flesh Potatoes ( Solanum Tuberosum L.).” Food and Nutrition Science 4 (January): 77–81. https://doi.org/10.4236/fns.2013.41011.
dc.relationKliebenstein, Daniel J, and Anne Osbourn. 2012. “Making New Molecules--Evolution of Pathways for Novel Metabolites in Plants.” Current Opinion in Plant Biology 15 (4). Elsevier: 415–23.
dc.relationKong, Wei-fu, Jian-ye Chen, Zhi-xia Hou, and Peng-fei Wen. 2007. “Activity and Subcellular Localization of Glucose -6-Phosphate Dehydrogenase in Peach Fruits” 164: 934–44. https://doi.org/10.1016/j.jplph.2006.06.001.
dc.relationKorte, Arthur, and Ashley Farlow. 2013. “The Advantages and Limitations of Trait Analysis with GWAS : A Review,” 1–9.
dc.relationKubow, Stan, Michèle M. Iskandar, Kebba Sabally, Behnam Azadi, Shima Sadeghi Ekbatan, Premkumari Kumarathasan, Dharani Dhar Das, Satya Prakash, Gabriela Burgos, and Thomas Zum Felde. 2016. “Biotransformation of Anthocyanins from Two Purple-Fleshed Sweet Potato Accessions in a Dynamic Gastrointestinal System.” Food Chemistry 192. Elsevier Ltd: 171–77. https://doi.org/10.1016/j.foodchem.2015.06.105.
dc.relationKumar, Dinesh, B P Singh, and Parveen Kumar. 2004. “An Overview of the Factors Affecting Sugar Content of Potatoes.” Annals of Applied Biology 145 (3). Wiley Online Library: 247–56.
dc.relationKuskoski, E.M., A. Asuero y M. García-Parrilla. 2004. Actividad antioxidante de pigmentos antociánicos. Ciênc. Tecnol. Aliment. Campinas. 24(4):691-693.
dc.relationLachman, Jaromír, Karel Hamouz, Miloslav Šulc, Matyáš Orsák, Vladimír Pivec, Alena Hejtmánková, Petr Dvořák, and Jaroslav Čepl. 2009. “Cultivar Differences of Total Anthocyanins and Anthocyanidins in Red and Purple-Fleshed Potatoes and Their Relation to Antioxidant Activity.” Food Chemistry 114 (3): 836–43. https://doi.org/10.1016/j.foodchem.2008.10.029.
dc.relationLako, Jimaima, V. Craige Trenerry, Mark Wahlqvist, Naiyana Wattanapenpaiboon, Subramanium Sotheeswaran, and Robert Premier. 2007. “Phytochemical Flavonols, Carotenoids and the Antioxidant Properties of a Wide Selection of Fijian Fruit, Vegetables and Other Readily Available Foods.” Food Chemistry 101 (4): 1727–41. https://doi.org/10.1016/j.foodchem.2006.01.031.
dc.relationLarter, Maximilian, Amy Dunbar-Wallis, Andrea E Berardi, and Stacey D Smith. 2018. “Convergent Evolution at the Pathway Level: Predictable Regulatory Changes during Flower Color Transitions.” Molecular Biology and Evolution 35 (9). Oxford University Press: 2159–69.
dc.relationLee, YH, and GG Song. 2016. “Genome-Wide Pathway Analysis for Diabetic Nephropathy in Type 1 Diabetes.” Endocrine Research 41 (1): 21–27. https://doi.org/10.3109/07435800.2015.1044011.
dc.relationLee, Young Ho, and Gwan Gyu Song. 2015. “Genome-Wide Pathway Analysis of a Genome-Wide Association Study on Alzheimer’s Disease.” Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 36 (1): 53–59. https://doi.org/10.1007/s10072-014-1885-3.
dc.relationLewis, Christine E, John R L Walker, Jane E Lancaster, and Kevin H Sutton. 1998. “Determination of Anthoc Y Anins , Flavonoids and Phenolic Acids in Potatoes . I : Coloured Cultivars of Solanum Tuberosum L” 45 (Mancinelli 1985).
dc.relationLin, Peng Lin, Ya Wen Yu, and Ren Hua Chung. 2016. “Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.” PLoS ONE 11 (9): 1–18. https://doi.org/10.1371/journal.pone.0162910.
dc.relationLipka, Alexander E., Feng Tian, Qishan Wang, Jason Peiffer, Meng Li, Peter J. Bradbury, Michael A. Gore, Edward S. Buckler, and Zhiwu Zhang. 2012. “GAPIT: Genome Association and Prediction Integrated Tool.” Bioinformatics 28 (18): 2397–99. https://doi.org/10.1093/bioinformatics/bts444.
dc.relationLiu, Yuhui, Kui Lin-wang, Richard V Espley, Li Wang, Hongyu Yang, Bin Yu, Andrew Dare, et al. 2016. “Functional Diversification of the Potato R2R3 MYB Anthocyanin Activators AN1 , MYBA1 , and MYB113 and Their Interaction with Basic Helix-Loop-Helix Cofactors” 67 (8): 2159–76. https://doi.org/10.1093/jxb/erw014.
dc.relationLiu, Yuhui, Kui Lin-Wang, Richard V Espley, Li Wang, Yuanming Li, Zhen Liu, Ping Zhou, et al. 2019. “StMYB44 Negatively Regulates Anthocyanin Biosynthesis at High Temperatures in Tuber Flesh of Potato.” Journal of Experimental Botany.
dc.relationLloyd, Alan, Austen Brockman, Lyndsey Aguirre, Annabelle Campbell, Alex Bean, Araceli Cantero, and Antonio Gonzalez. 2017a. “Advances in the MYB--bHLH--WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-Option of an Anthocyanin MYB for Betalain Regulation.” Plant and Cell Physiology 58 (9). Oxford University Press: 1431–41.
dc.relationLogemann, Elke, Annette Tavernaro, Wolfgang Schulz, Imre E Somssich, and Klaus Hahlbrock. 2000. “UV Light Selectively Coinduces Supply Pathways from Primary Metabolism and Flavonoid Secondary Product Formation in Parsley.” Proceedings of the National Academy of Sciences 97 (4). National Acad Sciences: 1903–7.
dc.relationLukowitz, Wolfgang, Ulrike Mayer, and Gerd Ju. 1996. “Cytokinesis in the Arabidopsis Embryo Involves the Syntaxin-Related KNOLLE Gene Product” 84: 61–71.
dc.relationLuo, Jie. 2015. “Metabolite-Based Genome-Wide Association Studies in Plants.” Current Opinion in Plant Biology 24 (April). Elsevier Ltd: 31–38. https://doi.org/10.1016/j.pbi.2015.01.006.
dc.relationLuo, Li, Gang Peng, Yun Zhu, Hua Dong, Christopher I. Amos, and Momiao Xiong. 2010. “Genome-Wide Gene and Pathway Analysis.” European Journal of Human Genetics 18 (9): 1045–53. https://doi.org/10.1038/ejhg.2010.62.
dc.relationMano, H., F. Ogasawara, K. Sato, H. Higo, and Y. Minobe. 2007. “Isolation of a Regulatory Gene of Anthocyanin Biosynthesis in Tuberous Roots of Purple-Fleshed Sweet Potato.” Plant Physiology 143 (3): 1252–68. https://doi.org/10.1104/pp.106.094425.
dc.relationMarchini, Jonathan, and Bryan Howie. 2010. “Genotype Imputation for Genome-Wide Association Studies.” Nature Reviews Genetics 11 (7). Nature Publishing Group: 499.
dc.relationMartin, C, A Prescott, S Mackay, J Bartlett, and E Vrijlandt. 1991. “Control of Anthocyanin Biosynthesis in Flowers of Antirrhinum-Majus.” Plant Journal 1 (1): 37–49. https://doi.org/DOI 10.1111/j.1365-313X.1991.00037.x
dc.relationMathews, H, SK Clendennen, CG Caldwell, Liu XL, K Connors, N Matheis, and Et Al. 2003. “Activation Tagging in Tomato Identifies a Transcriptional Regulator of Anthocyanin Biosynthesis, Modification, and Transport.” The Plant Cell 15: 1689–1703.
dc.relationMicallef, Michelle, Louise Lexis, and Paul Lewandowski. 2007. “Red Wine Consumption Increases Antioxidant Status and Decreases Oxidative Stress in the Circulation of Both Young and Old Humans.” Nutrition Journal 6: 1–8. https://doi.org/10.1186/1475-2891-6-27.
dc.relationMir, Mohammad, Derikvand Jimmy, Berrio Sierra, Katia Ruel, Brigitte Pollet, Cao-trung Do Johanne, Thévenin Dominique, V Bu, Lise Jouanin, and Catherine Lapierre. 2008. “Redirection of the Phenylpropanoid Pathway to Feruloyl Malate in Arabidopsis Mutants de W Cient for Cinnamoyl-CoA Reductase 1,” 943–56. https://doi.org/10.1007/s00425-007-0669-x.
dc.relationMontefiori, Mirco, Cyril Brendolise, Andrew P Dare, Kui Lin-wang, Kevin M Davies, Roger P Hellens, and Andrew C Allan. 2015. “In the Solanaceae , a Hierarchy of bHLHs Confer Distinct Target Specificity to the Anthocyanin Regulatory Complex” 66 (5): 1427–36. https://doi.org/10.1093/jxb/eru494.
dc.relationMosquera Vásquez T., & Gálvez, D. C. 2013. La genética de la papa frente a la gota. Universidad Nacional de Colombia.
dc.relationMosquera Vásquez, T., Del Castillo, S., Gálvez, D.C. et al. 2017. Breeding differently: participatory selection and scaling up innovations in Colombia. Potato Research 60: 361–381 https://doi.org/10.1007/s11540-018-9389-9
dc.relationMosquera, Teresa, Maria Fernanda Alvarez, José M. Jiménez-Gómez, Meki Shehabu Muktar, Maria João Paulo, Sebastian Steinemann, Jinquan Li, et al. 2016. “Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum Tuberosum L.) to Phytophthora Infestans Causing the Late Blight Disease.” PLoS ONE 11 (6): 1–36. https://doi.org/10.1371/journal.pone.0156254.
dc.relationMotohashi, Noboru, and Hiroshi Sakagami. 2009. “Anthocyanins as Functional Food Colors.” Bioactive Heterocycles VII: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles II, no. March: 1–40. https://doi.org/10.1007/7081.
dc.relationNarváez-Cuenca, Carlos-Eduardo, Clara Peña, Luz-Patricia Restrepo-Sánchez, Ajjamada Kushalappa, and Teresa Mosquera. 2018. “Macronutrient Contents of Potato Genotype Collections in the Solanum Tuberosum Group Phureja.” Journal of Food Composition and Analysis 66. Elsevier: 179–84.
dc.relationNassar, A., K. Sabally, S. Kubow, N.Y. Leclerc, and D. J. Donnelly. 2012. “Some Canadian- Grown Potato Cultivars Contribute to a Substantial Content of Essential Dietary Minerals.” J. Agric. Food Chem. 60: 4688–4696.
dc.relationNemeth, K, Klaus Salchert, Rishikesh Bhalerao, Zsuzsanna Koncz-ka, Peter Geigenberger, Mark Stitt, George P Re, Jeff Schell, and Csaba Koncz. 1998. “Pleiotropic Control of Glucose and Hormone Responses by PRL1 , a Nuclear WD Protein , in Arabidopsis.” Genes & Development 12: 3059–73.
dc.relationNigro, Domenica, Barbara Laddomada, Giovanni Mita, Emanuela Blanco, Pasqualina Colasuonno, Rosanna Simeone, Agata Gadaleta, Antonella Pasqualone, and Antonio Blanco. 2017. “Genome-Wide Association Mapping of Phenolic Acids in Tetraploid Wheats.” Journal of Cereal Science 75. Elsevier Ltd: 25–34. https://doi.org/10.1016/j.jcs.2017.01.022.
dc.relationNollet, L. 1992. Food Analysis by HPLC. Second edition. Revised and Expanded. Marcel Dekker, Inc. New York. Basel.
dc.relationNützmann, Hans-Wilhelm, Ancheng Huang, and Anne Osbourn. 2016. “Plant Metabolic Clusters--from Genetics to Genomics.” New Phytologist 211 (3). Wiley Online Library: 771–89.
dc.relationNützmann, Hans-Wilhelm, and Anne Osbourn. 2014. “Gene Clustering in Plant Specialized Metabolism.” Current Opinion in Biotechnology 26. Elsevier: 91–99.
dc.relationNützmann, Hans-Wilhelm, Claudio Scazzocchio, and Anne Osbourn. 2018. “Metabolic Gene Clusters in Eukaryotes.” Annual Review of Genetics 52. Annual Reviews: 159–83.
dc.relationO’dushlaine, Colm, Elaine Kenny, Elizabeth A Heron, Ricardo Segurado, Michael Gill, Derek W Morris, and Aiden Corvin. 2009. “The SNP Ratio Test: Pathway Analysis of Genome-Wide Association Datasets.” Bioinformatics 25 (20). Oxford University Press: 2762–63.
dc.relationO’Neill, Sharman D, Yusen Tong, Brigitte Spörlein, Gert Forkmann, and John I Yoder. 1990. “Molecular Genetic Analysis of Chalcone Synthase in Lycopersicon Esculentum and an Anthocyanin-Deficient Mutant.” Molecular and General Genetics MGG 224 (2). Springer: 279–88.
dc.relationOa, W, Junli Huang, Min Gu, Zhibing Lai, Baofang Fan, Kai Shi, Yan-hong Zhou, Jing-quan Yu, and Zhixiang Chen. 2010. “Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth , Development , and Response to Environmental Stress” 153 (August): 1526–38. https://doi.org/10.1104/pp.110.157370.
dc.relationOffmann, L Ucien H, J E A N Rançois H Ausman, D Anièle E Vers, and Y V A N L Arondelle. 2007. “Antioxidant Profiling of Native Andean Potato Tubers ( Solanum Tuberosum L .) Reveals Cultivars with High Levels of -Carotene , R -Tocopherol , Chlorogenic Acid , and Petanin,” 10839–49.
dc.relationOki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweetpotato cultivars. J. Food Sci. 67:1752–1756.
dc.relationParra-Galindo, MA, C Piñeros-niño, JC Soto-sedano, and T Mosquera-Vasquez. 2019. “Chromosomes I and X Harbor Consistent Genetic Factors Associated with the Anthocyanin Variation in Potato.” Agronomy 9 (366): 11–13. https://doi.org/doi:10.3390/agronomy9070366.
dc.relationPayyavula, RS, RK Singh, and DA Navarre. 2013. “Transcription Factors, Sucrose and Sucrose Metabolic Genes Interact to Regulate Potato Phenylpropanoid Metabolism.” Journal of Experimental Botany 64: 5115–31.
dc.relationPearsall, Deborah M. 2008. “Plant Domestication and the Shift to Agriculture in the Andes.” In The Handbook of South American Archaeology, 105–20. Springer.
dc.relationPelletier, K, Julie R Murrell, and Brenda W Shirley. 1997. “Characterization of Flavonol Synthase and Leucoanthocyanidin Dioxygenase Genes in Arabidopsis.” Plant Physiology 113: 1437–1 445.
dc.relationPeng, Gang, Li Luo, Hoicheong Siu, Yun Zhu, Pengfei Hu, Shengjun Hong, Jinying Zhao, et al. 2010. “Gene and Pathway-Based Second-Wave Analysis of Genome-Wide Association Studies.” European Journal of Human Genetics 18 (1). Nature Publishing Group: 111–17. https://doi.org/10.1038/ejhg.2009.115.
dc.relationPeña, Clara, Luz Patricia Restrepo-Sánchez, Ajjamada Kushalappa, Luis Ernesto Rodríguez-Molano, Teresa Mosquera, and Carlos Eduardo Narváez-Cuenca. 2015. “Nutritional Contents of Advanced Breeding Clones of Solanum tuberosum Group Phureja.” LWT - Food Science and Technology 62 (1): 76–82. https://doi.org/10.1016/j.lwt.2015.01.038.
dc.relationPillai, Syamkumar S., Duroy A. Navarre, and John Bamberg. 2013. “Analysis of Polyphenols, Anthocyanins and Carotenoids in Tubers from Solanum Tuberosum Group Phureja, Stenotomum and Andigena.” American Journal of Potato Research 90 (5): 440–50. https://doi.org/10.1007/s12230-013-9318-z.
dc.relationPiñeros, C.J. (Recop.). 2009. Recopilación de la investigación del sistema de papa criolla. Convenio SADE 045/06. Secretaría de Agricultura y Desarrollo Económico. Federación Colombiana de Productores de Papa. Colombia.
dc.relationPiñeros-Niño, Clara, Carlos Eduardo Narváez-Cuenca, Ajjamada C. Kushalappa, and Teresa Mosquera. 2017. “Hydroxycinnamic Acids in Cooked Potato Tubers from Solanum tuberosum Group Phureja.” Food Science and Nutrition 5 (3): 380–89. https://doi.org/10.1002/fsn3.403.
dc.relationPoland, Jesse A, and Trevor W Rife. 2012. “Genotyping-by-Sequencing for Plant Breeding and Genetics.” The Plant Genome 5 (3). Crop Science Society of America: 92–102.
dc.relationPrice, Alkes L, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick, and David Reich. 2006. “Principal Components Analysis Corrects for Stratification in Genome-Wide Association Studies.” Nature Genetics 38 (8). Nature Publishing Group: 904.
dc.relationPuértolas, Eduardo, Oliver Cregenzán, Elisa Luengo, Ignacio Álvarez, and Javier Raso. 2013. “Pulsed-Electric-Field-Assisted Extraction of Anthocyanins from Purple-Fleshed Potato.” Food Chemistry 136 (3–4). Elsevier: 1330–36.
dc.relationQuattrocchio, Francesca, John F Wing, Hans T C Leppen, Joseph N M Moi, and Ronald E Koes. 1993. “Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among - Plant Species and Have Distinct Sets of Target Genes” 5 (November): 1497–1512.
dc.relationQuattrocchio, Francesca, John F Wing, Karel Van Der Woude, Joseph N M Mol, and Ronald Koes. 1998. “Analysis of bHLH and MYB Domain Proteins : Species- Specific Regulatory Differences Are Caused by Divergent Evolution of Target Anthocyanin Genes” 13 (March 1997): 475–88.
dc.relationQuattrocchio, Francesca, John Wing, Karel Van Der Woude, Erik Souer, Nick De Vetten, Joseph Mol, and Ronald Koes. 1999. “Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color” 11 (August): 1433–44.
dc.relationQuiñones, M., M. Miguel, and A. Aleixandre. 2012. “Los Polifenoles, Compuestos de Origen Natural Con Efectos Saludables Sobre El Sistema Cardiovascular.” Nutrición Hospitalaria : Organo Oficial de La Sociedad Española de Nutrición Parenteral Y Enteral 27 (1): 76–89. https://doi.org/10.3305/nh.2012.27.1.5418.
dc.relationRavanel, Stéphane, Bertrand Gakière, Dominique Job, and Roland Douce. 1998. “The Specific Features of Methionine Biosynthesis and Metabolism in Plants.” Proceedings of the National Academy of Sciences 95 (13). National Acad Sciences: 7805–12.
dc.relationReddy, G Nagi, R N Arteca, Y Dai, H E Flores, and F B Negm. 1992. “Changes in Ethylene and Polyamines in Relation to mRNA Levels of the Large and Small Subunits of Ribulose Bisphosphate Carboxylase / Oxygenase in Ozone-Stressed Potato Foliage.” Plant, Cell and Environment 16: 819–26.
dc.relationReyes, L.F. y Cisneros-Zevallos. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry 100:885–894.
dc.relationRivera, J.E., Herrera, A., Rodríguez, L.E. 2006. Evaluación sensorial en productos procesados de papa criolla (Solanum phureja) y su importancia para el fitomejoramiento. Fitotec. Colomb. 6, 9–25.
dc.relationRodríguez, L.E.; Ñustez, C.E.; Estrada, N. 2009. Criolla latina, Criolla paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana 27: 289-303.
dc.relationRommens, CM, CM Richael, Yan H, DA Navarre, J Ye, and M Krucker. 2008. “Engineered Native Pathways for High Kaempferol and Caffeoylquinate Production in Potato.” Plant Biotechnol J 6 (9): 870–86. https://doi.org/10.1111/j.1467-7652.2008.00362.x.
dc.relationSaito, Kazuki, Keiko Yonekura-sakakibara, Ryo Nakabayashi, Yasuhiro Higashi, Mami Yamazaki, Takayuki Tohge, and Alisdair R Fernie. 2013. “The Flavonoid Biosynthetic Pathway in Arabidopsis: Structural and Genetic Diversity.” Plant Physiology and Biochemistry, no. February. Elsevier Masson SAS: 1–14. https://doi.org/10.1016/j.plaphy.2013.02.001.
dc.relationSalaman, Redcliffe N. 1910. “The Inheritance of Colour and Other Characters in the Potato.” Journal of Genetics 1 (1). Springer: 7–46.
dc.relationSantacruz, L.A. 2011. Análisis químico de antocianinas en frutos silvestres Colombianos. Universidad Nacional de Colombia. Departamento de Química.
dc.relationSchulz, Dietmar F., Rena T. Schott, Roeland E. Voorrips, Marinus J. M. Smulders, Marcus Linde, and Thomas Debener. 2016. “Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals.” Frontiers in Plant Science 7 (December): 1–15. https://doi.org/10.3389/fpls.2016.01798.
dc.relationShi, Ming-Zhu, and De-Yu Xie. 2014. “Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis Thaliana.” Recent Patents on Biotechnology 8 (1). Bentham Science Publishers: 47–60.
dc.relationSmith, Stacey D, and Mark D Rausher. 2011. “Gene Loss and Parallel Evolution Contribute to Species Difference in Flower Color.” Molecular Biology and Evolution 28 (10). Oxford University Press: 2799–2810.
dc.relationSmith, Stacey D. 2016. “Pleiotropy and the Evolution of Floral Integration.” New Phytologist 209 (1). Wiley Online Library: 80–85.
dc.relationSonah, Humira, Maxime Bastien, Elmer Iquira, Aurélie Tardivel, Gaétan Légaré, Brian Boyle, Éric Normandeau, et al. 2013. “An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping.” PLoS ONE 8 (1): e54603. https://doi.org/10.1371/journal.pone.0054603.
dc.relationSpelt, C., F. Quattrochio, J.N.M. N Mol, R. Koes, F Quattrocchio, J.N.M. N Mol, and R. Koes. 2000. “Anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes.” The Plant Cell 12 (9): 1619–31. https://doi.org/DOI 10.1105/tpc.12.9.1619.
dc.relationSpooner D.M., Núñez J., Trujillo G., Del Rosario Herrera M., Guzmán F. and Ghislain M. 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. USA 104: 19398–19403.
dc.relationSpooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. 2005. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. proceedings of the national academy of sciences, 102(41), 14694-14699.
dc.relationSpringob, Karin, Jun-ichiro Nakajima, Mami Yamazaki, and Kazuki Saito. 2003. “Recent Advances in the Biosynthesis and Accumulation of Anthocyanins.” Natural Product Reports 20 (3): 288. https://doi.org/10.1039/b109542k.
dc.relationStamatakis, Alexandros. 2014. “RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies.” Bioinformatics 30 (9). Oxford University Press: 1312–13.
dc.relationStokstad, Erik. 2019. “The New Potato.” American Association for the Advancement of Science.
dc.relationStraadt, J.K., and O.S. Rasmussen. 2003. “AFLP Analysis of Solanum Phureja DNA Introgressed into Potato Dihaploids.” Breeding, Plant 356: 352–57.
dc.relationStracke, R, M Werber, and B Weisshaar. 2001. “The R2R3 - MYB Gene Family in Arabidopsis Thaliana.” Cell Signalling and Gene Regulation 4: 447–56.
dc.relationStrygina, K V, and E K Khlestkina. 2017. “Anthocyanins Synthesis in Potato (Solanum Tuberosum L.): Genetic Markers for Smart Breeding.” Selsskokhozyaistvennaya Biologiya 52 (1): 37–49.
dc.relationStrygina, Ksenia V, Alex V Kochetov, and Elena K Khlestkina. 2019. “Genetic Control of Anthocyanin Pigmentation of Potato Tissues.” BMC Genetics 20 (1). BioMed Central: 27.
dc.relationSubramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, and Benjamin L Ebert. 2005. “Gene Set Enrichment Analysis : A Knowledge-Based Approach for Interpreting Genome-Wide.”
dc.relationSuda, Ikuo, Tomoyuki Oki, Mami Masuda, Mio Kobayashi, Yoichi Nishiba, and Shu Furuta. 2003. “Physiological Functionality of Purple-Fleshed Sweet Potatoes Containing Anthocyanins and Their Utilization in Foods.” Japan Agricultural Research Quarterly 37 (3): 167–73. https://doi.org/10.6090/jarq.37.167.
dc.relationSukumaran, Sivakumar, Wenwen Xiang, Scott R. Bean, Jeffrey F. Pedersen, Stephen Kresovich, Mitchell R. Tuinstra, Tesfaye T. Tesso, Martha T. Hamblin, and Jianming Yu. 2012. “Association Mapping for Grain Quality in a Diverse Sorghum Collection.” The Plant Genome Journal 5 (3): 126. https://doi.org/10.3835/plantgenome2012.07.0016.
dc.relationŠulc, Miloslav, Zora Kot’\iková, Luboš Paznocht, Vladim’\ir Pivec, Karel Hamouz, and Jarom’\ir Lachman. 2017. “Changes in Anthocyanidin Levels during the Maturation of Color-Fleshed Potato (Solanum Tuberosum L.) Tubers.” Food Chemistry 237. Elsevier: 981–88.
dc.relationTanaka, Yoshikazu, and Akemi Ohmiya. 2008. “Seeing Is Believing: Engineering Anthocyanin and Carotenoid Biosynthetic Pathways.” Current Opinion in Biotechnology 19 (2): 190–97. https://doi.org/10.1016/j.copbio.2008.02.015.
dc.relationTanaka, Yoshikazu, Nobuhiro Sasaki, and Akemi Ohmiya. 2008. “Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids.” Plant Journal 54 (4): 733–49. https://doi.org/10.1111/j.1365-313X.2008.03447.x.
dc.relationTang, Juliet D., Andy Perkins, W. Paul Williams, and Marilyn L. Warburton. 2015. “Using Genome-Wide Associations to Identify Metabolic Pathways Involved in Maize Aflatoxin Accumulation Resistance.” BMC Genomics 16 (1). BMC Genomics: 1–12. https://doi.org/10.1186/s12864-015-1874-9.
dc.relationTang, You, Xiaolei Liu, Jiabo Wang, Meng Li, Qishan Wang, Feng Tian, Zhongbin Su, et al. 2016. “GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction.” The Plant Genome 9 (2): 0. https://doi.org/10.3835/plantgenome2015.11.0120.
dc.relationThompson, Matthew D., Henry J. Thompson, John N. McGinley, Elizabeth S. Neil, Denise K. Rush, David G. Holm, and Cecil Stushnoff. 2009. “Functional Food Characteristics of Potato Cultivars (Solanum Tuberosum L.): Phytochemical Composition and Inhibition of 1-Methyl-1-Nitrosourea Induced Breast Cancer in Rats.” Journal of Food Composition and Analysis 22 (6): 571–76. https://doi.org/10.1016/j.jfca.2008.09.002.
dc.relationThrash, Adam, Juliet D Tang, Mason Deornellis, Daniel G Peterson, Marilyn L Warburton, Mississippi State, Fine Arts Division, Mississippi State, and Mississippi State. 2019. “Pathway Association Studies Tool.” Biorxiv.
dc.relationTruong, V., N. Deighton, R. Thompson, R. McFeeters y G. Yencho. (2010). Characterization of Anthocyanins and Anthocyanidins in Purple-Fleshed Sweetpotatoes by HPLC-DAD/ESI-MS/MS.J. Agric. Food Chem. 58: 404–410.
dc.relationTsuda, T, F Horio, and T Osawa. 2000. “The Role of Anthocyanins as an Antioxidant under Oxidative Stress in Rats.” Biofactors 13: 133–139.
dc.relationTurner, Stephen D. 2014. “Qqman: An R Package for Visualizing GWAS Results Using QQ and Manhattan Plots.” Biorxiv. Cold Spring Harbor Laboratory, 5165.
dc.relationVásquez, Teresa Mosquera, Sara Del Castillo, Luis Ernesto Rodr’\iguez, and David Cuéllar Gálvez. 2018. “Correction to: Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia.” Potato Research 61 (4). Springer: 409.
dc.relationVerweij, Walter, Cornelis E Spelt, Mattijs Bliek, Michel De Vries, Niek Wit, and Marianna Faraco. 2016. “Functionally Similar WRKY Proteins Regulate Vacuolar Acidi Fi Cation in Petunia and Hair Development in Arabidopsis” 28 (March): 786–803. https://doi.org/10.1105/tpc.15.00608.
dc.relationVogt, Thomas. 2010. “Phenylpropanoid Biosynthesis.” Molecular Plant 3 (1). The Author. All rights reserved.: 2–20. https://doi.org/10.1093/mp/ssp106.
dc.relationVos, Peter G, M João Paulo, Roeland E Voorrips, Richard G F Visser, Herman J van Eck, and Fred A van Eeuwijk. 2017. “Evaluation of LD Decay and Various LD-Decay Estimators in Simulated and SNP-Array Data of Tetraploid Potato.” Theoretical and Applied Genetics 130 (1). Springer: 123–35.
dc.relationWang, Kai, Mingyao Li, and Hakon Hakonarson. 2010. “Analyzing Biological Pathways in Genome-Wide Association Studies.” Nature Reviews Genetics 11 (12). Nature Publishing Group: 843–54. https://doi.org/10.1038/nrg2884.
dc.relationWang, Z, Q Ge, and Z Wang. 2017. “Concerning the Role of Cinnamoyl CoA Reductase Gene in Phenolic Acids Biosynthesis in Salvia Miltiorrhiza 1” 64 (4): 553–59. https://doi.org/10.1134/S1021443717040197.
dc.relationWei, Qing, Quan-Yi Wang, Zhi-Hang Feng, Bing Wang, Yun-Feng Zhang, and Qing Yang. 2012. “Increased Accumulation of Anthocyanins in Transgenic Potato Tubers by Overexpressing the 3GT Gene.” Plant Biotechnology Reports 6 (1). Springer: 69–75.
dc.relationWeng, Jing-Ke, Ryan N Philippe, and Joseph P Noel. 2012. “The Rise of Chemodiversity in Plants.” Science 336 (6089). American Association for the Advancement of Science: 1667–70.
dc.relationWinkel-Shirley, B. 2017. “Advances in the MYB – bHLH – WD Repeat ( MBW ) Pigment Regulatory Model : Addition of a WRKY Factor and Co-Option of an Anthocyanin MYB for Betalain Regulation” 58 (May): 1431–41. https://doi.org/10.1093/pcp/pcx075.
dc.relationWu, X.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 54(11): 4069–4075.
dc.relationWurtzel, Eleanore T, and Toni M Kutchan. 2016. “Plant Metabolism, the Diverse Chemistry Set of the Future.” Science 353 (6305). American Association for the Advancement of Science: 1232–36.
dc.relationXu, Wenjia, Christian Dubos, and Lo"\ic Lepiniec. 2015. “Transcriptional Control of Flavonoid Biosynthesis by MYB--bHLH--WDR Complexes.” Trends in Plant Science 20 (3). Elsevier: 176–85.
dc.relationZhang, Yongfei, Chun Suk Jung, and Walter S. De Jong. 2009. “Genetic Analysis of Pigmented Tuber Flesh in Potato.” Theoretical and Applied Genetics 119 (1): 143–50. https://doi.org/10.1007/s00122-009-1024-3.
dc.relationZhang, Yongfei, Shuping Cheng, Darlene De Jong, Helen Griffiths, Rayko Halitschke, and Walter De Jong. 2009. “The Potato R Locus Codes for Dihydroflavonol 4-Reductase.” Theoretical and Applied Genetics 119 (5): 931–37. https://doi.org/10.1007/s00122-009-1100-8.
dc.relationZhang, Zhiwu, Elhan Ersoz, Chao-Qiang Lai, Rory J. Todhunter, Hemant K. Tiwari, Michael A. Gore, Peter J. Bradbury, et al. 2010. “Mixed Linear Model Approach Adapted for Genome-Wide Association Studies.” Nature Genetics 42 (4): 355–60. https://doi.org/10.1038/ng.546.
dc.relationZhao, Huiying, Dale R. Nyholt, Yuanhao Yang, Jihua Wang, and Yuedong Yang. 2017. “Improving the Detection of Pathways in Genome-Wide Association Studies by Combined Effects of SNPs from Linkage Disequilibrium Blocks.” Scientific Reports 7 (1). Springer US: 1–8. https://doi.org/10.1038/s41598-017-03826-2.
dc.relationZhao, Jingyuan, Simone Gupta, Mark Seielstad, Jianjun Liu, and Anbupalam Thalamuthu. 2011. “Pathway-Based Analysis Using Reduced Gene Subsets in Genome-Wide Association Studies.”
dc.relationRipley, Brian D. 2001. “The R Project in Statistical Computing.” MSOR Connections. The Newsletter of the LTSN Maths, Stats & OR Network 1 (1). Citeseer: 23–25.
dc.relationhttps://www.mdpi.com/2073-4395/9/7/366
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBiological pathway analysis and genome wide association study identified genetic factors on chromosome 10 associated with anthocyanin variation in potato
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución