dc.contributorCortés Correa, Farid Bernardo
dc.contributorFranco Ariza, Camilo Andrés
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorFenómenos de Superficie - Michael Polanyi
dc.creatorGiraldo Pedroza, Lady Johana
dc.date.accessioned2020-03-11T20:55:02Z
dc.date.accessioned2022-09-21T15:01:40Z
dc.date.available2020-03-11T20:55:02Z
dc.date.available2022-09-21T15:01:40Z
dc.date.created2020-03-11T20:55:02Z
dc.date.issued2019-04-05
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76056
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3374335
dc.description.abstractLa tecnología de inyección de nanofluidos (nanopartículas dispersas en un fluido de acarreo) ha sido estudiada en reducciones de tensión interfacial, aumentos de viscosidad de fase desplazante y en alteraciones de humectabilidad en la roca; factores que impactan directamente en el número de capilar, favoreciendo aumentos en la recuperación del petróleo. Sin embargo, esta técnica usualmente requiere grandes concentraciones de nanopartículas para ser eficiente en los procesos EOR. Por ello, en este estudio se busca mejorar los nanofluidos con un diseño de nanopartículas novedosas con comportamiento anfifílico, desarrollando nanopartículas Janus con contenido de NiO y surfactante basadas en nanopartículas de SiO2 de dimensión cero (0-D) que pueden ser efectivas en bajas concentraciones. Las nanopartículas sintetizadas fueron caracterizadas por microscopía electrónica de transmisión (TEM), microscopía electrónica de barrido (SEM), análisis DRX, área superficial (SBET), potencial zeta, tensión interfacial (IFT), medidas de reología y alteraciones de humectabilidad y pruebas de desplazamiento. Los resultados mostraron un fuerte aumento del número capilar a concentración muy bajas de nanopartículas Janus, atribuido principalmente a la reducción de IFT en el rango bajo y ultra bajo debido a la alta actividad interfacial de las nanopartículas, conllevando a incrementos en la recuperación de crudo. Las pruebas de desplazamiento presentan un aumento en la eficiencia de hasta un 50% solo con la adición de 100 mg/L de nanopartículas Janus dispersadas en agua, al igual cuando se combinan estas partículas en inyección de surfactantes, donde además de reducir la adsorción del químico (surfactante) en el medio poroso hasta en un 41% también se favorece la disminución de IFT en valores ultrabajo
dc.description.abstractNanofluid (nanoparticles dispersed in carried fluid) flooding technology has been studied for reduction the interfacial tension, increasing the viscosity of the displacement phase and to alter the rock wettability, which impact directly in capillary number and hence increase the crude oil recovery. However, this technique requires usually large concentration of nanoparticles for being efficient in EOR processes. Therefore, this study aims at improve the nanofluids with a novel design of nanoparticles of amphiphilic behavior, developing NiO and surfactant -containing Janus nanoparticles based on zero-dimension (0-D) SiO2 nanoparticles which can be effective at low concentrations. The nanoparticles synthesized were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), DRX analysis, Surface area (SBET), zeta potential, interfacial tension (IFT), rheology and wettability alteration measurements and coreflooding tests. The results showed a sharply increases of the capillary number at very low concentration of Janus nanoparticles attributed to the decrease of IFT (low and ultra-low values) due to high interfacial activity of nanoparticles, which lead to the increasing of the crude oil recovery. Displacement test present an increase in efficiency up to 50% only with 100 mg/L of Janus nanoparticles dispersed in water, besides when is combined Janus nanoparticles in surfactant flooding too is possible reduce adsorption of the chemical (surfactant) in the porous medium up to 41% and reduce IFT in ultralow values..
dc.languagespa
dc.publisherDepartamento de Procesos y Energía
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationA. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J. B. Darabad, R. Azin, et al., "Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications," Energy & Fuels, vol. 26, pp. 1028-1036, 2012.
dc.relationF. Birol, "World energy outlook," Paris: International Energy Agency, vol. 23, p. 329, 2008
dc.relationA. Muggeridge, A. Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds, et al., "Recovery rates, enhanced oil recovery and technological limits," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, p. 20120320, 2014.
dc.relationR. CASTRO and G. GORDILLO, "Historia y criterios empíricos en la aplicación de inyección de agua en la Cuenca del Valle Medio del Magdalena," Revista de investigación Universidad América, Colombia, vol. 1, pp. 32-51, 2008.
dc.relationG. A. Maya, D. P. Mercado Sierra, R. Castro, M. L. Trujillo Portillo, C. P. Soto, and H. Pérez, "Enhanced Oil Recovery (EOR) Status-Colombia," in SPE Latin American and Caribbean Petroleum Engineering Conference, 2010.
dc.relationM. P. De Ferrer, Inyección de agua y gas en yacimientos petrolíferos: Ediciones astro data SA Maracaibo, Venezuela, 2001.
dc.relationL. W. Lake and P. B. Venuto, "A niche for enhanced oil recovery in the 1990s," Oil & Gas Journal, vol. 88, pp. 62-67, 1990.
dc.relationD. Green and G. Willhite, "Enhanced oil Recovery, vol. 6," SPE Textbook Series, TX, USA, 1998.
dc.relationS. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 9-19, 2008.
dc.relationR. Schmidt, "Thermal enhanced oil recovery current status and future needs," Chemical Engineering Progress;(USA), vol. 86, 1990.
dc.relationK. Hong, "Recent advances in steamflood technology," 1989.
dc.relationJ. Sheng, Modern chemical enhanced oil recovery: theory and practice: Gulf Professional Publishing, 2010.
dc.relationB. Caudle and A. Dyes, "Improving miscible displacement by gas-water injection," 1958.
dc.relationJ. Sheng, Enhanced oil recovery field case studies: Gulf Professional Publishing, 2013.
dc.relationL. L. Schramm, E. N. Stasiuk, and D. G. Marangoni, "2 Surfactants and their applications," Annual Reports Section" C"(Physical Chemistry), vol. 99, pp. 3-48, 2003.
dc.relationC. Negin, S. Ali, and Q. Xie, "Most common surfactants employed in chemical enhanced oil recovery," Petroleum, vol. 3, pp. 197-211, 2017.
dc.relationL. L. Schramm, Surfactants: fundamentals and applications in the petroleum industry: Cambridge University Press, 2000.
dc.relationT. R. French and T. E. Burchfield, "Design and optimization of alkaline flooding formulations," in SPE/DOE Enhanced Oil Recovery Symposium, 1990.
dc.relationW. Zhou, M. Dong, Q. Liu, and H. Xiao, "Experimental investigation of surfactant adsorption on sand and oil-water interface in heavy oil/water/sand systems," in Canadian International Petroleum Conference, 2005.
dc.relationA. A. Olajire, "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, vol. 77, pp. 963-982, 2014.
dc.relationJ. Guo, Q. Liu, M. Li, Z. Wu, and A. A. Christy, "The effect of alkali on crude oil/water interfacial properties and the stability of crude oil emulsions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 273, pp. 213-218, 2006.
dc.relationT. Jacobs, "Industry and Academia Continue Working on Big Ideas for Nanotechnology," Journal of Petroleum Technology, vol. 69, pp. 34-38, 2017.
dc.relationF. Salamanca-Buentello, D. L. Persad, D. K. Martin, A. S. Daar, and P. A. Singer, "Nanotechnology and the developing world," PLoS Medicine, vol. 2, p. e97, 2005.
dc.relationM. Zargartalebi, R. Kharrat, and N. Barati, "Enhancement of surfactant flooding performance by the use of silica nanoparticles," Fuel, vol. 143, pp. 21-27, 2015.
dc.relationJ. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, pp. 3659-3665, 2013.
dc.relationA. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J. B. Darabad, R. Azin, et al., "Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications," Energy & Fuels, vol. 26, pp. 1028-1036, 2012.
dc.relationE. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortés, "Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions," Fuel, vol. 184, pp. 222-232, 2016.
dc.relationE. A. Taborda, V. Alvarado, C. A. Franco, and F. B. Cortés, "Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles," Fuel, vol. 189, pp. 322-333, 2017.
dc.relationL. J. Giraldo, M. A. Giraldo, S. Llanos, G. Maya, R. D. Zabala, N. N. Nassar, et al., "The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions," Journal of Petroleum Science and Engineering, vol. 159, pp. 841-852, 2017.
dc.relationN. Y. T. Le, D. K. Pham, K. H. Le, and P. T. Nguyen, "Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 2, p. 035013, 2011.
dc.relationM. Mohajeri, M. Hemmati, and A. S. Shekarabi, "An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel," Journal of petroleum Science and engineering, vol. 126, pp. 162-173, 2015.
dc.relationB. M. Amin and P. Peyman, "Improvement of surfactant flooding performance by application of nanoparticles in sandstone reservoirs," Journal of the Japan Petroleum Institute, vol. 58, pp. 97-102, 2015.
dc.relationW. Kuang, S. Saraji, and M. Piri, "A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery," Fuel, vol. 220, pp. 849-870, 2018.
dc.relationY. Wu, W. Chen, C. Dai, Y. Huang, H. Li, M. Zhao, et al., "Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 153, pp. 283-287, 2017.
dc.relationM. F. Fakoya and S. N. Shah, "Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles," Petroleum, 2017.
dc.relationN. Ogolo, O. Olafuyi, and M. Onyekonwu, "Enhanced oil recovery using nanoparticles," in SPE Saudi Arabia section technical symposium and exhibition, 2012.
dc.relationC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.
dc.relationG. Cheraghian and L. Hendraningrat, "A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding," International Nano Letters, vol. 6, pp. 1-10, 2016.
dc.relationM.-A. Ahmadi, Z. Ahmad, L. T. K. Phung, T. Kashiwao, and A. Bahadori, "Experimental investigation the effect of nanoparticles on micellization behavior of a surfactant: application to EOR," Petroleum Science and Technology, vol. 34, pp. 1055-1061, 2016.
dc.relationK. Rahimi and M. Adibifard, "Experimental study of the nanoparticles effect on surfactant absorption and oil recovery in one of the Iranian oil reservoirs," Petroleum Science and Technology, vol. 33, pp. 79-85, 2015.
dc.relationX.-k. Ma, N.-H. Lee, H.-J. Oh, J.-W. Kim, C.-K. Rhee, K.-S. Park, et al., "Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 358, pp. 172-176, 2010.
dc.relationM. Zargartalebi, R. Kharrat, N. Barati, and A. Zargartalebi, "Slightly hydrophobic silica nanoparticles for enhanced oil recovery: interfacial and rheological behaviour," International Journal of Oil, Gas and Coal Technology, vol. 6, pp. 408-421, 2013.
dc.relationY. Song and S. Chen, "Janus nanoparticles: preparation, characterization, and applications," Chemistry–An Asian Journal, vol. 9, pp. 418-430, 2014.
dc.relationB. Binks, "Particles as surfactants—similarities and differences," Current opinion in colloid & interface science, vol. 7, pp. 21-41, 2002.
dc.relationM. R.-V. M. C.-V. M. H.-A. Fernandez-Rodriguez, "Surface activity of Janus particles adsorbed at fluid–fluid interfaces: theoretical and experimental aspects," Advances in colloid and interface science, vol. 233, pp. 240-254, 2016.
dc.relationJ. Zhang, B. A. Grzybowski, and S. Granick, "Janus particle synthesis, assembly, and application," Langmuir, vol. 33, pp. 6964-6977, 2017.
dc.relationT. Yang, L. Wei, L. Jing, J. Liang, X. Zhang, M. Tang, et al., "Dumbbell‐Shaped Bi‐component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis," Angewandte Chemie, vol. 129, pp. 8579-8583, 2017.
dc.relationY. L. Fan, C. H. Tan, Y. Lui, D. Zudhistira, and S. C. J. Loo, "Mechanistic formation of drug-encapsulated Janus particles through emulsion solvent evaporation," RSC Advances, vol. 8, pp. 16032-16042, 2018.
dc.relationF. Tu and D. Lee, "One-step encapsulation and triggered release based on Janus particle-stabilized multiple emulsions," Chemical Communications, vol. 50, pp. 15549-15552, 2014.
dc.relationL. C. Bradley, W.-H. Chen, K. J. Stebe, and D. Lee, "Janus and patchy colloids at fluid interfaces," Current opinion in colloid & interface science, vol. 30, pp. 25-33, 2017.
dc.relationP. Yánez-Sedeño, S. Campuzano, and J. Pingarrón, "Janus particles for (bio) sensing," Applied Materials Today, vol. 9, pp. 276-288, 2017.
dc.relationD. Rojas, B. Jurado-Sánchez, and A. Escarpa, "“Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples," Analytical chemistry, vol. 88, pp. 4153-4160, 2016.
dc.relationM. Lattuada and T. A. Hatton, "Synthesis, properties and applications of Janus nanoparticles," Nano Today, vol. 6, pp. 286-308, 2011.
dc.relationP.-G. De Gennes, "Soft matter," Reviews of modern physics, vol. 64, p. 645, 1992.
dc.relationJ. A. Schwarz, C. I. Contescu, and K. Putyera, Dekker encyclopedia of nanoscience and nanotechnology vol. 3: CRC press, 2004.
dc.relationA. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, "Design and synthesis of Janus micro-and nanoparticles," Journal of materials chemistry, vol. 15, pp. 3745-3760, 2005.
dc.relationD. Luo, F. Wang, J. Zhu, F. Cao, Y. Liu, X. Li, et al., "Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration," Proceedings of the National Academy of Sciences, vol. 113, pp. 7711-7716, 2016.
dc.relationJ. Moghadasi, H. Müller-Steinhagen, M. Jamialahmadi, and A. Sharif, "Theoretical and experimental study of particle movement and deposition in porous media during water injection," Journal of petroleum science and engineering, vol. 43, pp. 163-181, 2004.
dc.relationF. Sagala, T. Montoya, A. Hethnawi, G. Vitale, and N. N. Nassar, "Nanopyroxene-based Nanofluids for Enhanced Oil Recovery in Sandstone Cores," Energy & Fuels, 2019.
dc.relationR. E. Terry, "Enhanced oil recovery," Encyclopedia of physical science and technology, vol. 18, pp. 503-518, 2001.
dc.relationD. W. Green and G. P. Willhite, Enhanced oil recovery vol. 6: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX, 1998.
dc.relationE. C. Donaldson, G. V. Chilingarian, and T. F. Yen, Enhanced oil recovery, I: fundamentals and analyses vol. 17: Elsevier, 1985.
dc.relationP. Clark and J. Hyne, "Studies on the chemical reactions of heavy oils under steam stimulation condition," Aostra J Res, vol. 29, pp. 29-39, 1990.
dc.relationF. Hongfu, L. Yongjian, Z. Liying, and Z. Xiaofei, "The study on composition changes of heavy oils during steam stimulation processes," Fuel, vol. 81, pp. 1733-1738, 2002.
dc.relationM. Greaves and T. Xia, "CAPRI-Downhole Catalytic Process for Upgrading Heavy Oil: Produced Oil Properties and Composition," in Canadian International Petroleum Conference, 2001.
dc.relationF. I. Stalkup, "Miscible displacement," 1983
dc.relationH. Koch Jr and C. Hutchinson Jr, "Miscible displacements of reservoir oil using flue gas," 1958.
dc.relationA. Zaltoun, N. Kohler, and Y. Guerrinl, "Improved polyacrylamide treatments for water control in producing wells," Journal of Petroleum Technology, vol. 43, pp. 862-867, 1991.
dc.relationD.-K. Han, C.-Z. Yang, Z.-Q. Zhang, Z.-H. Lou, and Y.-I. Chang, "Recent development of enhanced oil recovery in China," Journal of Petroleum Science and Engineering, vol. 22, pp. 181-188, 1999.
dc.relationJ. L. Salager, "Physico-chemical properties of surfactant-water-oil mixtures: phase behavior, micro-emulsion formation and interfacial tension," Citeseer, 1977.
dc.relationS. Thomas, S. Ali, and N. Thomas, "Scale-up methods for micellar flooding and their verification," Journal of Canadian Petroleum Technology, vol. 39, 2000.
dc.relationK. L. Mittal and D. O. Shah, Surfactants in solution vol. 11: Springer Science & Business Media, 2013.
dc.relationE. Mayer, R. Berg, J. Carmichael, and R. Weinbrandt, "Alkaline injection for enhanced oil recovery-A status report," Journal of Petroleum Technology, vol. 35, pp. 209-221, 1983.
dc.relationA. Witthayapanyanon, J. Harwell, and D. Sabatini, "Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants," Journal of colloid and interface science, vol. 325, pp. 259-266, 2008.
dc.relationJ. L. Salager, R. E. Antón, D. A. Sabatini, J. H. Harwell, E. J. Acosta, and L. I. Tolosa, "Enhancing solubilization in microemulsions—state of the art and current trends," Journal of surfactants and detergents, vol. 8, pp. 3-21, 2005
dc.relationJ. C. Melrose, "Wettability as related to capillary action in porous media," Society of Petroleum Engineers Journal, vol. 5, pp. 259-271, 1965.
dc.relationJ. Melrose, "Interfacial phenomena as related to oil recovery mechanisms," Canadian Journal of Chemical Engineering, vol. 48, pp. 638-&, 1970.
dc.relationJ. Melrose, "Role of capillary forces in detennining microscopic displacement efficiency for oil recovery by waterflooding," Journal of Canadian Petroleum Technology, vol. 13, 1974.
dc.relationJ. L. Cayias, "Shapes of drops in centrifugal fields and their utilization for low interfacial tension investigations," 1975.
dc.relationA. Bashiri and N. Kasiri, "Properly use effect of capillary number on residual oil saturation," in Nigeria Annual International Conference and Exhibition, 2011.
dc.relationT. Moore and R. Slobod, "Displacement of oil by water-effect of wettability, rate, and viscosity on recovery," in Fall Meeting of the Petroleum Branch of AIME, 1955.
dc.relationM. V. Bennetzen and K. Mogensen, "Novel Applications of Nanoparticles for Future Enhanced Oil Recovery," in International Petroleum Technology Conference, 2014.
dc.relationA. Khezrnejad, L. James, and T. Johansen, "NANOFLUID ENHANCED OIL RECOVERY–MOBILITY RATIO, SURFACE CHEMISTRY, OR BOTH?."
dc.relationS. Ayatollahi and M. M. Zerafat, "Nanotechnology-assisted EOR techniques: New solutions to old challenges," in SPE International Oilfield Nanotechnology Conference and Exhibition, 2012.
dc.relationD. Zhu, Y. Han, J. Zhang, X. Li, and Y. Feng, "Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles," Journal of Applied Polymer Science, vol. 131, 2014.
dc.relationH. Yousefvand and A. Jafari, "Enhanced oil recovery using polymer/nanosilica," Procedia Materials Science, vol. 11, pp. 565-570, 2015.
dc.relationN. K. Maurya and A. Mandal, "Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery," Petroleum Science and Technology, vol. 34, pp. 429-436, 2016.
dc.relationG. Cheraghian, S. S. K. Nezhad, M. Kamari, M. Hemmati, M. Masihi, and S. Bazgir, "Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2," International Nano Letters, vol. 4, p. 114, 2014.
dc.relationR. Liu, W.-F. Pu, and D.-J. Du, "Synthesis and characterization of core–shell associative polymer that prepared by oilfield formation water for chemical flooding," Journal of Industrial and Engineering Chemistry, vol. 46, pp. 80-90, 2017.
dc.relationS. Mobaraki, S. S. Khalilinezhad, M. O. Sorkhabadi, and K. Jarrahian, "Performance Evaluation of Surfactant and Hydrophilic Nanoparticles Assembly for Enhnaced Oil Recovery," 2018
dc.relationH. Radnia, A. Rashidi, A. R. S. Nazar, M. M. Eskandari, and M. Jalilian, "A novel nanofluid based on sulfonated graphene for enhanced oil recovery," Journal of Molecular Liquids, vol. 271, pp. 795-806, 2018.
dc.relationE. Nourafkan, Z. Hu, and D. Wen, "Nanoparticle-enabled delivery of surfactants in porous media," Journal of colloid and interface science, vol. 519, pp. 44-57, 2018.
dc.relationC. Chen, S. Wang, M. J. Kadhum, J. H. Harwell, and B.-J. Shiau, "Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study," Fuel, vol. 222, pp. 561-568, 2018.
dc.relationS. a. Betancur, F. Carrasco-Marín, C. A. Franco, and F. B. Cortés, "Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery," Industrial & Engineering Chemistry Research, vol. 57, pp. 12367-12377, 2018.
dc.relationW. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," Journal of colloid and interface science, vol. 26, pp. 62-69, 1968.
dc.relationM. Echeverri, L. F. Giraldo, and B. L. López, "Síntesis y funcionalización de nanopartículas de sílica con morfología esférica," Scientia et technica, vol. 13, 2007.
dc.relationA. Perro, F. Meunier, V. Schmitt, and S. Ravaine, "Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 332, pp. 57-62, 2009.
dc.relationS. B. Márquez, F. B. Cortés, and F. C. Marín, "Desarrollo de Nanopartículas Basadas en Sílice para la Inhibición de la Precipitación/Depositación de Asfaltenos," MSc Investigación, Ingenieria de Petróleos, Universidad Nacional de Medellin, 2015.
dc.relationC. A. Franco, M. Martínez, P. Benjumea, E. Patiño, and F. B. Cortés, "Water remediation based on oil adsorption using nanosilicates functionalized with a petroleum vacuum residue," Adsorption Science & Technology, vol. 32, pp. 197-207, 2014.
dc.relationS. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.
dc.relationD. López, L. J. Giraldo, J. P. Salazar, D. M. Zapata, D. C. Ortega, C. A. Franco, et al., "Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading," Catalysts, vol. 7, p. 319, 2017.
dc.relationS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs," Industrial & Engineering Chemistry Research, vol. 55, pp. 6122-6132, 2016.
dc.relationS. K. Park, K. Do Kim, and H. T. Kim, "Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 197, pp. 7-17, 2002.
dc.relationI. Rahman, P. Vejayakumaran, C. Sipaut, J. Ismail, M. A. Bakar, R. Adnan, et al., "An optimized sol–gel synthesis of stable primary equivalent silica particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 294, pp. 102-110, 2007.
dc.relationG. Socrates, Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, 2004.
dc.relationT. Souza, V. Ciminelli, and N. Mohallem, "A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles," in Journal of Physics: Conference Series, 2016, p. 012039.
dc.relationM. Franco-Aguirre, R. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, 2018.
dc.relationD. C. Montgomery, "Design and analysis of experiments. New York: J," Wiley, vol. 1, pp. 6-37, 1991.
dc.relationL. J. Giraldo, J. Gallego, J. P. Villegas, C. A. Franco, and F. B. Cortés, "Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration," Journal of Petroleum Science and Engineering, vol. 174, pp. 40-48, 2019.
dc.relationS. Al-Anssari, S. Wang, A. Barifcani, and S. Iglauer, "Oil-water interfacial tensions of silica nanoparticle-surfactant formulations," Tenside Surfactants Detergents, vol. 54, pp. 334-341, 2017.
dc.relationS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs," Industrial & Engineering Chemistry Research, 2016.
dc.relationF. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel, "Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel," Energy & Fuels, vol. 26, pp. 1725-1730, 2012.
dc.relationC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.
dc.relationP. Esmaeilzadeh, N. Hosseinpour, A. Bahramian, Z. Fakhroueian, and S. Arya, "Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air–water and n-heptane–water interfaces," Fluid Phase Equilibria, vol. 361, pp. 289-295, 2014.
dc.relationK. Du, E. Glogowski, T. Emrick, T. P. Russell, and A. D. Dinsmore, "Adsorption energy of nano-and microparticles at liquid− liquid interfaces," Langmuir, vol. 26, pp. 12518-12522, 2010.
dc.relationM. Peter, J. M. Flores Camacho, S. Adamovski, L. K. Ono, K. H. Dostert, C. P. O'Brien, et al., "Trends in the binding strength of surface species on nanoparticles: how does the adsorption energy scale with the particle size?," Angewandte Chemie International Edition, vol. 52, pp. 5175-5179, 2013.
dc.relationS. Rosales, I. Machín, M. Sánchez, G. Rivas, and F. Ruette, "Theoretical modeling of molecular interactions of iron with asphaltenes from heavy crude oil," Journal of Molecular Catalysis A: Chemical, vol. 246, pp. 146-153, 2006.
dc.relationC. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, and F. B. Cortés, "Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles," Energy & Fuels, vol. 27, pp. 7336-7347, 2013.
dc.relationY. Wu, D. Wang, P. Zhao, Z. Niu, Q. Peng, and Y. Li, "Monodispersed Pd− Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura− Suzuki reaction," Inorganic chemistry, vol. 50, pp. 2046-2048, 2011.
dc.relationI. Machín, J. C. de Jesús, G. Rivas, I. Higuerey, J. Córdova, P. Pereira, et al., "Theoretical study of catalytic steam cracking on a asphaltene model molecule," Journal of Molecular Catalysis A: Chemical, vol. 227, pp. 223-229, 2005.
dc.relationG. Cheraghian, "Effects of nanoparticles on wettability: A review on applications of nanotechnology in the enhanced Oil recovery," International Journal of Nano Dimension, vol. 6, p. 443, 2015.
dc.relationC. Xie, W. Lv, and M. Wang, "Shear-thinning or shear-thickening fluid for better EOR?—A direct pore-scale study," Journal of Petroleum Science and Engineering, 2017.
dc.relationC. Wang, A. D. Bobba, R. Attinti, C. Shen, V. Lazouskaya, L.-P. Wang, et al., "Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size," Environmental science & technology, vol. 46, pp. 7151-7158, 2012.
dc.relationA. E. Bayat, R. Junin, S. Shamshirband, and W. T. Chong, "Transport and retention of engineered Al 2 O 3, TiO 2, and SiO 2 nanoparticles through various sedimentary rocks," Scientific reports, vol. 5, p. 14264, 2015.
dc.relationR. Suresh, O. Kuznetsov, D. Agrawal, Q. Darugar, and V. Khabashesku, "Reduction of Surfactant Adsorption in Porous Media Using Silica Nanoparticles," in Offshore Technology Conference, 2018.
dc.relationD. Xu, B. Bai, Z. Meng, Q. Zhou, Z. Li, Y. Lu, et al., "A Novel Ultra-Low Interfacial Tension Nanofluid for Enhanced Oil Recovery in Super-Low Permeability Reservoirs," in SPE Asia Pacific Oil and Gas Conference and Exhibition, 2018.
dc.relationC. Verdier, H. T. Vinagre, M. Piau, and D. D. Joseph, "High temperature interfacial tension measurements of PA6/PP interfaces compatibilized with copolymers using a spinning drop tensiometer," Polymer, vol. 41, pp. 6683-6689, 2000.
dc.relationK. M. Ko, B. H. Chon, S. B. Jang, and H. Y. Jang, "Surfactant flooding characteristics of dodecyl alkyl sulfate for enhanced oil recovery," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 228-233, 2014.
dc.relationJ. Elmendorp and G. De Vos, "Measurement of interfacial tensions of molten polymer systems by means of the spinning drop method," Polymer Engineering & Science, vol. 26, pp. 415-417, 1986.
dc.relationL. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, "Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO-and PdO-Functionalized SiO2 Nanoparticulated Catalysts," Catalysts, vol. 8, p. 132, 2018.
dc.relationJ. Eastoe and J. Dalton, "Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface," Advances in colloid and interface science, vol. 85, pp. 103-144, 2000.
dc.relationM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.
dc.relationA. S. f. Testing and Materials, "ASTM D2358, Standard Test Method for Separation of Active Ingredient from Surfactant and Syndet Compositions," ed: ASTM International West Conshohocken, PA, 2016.
dc.relationW. Y. Xue, Hengquan; Du, Zhiping, "Synthesis of pH-Responsive Inorganic Janus Nanoparticles and Experimental Investigation of the Stability of Their Pickering Emulsions," Langmuir, vol. 33, pp. 10283-10290, 2017.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDiseño y evaluación de nanomateriales tipo janus para aplicaciones en procesos de recobro químico mejorado (EOR)
dc.typeOtros


Este ítem pertenece a la siguiente institución