dc.contributor | Patiño-Ladino, Oscar Javier | |
dc.contributor | Marquínez-Casas, Xavier | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Estudio Quimico y de Actividad Biologica de Rutaceae y Myristicaceae colombianas | |
dc.creator | Rodríguez-Sánchez, Laura Katherine | |
dc.date.accessioned | 2020-05-21T20:54:36Z | |
dc.date.available | 2020-05-21T20:54:36Z | |
dc.date.created | 2020-05-21T20:54:36Z | |
dc.date.issued | 2020-05-20 | |
dc.identifier | Rodríguez-Sánchez, L. (2020). Evaluación del efecto de algunos elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de Piper sp. Tesis de maestría. Universidad Nacional de Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77545 | |
dc.description.abstract | Una de las principales limitantes en la investigación de los metabolitos secundarios aislados de plantas es la baja concentración producida en los organismos lo que dificulta la realización de investigaciones que generen aplicaciones a nivel industrial. El cultivo de células en suspensión proporciona una alternativa renovable, sostenible y respetuosa con el ambiente para incrementar la producción de estos compuestos bajo condiciones controladas. Una especie de interés de la que se han aislado en baja concentración sustancias con promisoria actividad antifúngica y antiparasitaria es Piper cumanense (Piperaceae), haciéndose importante emplear estrategias para obtener mayores cantidades de sus sustancias bioactivas. Dado el interés del grupo en los constituyentes químicos provenientes de P. cumanense, en la presente investigación se exploraron estrategias biotecnológicas para su producción en condiciones controladas mediante el establecimiento de algunas condiciones favorables de cultivos in vitro (inducción de callos y suspensiones celulares) y la evaluación del efecto de elicitores sobre la producción de algunos metabolitos secundarios. Este trabajo comprendió el establecimiento de condiciones para la formación de callos a través del uso de reguladores de crecimiento vegetal en diferentes explantes (lámina y pecíolo) de plántulas germinadas in vitro. Posteriormente, se determinaron condiciones para el crecimiento de células en suspensión al utilizar callos friables, evaluando su acondicionamiento al medio líquido y el crecimiento de diferentes inóculos iniciales. Finalmente, se estableció el efecto de jasmonato de metilo (MeJA) y ácido salicílico (SA) como elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de P. cumanense. En el establecimiento de condiciones para callogénesis se encontró que para la germinación in vitro de las semillas y posterior obtención de plántulas, es favorable para la esterilización hacer lavados previos con detergente y mayores tiempos de exposición con hipoclorito (10 min). El porcentaje de germinación se vio incrementado al usar AG3 (0.02 mg/L) en medios MS y al reducir el tiempo de siembra después de su recolección en campo. Los ensayos realizados con diferentes explantes (pecíolos y láminas) y diferentes combinaciones de auxina y citoquinina, permitieron determinar que el uso de pecíolo y una combinación de 2,4-D (1 mg/ L) y BAP (0,5 mg/L) produjeron los mejores callos friables. Los resultados de los estudios de actividad metabólica, cambios de acidez, producción de biomasa y cambio de color de las suspensiones celulares demostraron que hacer un recambio de medio 15 días después de establecidas las suspensiones permite mantener las células en un mejor estado fisiológico. Se estableció la curva de crecimiento de suspensiones con un inóculo de 90 g/L, obteniendo una tasa de crecimiento de 0,1097 ± 0,001477 día -1, un tiempo de duplicación de 6,319 días y una producción de biomasa favorable para los análisis cromatográficos. Finalmente, se determinó el efecto los elicitores MeJA y SA (10 y 100 µM) en la producción de metabolitos en extractos de células y medios de suspensiones celulares elicitadas encontrando una producción diferencial debida al efecto de estos inductores, apreciándose mayores cambios en el perfil al emplear SA. La expresión diferencial de los metabolitos secundarios fue más evidente en los medios de cultivo, destacándose los tratamientos con SA 100 µM, donde se logró una producción alta de los compuestos 5-hidroximetilfurfural (6,3%), fenol (6,5%) y (Z)-9-octadecenamida (8,8%), identificados tentativamente por GC-MS, y que fueron determinados como las variables de mayor peso en el análisis ACP. Con los elicitores empleados no se logró la producción de los metabolitos secundarios aislados previamente de P. cumanense. Las condiciones de cultivo in vitro establecidas pueden servir de base para la aplicación de diferentes estrategias para el aumento de la producción de metabolitos en P. cumanense y para el desarrollo de estudios biosintéticos. | |
dc.description.abstract | One of the main limitations in research of secondary metabolites from plants is the low concentration produced in organisms, which makes difficult to carry out applications at industrial level. The suspension cell culture provides a renewable, sustainable and environmentally friendly alternative to increase the production of these compounds under controlled conditions. Piper cumanense (Piperaceae) is a species of interest from which have been isolated substances with promising antifungal and antiparasitic activity. However, these compounds have been obtained in low concentration, being important to search strategies to obtain greater amounts of bioactive substances. Given the interest of the research group in the chemical constituents from P. cumanense, this research explores biotechnological strategies for their production under controlled conditions by establishing some favorable culture conditions in vitro (induction of callus and cell suspensions) and the evaluation of the effect of elicitors on the production of some secondary metabolites. This work includes the establishment of conditions for callus formation using plant growth regulators in different explants (lamina and petiole) of germinated seedlings in vitro. Subsequently, the conditions for the growth of cells in suspension are determined by using friable callus, evaluating their conditioning to the liquid medium and the growth of different initial inoculums. Finally, it was evaluated the effect of methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors on the production of secondary metabolites in cell suspensions of P. cumanense. In the establishment of conditions for callogenesis it was found that for in vitro germination of the seeds and subsequent obtaining of seedlings, it is favorable for sterilization to do previous washings with detergent and longer exposure times with hypochlorite (10 min). The germination percentage was increased by using AG3 (0.02 mg / L) in MS media and reducing planting time after harvesting in the field. The tests carried out with different explants (petioles and sheets) and different combinations of auxin and cytokinin, allowed to determine that the use of petiole and a combination of 2,4-D (1 mg/L) and BAP (0.5 mg/L) produced the best friable corns. The results of the studies of metabolic activity, acidity changes, biomass production and color change of the cell suspensions showed that making a change of media 15 days after the establishment of the suspensions allowed to keep the cells in a better physiological state. The suspension growth curve was established with an inoculum of 90 g/L, obtaining a growth rate of 0.1097 ± 0.001477 day -1, a doubling time of 6.319 days and a favorable biomass production for the analyzes chromatographic Finally, the effect of elicitors MeJA and SA (10 and 100 µM) on the production of metabolites in extracts of cell and media from elicited cell suspension was determined, finding a differential production due to the effect of these inducers, appreciating greater changes in the profile at employ SA. The differential expression of secondary metabolites was more evident in the culture media, highlighting the treatments with 100 µM SA, where a high production was achieved of 5-hydroxymethylfurfural (6.3%), phenol (6.5%) and (Z) -9-octadecenamide (8.8%)., tentatively identified by GC-MS, and which were determined as the variables of greatest weight in the PCA analysis. With the elicitors used, the production of the secondary metabolites previously isolated from P. cumanense was not achieved. The established in vitro culture conditions can serve as a basis for the application of different strategies for increasing the production of metabolites in P. cumanense and for the development of biosynthetic studies | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abbas, M., El-Shabrawi, H., Soliman, A., & Selim, M. (2018). Optimization of germination , callus induction , and cell suspension culture of African locust beans Parkia biglobosa ( Jacq .) Benth. Journal of Genetic Engineering and Biotechnology, 16(1), 191–201. https://doi.org/10.1016/j.jgeb.2017.10.012 | |
dc.relation | Aburjai, T., & Natsheh, F. (2003). Plants used in cosmetics. Phytotherapy research, 17, 987–1000. | |
dc.relation | Agrawal, A. A., & Weber, M. (2015). On the study of plant defence and herbivory using comparative approaches : How important are secondary plant compounds On the study of plant defence and herbivory using comparative approaches : how important are secondary plant compounds. Ecology Letters, 1–7. https://doi.org/10.1111/ele.12482 | |
dc.relation | Ahmad, N., Abbasi, B., Rahman, I., & Fazal, H. (2013). Piper nigrum : Micropropagation , Antioxidative enzyme activities , and Chromatographic Fingerprint Analysis for Quality Control. Applied Biochemistry and Biotechnology, 169, 2004–2015. https://doi.org/10.1007/s12010-013-0104-7 | |
dc.relation | Ahmad, N., Haider, B., Fazal, H., Ali, M., & Siddique, M. (2014). Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum L . Comptes rendus - Biologies, 337, 19–28. https://doi.org/10.1016/j.crvi.2013.10.011 | |
dc.relation | Ali, M., Haider, B., Nisar, A., Syed, A., Ali, S., Ali, S., & Shad, G. (2016). Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L . Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-016-1668-8 | |
dc.relation | Anand, A., & Chaluvadi, S. R. (2000). A rapid in vitro propagation protocol for Piper barberi Gamble , a critically endangered plant. In Vitro Cell. Dev. Biol., 36, 61–64. https://doi.org/10.1007/s11627-000-0014-6 | |
dc.relation | Anand, A., & Srinivasa, C. (2000). A RAPID IN VITRO PROPAGATION PROTOCOL FOR PIPER BARBERI GAMBLE , A CRITICALLY ENDANGERED PLANT. In Vitro Cell. Dev. Biol., 36, 61–64. | |
dc.relation | Anulika, N. P., Ignatius, E. O., Raymond, E. S., Osasere, O., & Hilda, A. (2016). The Chemistry Of Natural Product: Plant Secondary Metabolites. International Journal of Technology enhancements and emerging engineering research, 4(8), 1–8. | |
dc.relation | Arias, J. P., Zapata, K., Rojano, B., & Arias, M. (2016). Effect of light wavelength on cell growth , content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. Journal of Photochemistry & Photobiology, B: Biology, 163, 87–91. https://doi.org/10.1016/j.jphotobiol.2016.08.014 | |
dc.relation | Arias, M., Aguirre, A., Angarita, M., & Restrpo, J. (2009). Aspectos ingenieriles divo in vitro de células vegetales para la produccion de metabolitos secundarios. Dyna, (76), 109–121. | |
dc.relation | Balandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Natural Plant Chemicals : Sources of Industrial and Medicinal Materials. Science, 228, 1154–1160. | |
dc.relation | Balbuena, T. S., Santa-Catarina, C., Silveira, V., Kato, M. J., & Floh, E. I. S. (2009). In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum C. DC. (Piperaceae). Acta Botanica Brasilica, 23(1), 274–281. https://doi.org/10.1590/S0102-33062009000100029 | |
dc.relation | Barrales-Cureño, H., Reyes, C., Vásquez, I., López, L., Gómez, A., Cortés, J., … Montiel, J. (2019). Alcaloids of Pharmacological Importance in Catharanthus roseus. En J. Kurek (Ed.), Alcaloids: Their importance in nature and human life (pp. 1–12). IntechOpen. | |
dc.relation | Baskin, C., & Baskin, J. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press. | |
dc.relation | Batish, D., Pal, H., Kumar, R., & Kaur, S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256, 2166–2174. https://doi.org/10.1016/j.foreco.2008.08.008 | |
dc.relation | Bazán-Calderón, J., Ventura-flores, R., Kato, M. J., Rojas-idrogo, C., & Guillermo, E. (2011). Actividad insecticida de Piper tuberculatum Jacq. sobre Aedes aegypti L. (Diptera: Culicidae) y Anopheles pseudopunctipennis Tehobal (Diptera: Culicidae), 135–147. | |
dc.relation | Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., & M., G. (2017). Nombres Comunes de las Plantas de Colombia. Recuperado de http://www.biovirtual.unal.edu.co/nombrescomunes/ | |
dc.relation | Bernal, R., Gradstein, S., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Recuperado de http://catalogoplantasdecolombia.unal.edu.co | |
dc.relation | Bhatia, Saurabh, & Bera, T. (2015). Classical and Nonclassical Techniques for Secondary Metabolite Production in Plant Cell Culture. En S Bhatia, K. Sharma, R. Dahiya, & T. Bera (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 231–291). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00007-8 | |
dc.relation | Blum, U. (2019). General Background for Plant-Plant Allelopathic Interactions. En Plant-Plant Allelopathic Interactions III (pp. 27–48). Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3 | |
dc.relation | Braga, N. P., Cremasco, M. A., & Valle, R. C. C. R. (2005). The effects of fixed-bed drying on the yield and composition of essential oil from long pepper (Piper hispidinervium C. DC) leaves. Brazilian Journal of Chemical Engineering, 22(2), 257–262. | |
dc.relation | Cabanillas, B. J., Le Lamer, A. C., Castillo, D., Arevalo, J., Estevez, Y., Rojas, R., Fabre, N. (2012). Dihydrochalcones and benzoic acid derivatives from piper dennisii. Planta Medica, 78(9), 914–918. https://doi.org/10.1055/s-0031-1298459 | |
dc.relation | Cai, Z., Kastell, A., Knorr, D., & Smetanska, I. (2012). Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Reports, 31, 461–477. https://doi.org/10.1007/s00299-011-1165-0 | |
dc.relation | Castro-Concha, L. A., Escobedo, R. M., & Miranda-Ham, M. D. L. (2006). Measurement of Cell Viability in In Vitro Cultures. Plant Cell Culture Protocols. Methods in Molecular BiologyTM, 318(6), 71–76. | |
dc.relation | Chahal, J., Ohlyan, R., Kandale, A., Walia, A., & Puri, S. (2011). Introduction, Phytochemistry, traditional uses and biological activity of genus Piper: A review. International Journal of Current Pharmaceutical Review and Research, 2(2), 130–144. | |
dc.relation | Che, C.-T., & Zhang, H. (2019). Plant Natural Products for Human Health. International Journal of Molecular Sciences, 20(4). https://doi.org/10.3390/ijms20040830 | |
dc.relation | Chua, H. C., Christensen, E. T. H., Hoestgaard-Jensen, K., Hartiadi, L. Y., Ramzan, I., Jensen, A. A., … Chebib, M. (2016). Kavain, the major constituent of the anxiolytic kava extract, potentiates gabaa receptors: Functional characteristics and molecular mechanism. PLoS ONE, 11(6), 1–17. https://doi.org/10.1371/journal.pone.0157700 | |
dc.relation | Cremasco, M. A., & Braga, N. D. P. (2010). Isomerização do óleo essencial de pimenta-longa (Piper hispidinervium C. DC) para a obtenção de isosafrol. Acta Amazonica, 40(4), 737–740. https://doi.org/10.1590/S0044-59672010000400014 | |
dc.relation | Da Silva, R., De Souza, G. H. B., Da Silva, A. A., De Souza, V. A., Pereira, A. C., Royo, V. D. A., … Bastos, J. K. (2005). Synthesis and biological activity evaluation of lignan lactones derived from (-)-cubebin. Bioorganic and Medicinal Chemistry Letters, 15(4), 1033–1037. https://doi.org/10.1016/j.bmcl.2004.12.035 | |
dc.relation | Danelutte, A. P., Costantin, M. B., Delgado, G. E., Braz-Filho, R., & Kato, M. J. (2005). Divergence of secondary metabolism in cell suspension cultures and differentiated plants of Piper cernuum and P. crassinervium. Journal of the Brazilian Chemical Society, 16(6 B), 1425–1430. https://doi.org/10.1590/S0103-50532005000800022 | |
dc.relation | Delgado-Paredes, G., Duque-Aurazo, A., Vásquez-Díaz, C., & Rojas-Idrogo, C. (2017). Propagación masiva del matico ( Piper tuberculatum Jacq .) y su aplicación en la erradicación de vectores de enfermedades metaxénicas en Lambayeque ( Perú ). Revista Latinoamericana de Recursos Naturales, 13(2), 39–50. | |
dc.relation | Delgado-Paredes, G. E., Kato, M. J., & Vásquez-Dueñas, N. (2012). Cultivo de tejidos de Piper sp. (Piperaceae): Propagación, organogénesis y conservación de germoplasma in vitro. Revista Colombiana de Biotecnología, 14(2), 49–60. | |
dc.relation | Delgado-Paredes, G., Kato, M., & Rojas-Idrogo, C. (2013). Suspensiones celulares y producción de metabolitos secundarios en cultivos in vitro de Piper sp. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 12(3), 269–282. | |
dc.relation | Delgoda, R., & Murray, J. E. (2017). Evolutionary Perspectives on the Role of Plant Secondary Metabolites. (S. Badal & R. Delgoda, Eds.), Pharmacognosy: Fundamentals, applications and strategies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802104-0.00007-X | |
dc.relation | Dyer, Lee, & Palmer, A. (2004). Piper: A model Genus for Studies of Phytochemistry, Ecology, and Evolution. Kluwer Academic/Plenum Publishers. Kluwer Academic / Plenum Publishers. https://doi.org/10.1007/s13398-014-0173-7.2 | |
dc.relation | Fazal, H., Haider, B., & Nisar, A. (2015). Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell, Tissue and Organ Culture (PCTOC). https://doi.org/10.1007/s11240-015-0915-z | |
dc.relation | Gandhi, S., Mahajan, V., & Bedi, Y. (2014). Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. https://doi.org/10.1007/s00425-014-2232-x | |
dc.relation | Garavito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., … Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460–462. https://doi.org/10.1016/j.jep.2006.03.033 | |
dc.relation | García-Osuna, H., Bocardo, L., Robledo-Torres, V., Benavides, A., & Ramírez, F. (2015). Germinación y micropropagación de tomate de cáscara (Physalis ixocarpa) tetraploide. Revista mexicana de ciencias agrícolas, 12, 2301–2311. | |
dc.relation | Gary, S., Adegboye, J., Popp, B., Cocuron, J., Woodrum, B., & Kovinich, N. (2018). Combining semi-synthesis with plant and microbial biocatalysis : new frontiers in producing a chemical arsenal against cancer. RSC Advances, 8, 21332–21339. https://doi.org/10.1039/c8ra02184h | |
dc.relation | Geipel, K., Socher, M. L., Haas, C., Bley, T., & Steingroewer, J. (2013). Growth kinetics of a Helianthus annuus and a Salvia fruticosa suspension cell line: Shake flask cultivations with online monitoring system. Engineering in Life Sciences, 13(6), 593–602. https://doi.org/10.1002/elsc.201200148 | |
dc.relation | Georgiev, V., Slavov, A., Vasileva, I., & Pavlov, A. (2018). Plant cell culture as emerging technology for production of active cosmetic ingredients. Engineering in Life Science, 18, 779–798. https://doi.org/10.1002/elsc.201800066 | |
dc.relation | Giri, C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture (PCTOC), 126(1). https://doi.org/10.1007/s11240-016-0985-6 | |
dc.relation | Gómez-Torres, L. M., Moreno-Gómez, B., Velásquez-Lozano, M. E., Aguirre-Mancilla, C., & Aguado-Santacruz, G. A. (2014). Plant cell photoautotrophic suspension cultures. Establishment and application perspectives. Revista Fitotecnia Mexicana, 37(2), 165–179. | |
dc.relation | González, T., & Patiño, O. (2016). Evaluación de diferentes condiciones nutricionales y ambientales para evitar la actividad oxidativa en formación de callos friables a partir de plántulas cultivadas un vitro de Piper cumanense. Universidad Francisco de Paula Santander. | |
dc.relation | Gorgani, L., Mohammadi, M., Najafpour, G. D., & Nikzad, M. (2017). Sequential Microwave-Ultrasound-Assisted Extraction for Isolation of Piperine from Black Pepper (Piper nigrum L .). https://doi.org/10.1007/s11947-017-1994-0 | |
dc.relation | Grajales-Conesa, J., Meléndez-Ramírez, V., & Cruz-López, L. (2011). Aromas florales y su interacción con los insectos polinizadores. Revista Mexicana de Biodiversidad, 82, 1356–1367. | |
dc.relation | Guo, Z. G., Liu, Y., & Xing, X. H. (2011). Enhanced catharanthine biosynthesis through regulation of cyclooxygenase in the cell suspension culture of Catharanthus roseus (L.) G. Don. Process Biochemistry, 46(3), 783–787. https://doi.org/10.1016/j.procbio.2010.10.017 | |
dc.relation | Heberle, H., Meirelles, G. V., Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn : a web-based tool for the analysis of sets through Venn diagrams, 1–7. https://doi.org/10.1186/s12859-015-0611-3 | |
dc.relation | Hieu, L. D., Thang, T. D., Hoi, T. M., & Ogunwande, I. A. (2014). Chemical Composition of Essential Oils from Four Vietnamese Species of Piper ( Piperaceae ). Journal of Oleo Science, 217(3), 211–217. | |
dc.relation | Hussain, A., Naz, S., Hummer, N., & Shinwari, Z. (2011). Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pakistan Journal of Botany, 43(2), 1069–1078. | |
dc.relation | Iqbal, G., Iqbal, A., Mahmood, A., Farhat, S., & Ahmed, T. (2016). Memory Enhancing Effect of Black Pepper in the AlCl3 Induced Neurotoxicity Mouse Model is Mediated Through Its Active Component Chavicine. Current Pharmaceutical Biotechnology, 17(11). https://doi.org/10.2174/1389201017666160709202124 | |
dc.relation | Jaramillo, M. A., & Callejas, R. (2004). Current Perspectives on the Classification and Phylogenetics of the Genus Piper L . En L Dyer & A. Palmer (Eds.), Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution (pp. 179–198). Springer, Boston, MA. | |
dc.relation | Jaramillo, M. A., Callejas, R., Davidson, C., Smith, J. F., Stevens, A. C., & Tepe, E. J. (2008). A Phylogeny of the Tropical Genus <I>Piper</I> Using ITS and the Chloroplast Intron <I>psbJ–petA</I>. Systematic Botany, 33(4), 647–660. https://doi.org/10.1600/036364408786500244 | |
dc.relation | Jaramillo, M. A., & Manos, P. S. (2001). Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). American Journal of Botany, 88(4), 706–716. https://doi.org/10.2307/2657072 | |
dc.relation | Kang, S., Min, J., Kim, Y., Kang, Y., Park, D., Jung, H., … Choi, M. (2006). Efects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. In Vitro Cell. Dev. Biol., 44–49. https://doi.org/10.1079/IVP2005719 | |
dc.relation | Kelkar, S., Deboo, G. B., & Krishnamurthy, K. V. (1996). In vitro plant regeneration from leaf callus in Piper colubrinum Link. Plant Cell Reports, 16, 215–218. | |
dc.relation | Kessler, A., & Kalske, A. (2018). Plant Secondary Metabolite Diversity and Species Interactions. Annual Review of Ecology, Evolution, and Systematics, 49, 115–138. | |
dc.relation | Khan, S., Banu, T., Islam, M., & Das, N. (2017). In vitro regeneration of Piper nigrum L . Bangladesh J. Bot., 46(2), 789–793. | |
dc.relation | Kooke, R., & Keurentjes, J. (2012). Multi-dimensional regulation of metabolic networks shaping plant development and performance. Journal of Experimental Botany, 63(9), 3353–3365. https://doi.org/10.1093/jxb/err373 | |
dc.relation | Kusari, S., Verma, V., Lamshoeft, M., & Spiteller, M. (2012). An endophytic fungus from Azadirachta indica A . Juss . that produces azadirachtin. World Journal of Microbiology Biotechnology, 28, 1287–1294. https://doi.org/10.1007/s11274-011-0876-2 | |
dc.relation | Lago, J. H. G., Ito, A. T., Fernandes, C. M., Young, M. C. M., & Kato, M. J. (2012). Secondary metabolites isolated from Piper chimonantifolium and their antifungal activity. Natural Product Research, 26(8), 770–773. https://doi.org/10.1080/14786419.2011.561435 | |
dc.relation | Langhansová, L., & Maršík, P. (2005). Production of saponins from Panax ginseng suspension and adventitious root cultures. Biologia Plantarum, 49(3), 463–465. | |
dc.relation | Lima, R. G. De, Barros, M. T., & de Laurentiz, R. da S. (2018). Medicinal Attributes of Lignans Extracted from Piper Cubeba : Current Developments. ChemistryOpen, 7(2), 180–191. https://doi.org/10.1002/open.201700182 | |
dc.relation | Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37. https://doi.org/10.1007/s10529-015-1814-4 | |
dc.relation | Marcotullio, M. C., Pelosi, A., & Curini, M. (2014). Hinokinin, an emerging bioactive lignan. Molecules, 19(9), 14862–14878. https://doi.org/10.3390/molecules190914862 | |
dc.relation | Martínez, C., Carvalho, M. R., Santiago, M., & Jaramillo, C. A. (2015). A late cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus. American Journal of Botany, 102(2), 273–289. https://doi.org/10.3732/ajb.1400427 | |
dc.relation | Matsuura, H. N., Malik, S., de Costa, F., Yousefzadi, M., Mirjalili, M. H., Arroo, R., … Fett-Neto, A. G. (2017). Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Molecular Biotechnology, 60(2), 169–183. https://doi.org/10.1007/s12033-017-0056-1 | |
dc.relation | Mgbeahuruike, E. E., Yrjönen, T., Vuorela, H., & Holm, Y. (2017). Bioactive compounds from medicinal plants: Focus on Piper species. South African Journal of Botany, 112, 54–69. https://doi.org/10.1016/j.sajb.2017.05.007 | |
dc.relation | Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725. https://doi.org/10.1093/jxb/err155 | |
dc.relation | Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant – herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35. https://doi.org/10.1016/j.tplants.2013.10.002 | |
dc.relation | Mohammed, G. J., Omran, A. M., & Hussein, H. M. (2016). Antibacterial and Phytochemical Analysis of Piper nigrum using Gas Chromatography – Mass Spectrum and Fourier-Transform Infrared Spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 8(6), 977–996. | |
dc.relation | Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. | |
dc.relation | Naeem, M., Aftab, T., & Khan, M. (2017). Catharanthus roseus: Current Research and Future Prospects. Springer. https://doi.org/10.1007/978-3-319-51620-2 | |
dc.relation | Nakamura, Y., Darnieder, L., Deeb, T., & Moss, S. (2015). Regulation of GABAARs by Phosphorylation Yasuko. Adv. Pharmacol., 72, 97–146. https://doi.org/10.5588/ijtld.16.0716.Isoniazid | |
dc.relation | Narayani, M., & Srivastava, S. (2017). Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry Reviews, 16(6), 1227–1252. https://doi.org/10.1007/s11101-017-9534-0 | |
dc.relation | Netala, V. R., Kotakadi, V. S., Gaddam, S. A., Ghosh, S. B., & Tartte, V. (2016). Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi. 3 Biotech, 6(2), 1–11. https://doi.org/10.1007/s13205-016-0555-y | |
dc.relation | Nicoletti, R., & Fiorentino, A. (2015). Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture, 5, 918–970. https://doi.org/10.3390/agriculture5040918 | |
dc.relation | Niranjana, H., Lee, M. E., & Paek, K. (2014). Production of secondary metabolites from cell and organ cultures : Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-014-0467-7 | |
dc.relation | Nitola, Y., Muñoz, D., Patiño, O., & Prieto, J. (2016). Caracterización fitoquímica y evaluación de actividad inhibitoria sobre acetilcolinesterasa de hojas de piper pesaresanum C. DC. Revista Cubana de Plantas Medicinales, 21(4), 1–10. | |
dc.relation | Nobler, J. D., Camp, M. J., Crowell, M. M., Shipley, L. A., Dadabay, C., Rachlow, J. L., … Forbey, J. S. (2018). Preferences of Specialist and Generalist Mammalian Herbivores for Mixtures Versus Individual Plant Secondary Metabolites. Journal of Chemical Ecology. https://doi.org/10.1007/s10886-018-1030-5 | |
dc.relation | Nova-López, C. J., Muñoz-Pérez, J. M., Granger-Serrano, L. F., Arias-Zabala, M. E., & Arango-Isaza, R. E. (2017). Expresión de la proteína recombinante Cry 1Ac en cultivos de células de papa en suspensión: Establecimiento del cultivo y optimización de la producción de la biomasa y la proteína mediante la adición de nitrógeno. Dyna, 84(201), 34. https://doi.org/10.15446/dyna.v84n201.59829 | |
dc.relation | Ochoa-Villareal, M., Howat, S., Hong, S., Jang, M., Jin, Y., Lee, E., & Loake, G. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49(3), 149–158. | |
dc.relation | Oraei, M., Panahirad, S., Zaare-nahandi, F., & Gohari, G. (2019). Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape ( Vitis vinifera L .) berries. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.9869 | |
dc.relation | Parmar, V., Subhash, J., Bisht, K., Jain, R., Taneja, P., Jha, A., … Boll, P. (1997). Phytochemistry of the genus Piper, 46(4), 597–673. | |
dc.relation | Parra, J., & Cuca, S. (2019). Búsqueda de agentes fitosanitarios provenientes de especies del género Piper (Piperaceae) para el control de Fusarium oxysporum f.sp. passiflorae. | |
dc.relation | Parra, J. E., Delgado, W., & Cuca, L. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4, 280–282. | |
dc.relation | Parra, J. E., Patiño, O. J., Prieto, J. A., Delgado, W. A., & Cuca, L. E. (2013). A new benzoic acid derivative isolated from Piper cf. cumanense Kunth (Piperaceae). Phytochemistry Letters, 6, 590–592. https://doi.org/10.1016/j.phytol.2013.07.014 | |
dc.relation | Pérez-Alonso, N., & Jiménez, E. (2011). Producción de metabolitos secundarios de plantas mediante el cultivo in vitro. Biotecnología vegetal, 11(4), 1–15. | |
dc.relation | Pérez-González, M. Z., Nieto-Trujillo, A., Gutiérrez-Rebolledo, G. A., & García-Martínez, I. (2019). Lupeol acetate production and antioxidant activity of a cell suspension culture from Cnidoscolus chayamansa leaves. South African Journal of Botany, 125, 30–38. https://doi.org/10.1016/j.sajb.2019.06.030 | |
dc.relation | POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. (2019). Recuperado de http://www.plantsoftheworldonline.org/ | |
dc.relation | Prajapati, V., Patel, M., Jha, S., & Makwana, K. (2019). De novo organogenesis from leaf explants in Piper longum L. Journal of Pharmacognosy and Phytochemistry, 8(3), 483–485. | |
dc.relation | Quijano-Abril, M. A., Callejas-Posada, R., & Miranda-Esquivel, D. R. (2006). Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). Journal of Biogeography, 33(7), 1266–1278. https://doi.org/10.1111/j.1365-2699.2006.01501.x | |
dc.relation | Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusid?, R., & Palazon, J. (2016). Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules, 21(2), 182. https://doi.org/10.3390/molecules21020182 | |
dc.relation | Ramulifho, E., Goche, T., As, J. Van, Tsilo, T. J., Chivasa, S., & Ngara, R. (2019). Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor ( L .) Moench Varieties : A Resource for Gene Discovery in Plant Stress Biology. Agronomy. https://doi.org/10.3390/agronomy9050218 | |
dc.relation | Rani, D., & Kumar, P. (2012). Direct shoot regeneration from nodal , internodal and petiolar segments of Piper longum L . and in vitro conservation of indexed plantlets. Plant Cell Tiss Organ Cult, 109, 9–17. https://doi.org/10.1007/s11240-011-0068-7 | |
dc.relation | Rapado, L. N., FreitasB, G. C., Polpo, A., Rojas-Cardozo, M., Rincón, J. V., Scotti, M. T., … Yamaguchi, L. F. (2014). A benzoic acid derivative and flavokawains from piper species as schistosomiasis vector controls. Molecules, 19(4), 5205–5218. https://doi.org/10.3390/molecules19045205 | |
dc.relation | Rodríguez Beraud, M. M., Latsague Vidal, M. I., Chacón Fuentes, M. A., & Astorga Brevis, P. K. (2014). Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque (Valdivia), 35(1), 21–22. https://doi.org/10.4067/S0717-92002014000100011 | |
dc.relation | Royal Botanical Garden, & Kew. (2017). State of the World’s Plants. (K. Willis, Ed.). | |
dc.relation | Rutala, W. A., & Weber, D. J. (2008). Draft Guideline for Disinfection and Sterilization in Healthcare Facilities. CDC (Centers for Disease Control and Prevention). | |
dc.relation | Sahraroo, A., Mirjalili, M. H., Corchete, P., Babalar, M., Fattahi-Moghadam, M. R., & Zarei, A. (2018). Enhancement of rosmaniric acid production by Satureja khuzistanica cell suspensions: Effect of phenylalanine and sucrose. SABRAO Journal of Breeding and Genetics, 50(1), 25–35. | |
dc.relation | Sarmadi, M., Karimi, N., Palazón, J., Ghassempour, A., & Mirjalili, M. (2018). The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture. Plant Physiology and Biochemistry, 132, 271–280. https://doi.org/10.1016/j.plaphy.2018.09.013 | |
dc.relation | Scodro, R. B. D. L., Espelho, S. C., Agostinho Pires, C. T., Garcia, V. A. D. S., Cardozo-Filho, L., Cortez, L. E. R., … Cortez, D. A. G. (2015). A new benzoic acid derivative from Piper diospyrifolium and its anti-Mycobacterium tuberculosis activity. Phytochemistry Letters, 11, 18–23. https://doi.org/10.1016/j.phytol.2014.10.015 | |
dc.relation | Sharma, S., Walia, S., & Kumar, R. (2016). Comprehensive review on agro technologies of low-calorie natural sweetener stevia ( Stevia rebaudiana Bertoni ): a boon to diabetic. J Sci FoodAgric, 96, 1867–1879. https://doi.org/10.1002/jsfa.7500 | |
dc.relation | Siddiqui, Z., Hareramdas, B., Abbas, Z., Parween, T., & Nasir, M. (2018). Use of Plant Secondary Metabolites as Nutraceuticals for Treatment and Management of Cancer : Approaches and Challenges. En M. Sayeed & M. Kumara (Eds.), Anticancer plants: Properties and Application (pp. 395–413). Springer Singapore. | |
dc.relation | Silva, M. L. A., Martins, C. H. G., Lucarini, R., Sato, D. N., Pavanb, F. R., Freitas, N. H. A., … Al., E. (2009). Antimycobacterial activity of natural and semi-synthetic lignans. Z. Naturforsch. C, 64, 77–7849. | |
dc.relation | Singh, G. (2010). Plant Systematics. An Integrated Approach. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Singh, V., Vinod, K., & Dixit, K. (2013). Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana ( J . Grah .) Mabberley, 357–369. https://doi.org/10.1007/s11816-012-0270-z | |
dc.relation | Singh, Y. (1992). Kava: an overview. Journal of Ethnopharmacology, 37(1), 13–45. https://doi.org/10.1016/0378-8741(92)90003-A | |
dc.relation | Soniya, E. V, & Das, M. R. (2002). In vitro micropropagation of Piper longum – an important medicinal plant. Plant Cell, Tissue and Organ Culture, 70, 325–327. | |
dc.relation | Staniszewska, I., Królicka, A., Maliński, E., Łojkowska, E., & Szafranek, J. (2003). Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme and Microbial Technology, 33(5), 565–568. https://doi.org/10.1016/S0141-0229(03)00180-7 | |
dc.relation | Subban, K., Subramani, R., Priya, V., Srinivasan, M., Johnpaul, M., & Jayabaskaran, C. (2019). Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE, 1–17. https://doi.org/10.1371/journal.pone.0212736 February | |
dc.relation | Szabados, L., Mroginski, L. A., & Roca, W. M. (1991). Suspensiones celulares: descripción, manipulación y aplicaciones. En Cultivo de Tejidos en la Agricultura, Fundamentos y Aplicaciones (Centro Int, pp. 174–195). | |
dc.relation | Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sinauer Associates, Inc. | |
dc.relation | Talib, W. H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Scientia Pharmaceutica, 85(3), 1–11. https://doi.org/10.3390/scipharm85030027 | |
dc.relation | Tepe, E., Rodríguez-Castañeda, G., Glassmire, A., & Dyer, L. (2014). Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru. PhytoKeys, 34, 19–32. https://doi.org/10.3897/phytokeys.34.6376 | |
dc.relation | Trejo-Espino, J. L., Rodríguez-Monroy, M., Vernon-Carter, E. J., & Cruz-Sosa, F. (2011). Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst. cell suspension culture: A biotechnology approach for mesquite gum production. Acta Physiologiae Plantarum, 33(5), 1687–1695. https://doi.org/10.1007/s11738-010-0705-5 | |
dc.relation | Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Dermatological Science. https://doi.org/10.1016/j.jarmap.2015.09.002 | |
dc.relation | Wei, Y., Qian-liang, M., Bing, L., Khalid, R., Cheng-Jian, Z., Ting, H., & Lu-ping, Q. (2016). Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36(2), 215–232. | |
dc.relation | Wilson, S., & Roberts, S. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnology Journal, 10, 249–268. | |
dc.relation | Wróbel, T., Dreger, M., Wielgus, K., & Slomski, R. (2017). The application of plant in vitro cultures in cannabinoid production. Biotechnology Letters. https://doi.org/10.1007/s10529-017-2492-1 | |
dc.relation | Yazaki, K. (2017). Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnology, 34(3), 131–142. https://doi.org/10.5511/plantbiotechnology.17.0823a | |
dc.relation | Yue, W., Ming, Q., Lin, B., Rahman, K., Zheng, C.-J., Han, T., & Qin, L. (2016). Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36(2), 215–232. https://doi.org/10.3109/07388551.2014.923986 | |
dc.relation | Yun, B., Yan, Z., Amir, R., Hong, S., Jin, Y., Lee, E., & Loake, G. J. (2012a). Plant natural products : history, limitations and the potential of cambial meristematic cells. Biotechnology and Genetic Engineering Reviews, 28(1), 47–60. https://doi.org/10.5661/bger-28-47 | |
dc.relation | Yun, B., Yan, Z., Amir, R., Hong, S., Jin, Y., Lee, E., & Loake, G. J. (2012b). Plant natural products : history , limitations and the potential of cambial meristematic cells Plant natural products : history , limitations and the potential of cambial meristematic cells. Biotechnology and Genetic Engineering Reviews, 28, 47–60. https://doi.org/10.5661/bger-28-47 | |
dc.relation | Zamboni, A., Gatto, P., Cestaro, A., Pilati, S., Viola, R., Mattivi, F., … Velasco, R. (2009). Grapevine cell early activation of specific responses to DIMEB , a resveratrol elicitor. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-363 | |
dc.relation | Zanuncio, J. C., Mourão, S. A., Martínez, L. C., Wilcken, C. F., Ramalho, F. S., Plata-rueda, A., … Serrão, J. E. (2016). Toxic effects of the neem oil ( Azadirachta indica ) formulation on the stink bug predator , Podisus nigrispinus ( Heteroptera : Pentatomidae ). Scientific Reports, 6(30261). https://doi.org/10.1038/srep30261 | |
dc.relation | Zhou, P., Yang, J., Zhu, J., He, S., Zhang, W., Yu, R., … Huang, X. (2015). Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Applied Microbiology and Biotechnology, 99(17), 7035–7045. https://doi.org/10.1007/s00253-015-6651-9 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Evaluación del efecto de algunos elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de Piper sp. | |
dc.type | Otro | |