dc.contributor | Fonseca Fonseca, Frank Rodolfo | |
dc.creator | Rojas Bayona, Wilson Jesús | |
dc.date.accessioned | 2020-08-12T21:27:02Z | |
dc.date.available | 2020-08-12T21:27:02Z | |
dc.date.created | 2020-08-12T21:27:02Z | |
dc.date.issued | 2020-06-12 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78005 | |
dc.description.abstract | Las ecuaciones del semiconductor han sido tema de interés en el análisis numérico de muchos matemáticos por décadas. En 1950 van Roosbroeck describió las ecuaciones fundamentales de los dispositivos semiconductores como un sistema de tres ecuaciones diferenciales en derivadas parciales no lineales acopladas. Este sistema presenta un desafío numérico por la no-linealidad y acoplamiento entre las ecuaciones, y a la di cultad de resolver simultáneamente estas ecuaciones que incluyen el modelo deriva-difusión (en inglés, drift-di usion) a través de las densidades de corriente de cada tipo de portador de carga, y la ecuación de Poisson. Este conjunto de ecuaciones se resuelve unidimensionalmente utilizando un lenguaje de alto nivel, Matlab, que permite el uso de herramientas computacionales so sticadas facilitando la búsqueda de la solución. Al día de hoy carecemos de una solución analítica general,
por lo mismo resulta conveniente apelar a resolver el sistema van Roosbroeck numéricamente, con la disponibilidad de métodos matemáticos que se encuentran en la literatura de la física de dispositivos semiconductores. En el análisis unidimensional es muy versátil aplicar el método de diferencias nitas ya que abre el espacio a nuevos esquemas de discretización mucho más estables. En este trabajo se usa el esquema de Scharfetter y Gummel, el cual se caracteriza por utilizar funciones de crecimiento exponencial, adecuadas para manejar la variación espacial de las variables dependientes. La potencia del sistema van Roosbroeck se aplicó a una celda solar inorgánica de estructura cilíndrica. | |
dc.description.abstract | The semiconductor equations have been subject of interest in the numerical analysis for many mathematicians for decades. In 1950 van Roosbroeck described the fundamental equations of the semiconductor devices like a coupled system of three nonlinear partial di erential equations. This system presents a numerical challenge due to non-linearity and coupling between these equations, and to di culty to solve them simultaneously, that include the drift-di usion model through the current densities due to each kind of charge carrier in the continuity equations, and the Poisson equation. This set of equations was solved in one dimension in polar coordinates, using a high-level programming language, Matlab, which
enables the use of sophisticated computing tools applied to nd the solution of the van Roosbroeck system. Today we lack of a general analytic solution, for this reason is more convenient to solve the van Roosbroeck system via numerical method, among several found in the literature of semiconductor devices. In one dimensional analysis is very common to apply the nite di erence method, since this opens the space related to the new schemes of discretizations more stable. In this work the Scharfetter-Gummel scheme was used, which is characterized by using growth exponential functions, suitable to drive the spatial variation of the dependent variables. The power of the van Roosbroeck system was applied to an dimensional solar cell with crystalline cylindrical structure. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Física | |
dc.publisher | Departamento de Física | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Adachi, S. (1999). Optical Constants of Crystalline and Amorphous Semiconductors
Numerical Data and Graphical Information. Springer Science+ Business Media, LLC.
DOI 10.1007/978-1-4615-5247-5. Hardcover ISBN 978-0-7923-8567-7. Number of Pages
XX, 714, Department of Electronic Engineering, Gunma University, Kiryu-shi, Gunma
376-8515, Japan. | |
dc.relation | Aktsipetrov, O., Baranova, I., and Evtyukhov, K. N. ((26 de enero de 2016)). Second
Order Non-linear Optics of Silicon and Silicon Nanostructures. CRC Press; Edición: 1.
592 páginas, U.S. ISBN-10: 1498724159. ISBN-13: 978-1498724159. | |
dc.relation | Alexei, D. and Sajeev, J. (October 2012). Finite di erence discretization of semiconductor
drift di usion equations for nanowire solar cells. Computer Physics Communications,
Volume 183, Issue 10, DOI 10.1016/j.cpc.2012.05.016, 183:2128 2135. | |
dc.relation | Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. Thomson Learning.
ISBN: 0030839939 9780030839931 0030493463 9780030493461., Cornell University. New
York, Holt, Rinehart and Winston. xxi, 826 pages : illustrations ; 25 cm. | |
dc.relation | ASTM (11 January 2012). Standard G159 03 Standard Tables for Reference Solar Spec-
tral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. ICS 17.180.01
27.160. Publisher ASTM. Format A4., Descriptors: Direct normal, Hemispherical, Irradiance,
Solar constant, Solar spectrum, Terrestrial, Wavelength. | |
dc.relation | Balkanski, M. and Wallis, R. F. (9 November 2000). Semiconductor Physics and Appli-
cations. Oxford University Press. ISBN: 9780198517412. 512 Pages, New York. | |
dc.relation | Blakemore, J. (October 1, 1987). Semiconductor Statistics. Dover Pubns. 381 pages.
ISBN-10: 0486653625. ISBN-13: 978-0486653624. | |
dc.relation | Bucher, K., Bruns, J., and Wagemann, H. (04 June 1998 Accepted: September 1993).
Absorption coe cient of silicon, an assessment of measurements and the simulation of
temperature variation. Journal of Applied Physics 75, 1127 (1994); DOI: https://doi.org/
10.1063/1.356496. | |
dc.relation | Chin-Yi, T. (2018). Absorption coe cients of silicon: A theoretical treatment. Journal
of Applied Physics, 123 183103 (2018); https://doi.org/10.1063/1.5028053 , pages 1 10. | |
dc.relation | De Mari, A. (1968). Accurate numerical steady state and transient one dimensional so-
lutions on semiconductor devices. Dissertation (ph.d.), california institute of technology.
doi:10.7907/ws5d-0211. https://resolver.caltech.edu/caltechetd:etd-09262002-154912, Pasadena,
California. | |
dc.relation | Emery, K. (Oct 1999). The rating of photovoltaic performance. IEEE Transactions on
Electron Devices. Issue: 10, DOI: 10.1109/16.791980., Volume: 46.:Page(s): 1928 1931. | |
dc.relation | Farrel, P., Koprucki, T., and Fuhrmann, J. (2017). Computational and analytical comparison
of ux discretizations for the semiconductor device equations beyond boltzmann
statistics. Weierstrass Institute, Berlin Germany. Journal of Computational Physics, vol.
346. DOI: 10.1016/j.jcp.2017.06.023., page 497 513. | |
dc.relation | Ferry, D. K. (2000). Semiconductor Transport. CRC Press. 1st Edition. 384 pages.
DOI: https://doi.org/10.4324/9781315267548. Subjects: Engineering Technology, Physical
Sciences., London. | |
dc.relation | Ferziger, J. (2002). Computational Methods for Fluid Dynamics IIIed. Springer-Verlag
Berlin Heidelberg. Edition 3. DOI 10.1007/978-3-642-56026-2. Number of Pages XIV, 426,
Switzerland. | |
dc.relation | Fossum, J. (1976). Computer aided numerical analysis of silicon solar cells. Solid-State
Electronics, Issue 4, April 1976. https://doi.org/10.1016/0038-1101(76)90022-8 , 19:269
277. | |
dc.relation | Gerya, T. (2010). Numerical Geodynamic Modelling. Cambridge, Swiss Federal Institute
of Technology (ETH-Zurich). January 2010. ISBN: 9780521887540. 358 pages. | |
dc.relation | Ghazarians, A. (2018). A numerical study of the van roosbroeck system for semiconductors.
Master's thesis, San Jose State University. DOI: https://doi.org/10.31979/etd.k2yb-
6c32. Master's Theses. 4939. | |
dc.relation | Giles, R. and Walker, A. (2016). Drift di usion modelling of charge transport in pho-
tovoltaic devices. In, Unconventional Thin Film Photovoltaics. Energy and Environment
Series, , (doi:10.1039/9781782624066-00297)) Royal Society of Chemistry, pp. 297-331. | |
dc.relation | Green, M. and Keevers, M. (1995). Optical properties of intrinsic silicon at 300 k.
Progress in Photovoltaics Research and Appilications. DOI: https://doi.org/10.1002/
pip.4670030303, 3:1 4. | |
dc.relation | Groves, C. (2017). Simulating charge transport in organic semiconductors and devices:
a review. Reports on progress in physics. DOI: https://doi.org/10.1088/1361-
6633/80/2/026502, page :38 pages. | |
dc.relation | Huang, K. (1987). Statistical Mechanics, IIed. John Wiley and Sons, Inc. ISBN: 978-0-
471-81518-1. 512 Pages, United States of America. | |
dc.relation | Jabr, R., Hamad, M., and Mohanna, M. (2007). Newton raphson solution of poisson's
equation in a pn diode. International Journal of Electrical Engineering Education. DOI:
https://doi.org/10.7227/IJEEE.44.1.3, page :13 pages. | |
dc.relation | Jentschura, U. (2017). Advanced Classical Electrodynamics. World Scienti c. DOI:
https://doi.org/10.1142/10514. Pages: 372., Missouri University of Science and Technology,
USA. | |
dc.relation | Kita, T., Harada, Y., and Asahi, S. (2019). Energy Conversion E ciency of Solar
Cells. Springer Singapore. Springer Nature Singapore Pte Ltd. Edition Number: 1. DOI:
10.1007/978-981-13-9089-0. Number of Pages: XII, 202, Kobe, Hyogo, Japan. | |
dc.relation | Koster, L. and Smits, E. (2005). Device model for the operation of polymer
fullerene bulk heterojunction solar cells. Materials Science CentrePlus, Uni-
versity of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. DOI:
https://doi.org/10.1103/PhysRevB.72.085205. Phys. Rev. B 72, 085205 Published 2 Au-
gust 2005, page :9 pages. | |
dc.relation | Li, Z., Qiao, Z., and Tang, T. (2017). Numerical Solution of di erential Equations, Intro-
duction to nite Di erence and Finite Element Methods. Cambridge University Press. Online
ISBN: 9781316678725. DOI: https://doi.org/10.1017/9781316678725., United Kingdom. | |
dc.relation | Lundstrom, M. (2009). Fundamentals of carrier transport IIed. Cambridge University
Press; 2 edition (July 2, 2009). 440 pages. ISBN-10: 0521637244. ISBN-13: 978-
0521637244., United States of America. | |
dc.relation | Luque, A. (2003). Handbook of Photovoltaic Science and Engineering. Wiley. ISBN:
978-0-470-72169-8. 1164 Pages., Instituto de Energía Solar, Universidad Politécnica de
Madrid, España. | |
dc.relation | Madelung, O. (1978). Introduction to Solid-State Theory. Springer-Verlag Berlin Heidelberg.
DOI: 10.1007/978-3-642-61885-7. Series ISSN 0171-1873. Number of Pages XI,
491. | |
dc.relation | Muramatsu, A. (2013). https://www.itp3.uni-stuttgart.de/teaching/archive/ss13/solid
statetheory/, página de consulta en internet. | |
dc.relation | Myers, D., Emery, K., and C, G. (2002). Proposed reference spectral irradiance standards
to improve concentrating photovoltaic system design and performance evaluation.
IEEE. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. DOI: 10.1109/PVSC.2002.1190731. Conference Location: New Orleans, LA, USA,
USA., page :5 pages. | |
dc.relation | Nelson, J. (2008). Physics of Solar Cell. Imperial College. DOI: https://doi.org/10.1142/
p276. Pages: 384. May 2003., UK. | |
dc.relation | Nouran, M., Ashraf, M., Abdel, H., Nageh, K., and Nadia, H. (2014). Analytical modeling
of the radial pn junction nanowire solar cells. Journal of Applied Physics 116, 024308
(2014). DOI: https://doi.org/10.1063/1.4886596. | |
dc.relation | Nouran, M., Ashraf, M., Abdel, H., Nageh, K., and Nadia, H. (2016). Numerical
simulation and a parametric study of inorganic nanowire solar cells. Internatio-
nal Journal of Numerical Modelling, Electronic Networks, Devices and Fields. DOI:
https://doi.org/10.1002/jnm.2176. First published: 02 June 2016, pages 1 15. | |
dc.relation | Parker, M. A. (2010). Solid State and Quantum Theory for Optoelectronics. CRC Press,
Taylor Francis Group, Boca Raton, FL, 2010. ISBN 978-0-8493-3750-5. 828 pages. | |
dc.relation | Peyghambarian, N., Koch, S., and Mysyrowicz, A. (1993). Introduction to Semicon-
ductor Optics. Pearson College Div (August 1, 1993). Prentice Hall Series in Solid State
Physical Electronics. 485 pages. ISBN-10: 0136389902. ISBN-13: 978-0136389903. | |
dc.relation | Rajkanan, K. and Singh, R. (1979). Absortion coe cient of silicon for solar
cell calculations. Solid State Electronics Volume 22, Issue 9, September 1979. DOI:
https://doi.org/10.1016/0038-1101(79)90128-X., pages 793 795. | |
dc.relation | Richard, L. (2003). Introductory Quantum Mechanics. Addison-Wesley; Edición: 4
(18 de agosto de 2002). ISBN-10: 0805387145. ISBN-13: 978-0805387148. 900 páginas,
University of Central Florida, USA. | |
dc.relation | Scharfetter, D. and Gummel, H. (1969). Large-signal analysis of a silicon read diode
oscillator. IEEE Transactions on Electron Devices ( Volume: 16 , Issue: 1 , Jan 1969 ).
DOI: 10.1109/T-ED.1969.16566. Date of Publication: Jan 1969, pages 64 77. | |
dc.relation | Segura, A. (2002). Consulta página web https://www.uv.es/candid/docencia/tema3(01-
02).pdf, curso y material de consulta en semiconductores, tema 3: física de la unión pn -
uv. universidad de valencia. Última actualización: 31/01/02. | |
dc.relation | Selberherr, S. (1984). Analysis and Simulation of Semiconductor Devices. Springer-
Verlag Wien, DOI: 10.1007/978-3-7091-8752-4. Number of Pages XIV, 296. | |
dc.relation | Shapiro, F. (1995). The numerical solution of poisson's equation in a pn diode using a
spreadsheet. IEEE Transactions on Education, Volume 38, Issue 4. DOI: https://doi.org/
10.1109/13.473161, pages 1 5. | |
dc.relation | Smith, G. (1986). Numerical Solution of Partial Di erential Equations, Finite Di e-
rence Methods IIIed. Oxford University Press, U.S.A.; Edición: 3 (16 de enero de 1986).
Oxford Applied Mathematics and Computing Science Series. ISBN-10: 9780198596509.
ISBN-13: 978-0198596509. ASIN: 0198596502. 354 páginas. | |
dc.relation | Snowden, C. and Miles, R. (1993). Compound Semiconductor Device Modelling.
Springer-Verlag London. DOI: 10.1007/978-1-4471-2048-3. Number of Pages X, 286. | |
dc.relation | Sujecki, S. (2014). Photonics Modelling and Design. CRC Press; Edición: 1 (3 de diciembre
de 2014). ISBN-10: 9781466561267. ISBN-13: 978-1466561267. ASIN: 1466561262.
410 páginas. | |
dc.relation | Sze, S. and Kwok, K. (2007). Physics of Semiconductor Devices, Third Edition. John
Wiley and Sons, Inc. DOI:10.1002/0470068329. ISBN: 978-0-471-14323-9. 832 Pages. | |
dc.relation | Van Roosbroeck, W. ((Manuscript Received Mar. 30, 1950), First published: October
1950). Theory of the ow of electrons and holes in germanium and other semiconductors.
Bell System Technical, https://doi.org/10.1002/j.1538-7305.1950.tb03653.x , 29:Bell
System Technical Journal, Issue4, October 1950, Pages 560 607. | |
dc.relation | Vasileska, D. (2010). Computational Electronics: Semiclassical and Quantum Device
Modeling and Simulation. CRC Press. DOI: https://doi.org/10.1201/b13776. 782 pages. | |
dc.relation | Wurfel, P. (2005). Physics of Solar Cells: From Principles to New Concepts. WILEYVCH
Verlag GmbH Co. KGaA. DOI:10.1002/9783527618545. | |
dc.relation | Yan, Z. (2000). General thermal wavelength and its applications. European Journal of
Physics, Volume 21, Number 6. DOI: 10.1088/0143-0807/21/6/314, page 625 631. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Simulación de una celda inorgánica tipo homojuntura n-p | |
dc.type | Otro | |