dc.contributorArias Zabala, Mario Evelio
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorBiotecnología Industrial
dc.creatorLeón Durán, Mateo David
dc.date.accessioned2020-08-25T21:09:07Z
dc.date.available2020-08-25T21:09:07Z
dc.date.created2020-08-25T21:09:07Z
dc.date.issued2020-08-21
dc.identifierLeón Durán, Mateo David (2020) Optimización de la producción de metabolitos secundarios tipo flavonoides en cultivos en suspensión de células de Thevetia peruviana. Tesis de Maestría. Universidad Nacional de Colombia - sede Medellín
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78225
dc.description.abstractPlants are the main source for obtaining secondary metabolites that are used in the pharmaceutical, cosmetic and food industries. In nature, the performance of bioactive compounds is affected by biotic and abiotic factors, an alternative to overcome this adversity is in vitro plant cultures and particularly plant cell culture that has multiple advantages, highlighting the possibility of controlling variables to increase the content. of compounds of interest. The objective of this research was to determine and optimize the effect of some elicitors on the production of secondary flavonoid metabolites in suspension cell cultures of Thevetia peruviana on a shake flask scale. The experimental part was performed from cell cultures in suspension cells of T. peruviana maintained by the Bioconversion Laboratory of the Universidad Nacional de Colombia, sede Medellin. Firstly, methyl jasmonate (MeJa) 3 µM and salicylic acid (SA) 300 µM were added to two los of cell cultures, that circumstantially they differed in their time suspension state lot 1 (9 months) and lot 2 (3 months). Secondly, certain were evaluated, in order to be optimized; the operational parameters cosidered were: day of addition, concentration and hours of harvest. Finally, the combined effect of MeJa (0.3 µM) and SA (100 µM) was determined in different proportions, the day of elicitation and the hours of harvest were constant. Flavonoid content was quantified by UV-vis spectrophotometry usinfg the AlCl3 complexation method and was evaluated at extracellular and intracellular level. In the first part, at intracellular level, SA generated 14.6 % and 9.56 % more flavonoid content than MeJa in lots 1 and 2, respectively. In the second part, 4.14 mg EQ/g DW were generated with MeJa 0.3 µM, elicitation day 5 and harvest at 90 h; 3.75 mg EQ/g DW were generated with 100 µM SA, elicitation day 0 and harvests at 96 h. In the third part, 4.62 mg EQ / g DW were generated with the combination of MeJa (0.3 µM) – SA (100 µM) in a ratio of 20-80, elicitation on day 0 and harvest at 96 h. Eliciting cell cultures of Thevetia peruviana with MeJa and SA under optimal conditions of concentration, day of addition and hours of harvest increased the content of flavonoid compounds. The results obtained could serve as a basis for the development of investigations at the bioreactor scale.
dc.description.abstractLas plantas son la principal fuente para la obtención de metabolitos secundarios que se usan en la industria farmacéutica, cosmética y alimentaria. En la naturaleza el rendimiento de compuestos bioactivos se ve afectado por factores bióticos y abióticos, una alternativa para superar esta adversidad son los cultivos vegetales in vitro y particularmente el cultivo de células en suspensión que presenta múltiples ventajas destacándose la posibilidad de controlar variables para aumentar el contenido de compuestos de interés. El objetivo del presente trabajo de investigación fue determinar y optimizar el efecto de algunos elicitores sobre la producción de metabolitos secundarios tipo flavonoides en cultivos de células en suspensión de Thevetia peruviana a escala de matraz agitado. La parte experimental se realizó a partir de cultivos de células en células en suspensión de T. peruviana que mantenía el laboratorio de bioconversiones de la Universidad Nacional de Colombia sede Medellín. Primeramente, metil jasmonato (MeJa) 3 μM y ácido salicílico (AS) 300 μM se adicionaron a dos lotes de cultivos de células; que circunstancialmente diferían en su tiempo en estado de suspensión lote 1 (9 meses) y lote 2 (3 meses). Segundamente, determinadas condiciones fueron evaluadas, con el fin de ser optimizadas; los parámetros operacionales que se consideraron fueron: día de adición, concentración y las horas de cosecha. Por último, el efecto combinado de MeJa (0,3 μM) – AS (100 μM) se determinó en diferentes proporciones, el día de elicitación y las horas de cosecha fueron constantes. El contenido de flavonoides se cuantificó por espectrofotometría UV – vis por el método de complejación de AlCl3 y se evaluaron a nivel extracelular e intracelular. En la primera parte, a nivel intracelular AS generaron 14,6 % y 9,56 % más contenido de flavonoides que MeJa en lotes 1 y 2, respectivamente. En la segunda parte, 4,14 mg EQ/g MS fueron generados con MeJa 0,3 μM, elicitación día 5 y cosecha a 90 h; por otro lado, 3,75 mg EQ/g MS fueron generados con AS 100 μM, elicitación día 0 y cosecha a 96 h. En la tercera parte, 4,62 mg EQ/g MS fueron generados con la combinación de MeJa (0,3 μM) – AS (100 μM) en proporción 20 – 80, elicitación el día 0 y cosecha a las 96 h. Elicitar cultivos celulares de Thevetia peruviana con MeJa y AS en condiciones óptimas de concentración, día de adición y horas de cosecha incrementaron el contenido de compuestos flavonoides. Los resultados obtenidos podrían servir como base para el desarrollo de investigaciones a escala de biorreactor.
dc.languagespa
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAgostini-Costa, T., Vieira, R., Bizzo, H., Silveira, D., & Gimenes, M. (2012). Secondary Metabolites. In Cromatography and Its Applications (pp. 131–164). https://doi.org/10.5772/35705
dc.relationAhmad, P., Rasool, S., Gul, A., Sheikh, S., Akram, N., Ashraf, M., … Gucel, S. (2016). Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00813
dc.relationAhmad, T., Hamid, A., Sharma, A., & Bhardwaj, U. (2017). Thevetia peruviana: a multipurpose medicinal plant a review. International Journal of Advanced Research, 5(8), 486–493. https://doi.org/10.21474/IJAR01/5081
dc.relationAhmed, E., Arshad, M., Zakriyya Khan, M., Shoaib Amjad, M., Mehreen Sadaf, H., Riaz, I., … Sabaoon. (2017). Secondary metabolites and their multidimensional prospective in plant life. Journal of Pharmacognosy and Phytochemistry, 6(2), 205–214. Retrieved from http://www.phytojournal.com/archives/2017/vol6issue2/PartC/6-2-2-130.pdf
dc.relationAli, M., Abbasi, B. H., & Ali, G. S. (2015). Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium L. Plant Cell, Tissue and Organ Culture, 1099–1106. https://doi.org/10.1007/s11240-014-0666-2
dc.relationAli, M. B., Yu, K.-W., Hahn, E.-J., & Paek, K.-Y. (2006). Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Reports, 25(6), 613–620. https://doi.org/10.1007/s00299-005-0065-6
dc.relationÁlvarez, E., & Francisco, O. (2003). Actividad biológica de los flavonoides (I). Acción frente al cáncer. Bioquímica, 22(I).
dc.relationAmer, A. (2018). Biotechnology approaches for in vitro production of flavonoids. Journal of Microbiology, Biotechnology and Food Sciences, 7(5), 457–468. https://doi.org/10.15414/jmbfs.2018.7.5.457-468
dc.relationArias, J., Zapata, K., Rojano, B., Peñuela, M., & Arias, M. (2017). Cardiac glycosides, phenolic compounds and antioxidant activity from plant cell suspension cultures of Thevetia peruviana. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 353–362.
dc.relationArias, M., Angarita, M., Restrepo, J., Caicedo, L., & Perea, M. (2010). Elicitation with methyl jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana. In Vitro Cellular & Developmental Biology - Plant, 233–238. https://doi.org/10.1007/s11627-009-9249-z
dc.relationBairu, M., Aremu, A., & Van Staden, J. (2011). Somaclonal variation in plants: causes and detection methods. Plant Growth Regulation, 63(2), 147–173. https://doi.org/10.1007/s10725-010-9554-x
dc.relationBandara, V., Weinstein, S., White, J., & Eddleston, M. (2010). A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander ( common oleander ) and Thevetia peruviana ( yellow oleander ) poisoning. Toxicon, 56(3), 273–281. https://doi.org/10.1016/j.toxicon.2010.03.026
dc.relationBektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5, 1–17. https://doi.org/10.3389/fpls.2014.00804
dc.relationBennici, A., Anzidei, M., & Vendramin, G. (2004). Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant Science, 166(1), 221–227. https://doi.org/10.1016/j.plantsci.2003.09.010
dc.relationBhuyan, D., & Basu, A. (2017). Phenolic compounds: potential health benefits and toxicity. In Utilisation of Bioactive Compounds from Agricultural and Food Waste (pp. 27–59).
dc.relationBora, M., Gogoi, P., Deka, D., & Kakati, D. (2014). Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil based alkyd resin. Industrial Crops and Products, 52, 721–728. https://doi.org/10.1016/j.indcrop.2013.11.012
dc.relationBourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science, 839–851. https://doi.org/10.1166/jnn.2008.220
dc.relationBueno, G. (2007). Efeito elicitor do óxido nitrico na indução do sistema de defensa do mamoeiro. Universidade Federal Do Espírito Santo.
dc.relationButiuc, A., Farkas, A., & Cristea, V. (2016). Genetic stability assessment of in vitro plants by molecular markers. Studia Universitatis Babes-Bolyai Biologia, 61, 107–114.
dc.relationCalva, G., & Pérez, J. (2005). Cultivo de células y tejidos vegetales: fuente de alimentos para el futuro. Revista Digital Universitaria, 6(11).
dc.relationChen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4(6), 493–496. https://doi.org/10.4161/psb.4.6.8392
dc.relationCheong, J. J., & Choi, Y. Do. (2003). Methyl jasmonate as a vital substance in plants. Trends in Genetics, 19(7), 409–413. https://doi.org/10.1016/S0168-9525(03)00138-0
dc.relationChirumbolo, S. (2010). The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation & Allergy - Drug Targets, 9(3), 2–3.
dc.relationDelgado, G., Kato, M., & Rojas, C. (2013). Suspensiones celulares y producción de metabolitos secundarios en cultivos in vitro de Piper sp. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 12(3), 269–282.
dc.relationDemiryürek, A., & Demiryürek, S. (2005). Cardiotoxicity of digitalis glycosides: roles of autonomic pathways, autacoids and ion channels. Autonomic and Autacoid Pharmacology, 25(2), 35–52. https://doi.org/10.1111/j.1474-8673.2004.00334.x
dc.relationDempsey, D., Vlot, C., Wildermuth, M., & Klessig, D. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book, 9, e0156. https://doi.org/10.1199/tab.0156
dc.relationDörnenburg, H., & Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17(8), 674–684. https://doi.org/10.1016/0141-0229(94)00108-4
dc.relationEl-ashry, A. A. E., Gabr, A. M. M., & Arafa, N. M. (2019). Rutin accumulation in gardenia calli cultures as a response to phenyl alanine and salicylic acid. Bulletin of the National Research Centre, 43(141).
dc.relationFlacone, M., Rius, S., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(September), 1–16. https://doi.org/10.3389/fpls.2012.00222
dc.relationGabotti, D., Locatelli, F., Cusano, E., Baldoni, E., Genga, A., Pucci, L., … Mattana, M. (2019). Cell suspensions of Cannabis sativa (var. futura): effect of elicitation on metabolite content and antioxidant activity. Molecules, 24(22). https://doi.org/10.3390/molecules24224056
dc.relationGadzovska, S., Maury, S., Joseph, C., Hagege, D., Delaunay, A., & Spasenoski, M. (2007). Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue and Organ Culture, 89, 1–13. https://doi.org/10.1007/s11240-007-9203-x
dc.relationGata-Gonçalves, L., Nogueira, J. M. F., Matos, O., & de Sousa, R. B. (2003). Photoactive extracts from Thevetia peruviana with antifungal properties against Cladosporium cucumerinum. Journal of Photochemistry and Photobiology B: Biology, 70(1), 51–54. https://doi.org/10.1016/S1011-1344(03)00024-1
dc.relationGorni, P., De Oliveira, M., Da Silva, R., & Konrad, E. (2017). Increased biomass and salicylic acid elicitor activity in fennel (Foeniculum vulgare Miller). Brazilian Journal of Food Technology, 20, 1–7. https://doi.org/10.1590/1981-6723.17216
dc.relationGovindaraju, S., & Indra, P. (2018). Effect of cytokinin combined elicitors (L -phenylalanine , salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb – Coleus aromaticus Benth (L). Journal of the Saudi Society of Agricultural Sciences, 17(4), 435–444. https://doi.org/10.1016/j.jssas.2016.11.001
dc.relationGoyal, S., & Ramawat, K. G. (2008). Increased isoflavonoids accumulation in cell suspension cultures of Pueraria tuberosa by elicitors. Indian Journal of Biotechnology, 7(3), 378–382.
dc.relationGuerriero, G., Berni, R., Muñoz, A., Apone, F., Abdel-Salam, E., Qahtan, A., … Faisal, M. (2018). Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes, 9(6), 1–22. https://doi.org/10.3390/genes9060309
dc.relationGuo, S., Man, S., Gao, W., Liu, H., Zhang, L., & Xiao, P. (2013). Production of flavonoids and polysaccharide by adding elicitor in different cellular cultivation processes of Glycyrrhiza uralensis Fisch. Acta Physiologiae Plantarum, 35(3), 679–686. https://doi.org/10.1007/s11738-012-1108-6
dc.relationGupta, R., Kachhawa, J. B. S., Gupta, R. S., Sharma, A. K., Sharma, M. C., & Dobhal, M. P. (2011). Phytochemical evaluation and antispermatogenic activity of Thevetia peruviana methanol extract in male albino rats. Human Fertility, 14(1), 53–59. https://doi.org/10.3109/14647273.2010.542230
dc.relationGürel, S., Gürel, E., & Kaya, Z. (2002). Establishment of cell suspension cultures and plant regeneration in sugar beet (Beta vulgaris L.). Turk J Bot, 26, 197–205.
dc.relationHaida, Z., Syahida, A., Ariff, S. M., Maziah, M., & Hakiman, M. (2019). Factors affecting cell biomass and flavonoid production of Ficus deltoidea var . kunstleri in cell suspension culture system. Scientific Reports, (August 2018), 1–8. https://doi.org/10.1038/s41598-019-46042-w
dc.relationHalder, M., Sarkar, S., & Jha, S. (2019). Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences, 880–895. https://doi.org/10.1002/elsc.201900058
dc.relationHuang, W., Wang, Y., Li, X., & Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 1–36. https://doi.org/10.1016/j.molp.2019.12.008
dc.relationHussain, G., Rasul, A., Anwar, H., Aziz, N., Razzaq, A., Wei, W., … Li, X. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. International Journal of Biological Sciences, 14(3), 341–357. https://doi.org/10.7150/ijbs.23247
dc.relationIonkova, I. (2009). Optimization of flavonoid production in cell cultures of Astragalus missouriensis Nutt . (Fabaceae). Pharmacognosy Magazine, 5(18), 92–95.
dc.relationIrchhaiya, R., Kumar, A., Yadar, A., Gupta, N., Kumar, S., Gupta, N., … Gurjar, H. (2014). Metabolites in plants and their classification. World Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 287–305.
dc.relationJacob, A., & Thomas, J. (2019). Flavonoids from cell suspension culture of Ocimum tenuiflorum and its enhancement using response surface methodology. Drug Invention Today, 11(9), 2188–2193.
dc.relationJiang, Y., Ye, J., Li, S., & Niinemets, Ü. (2017). Methyl jasmonate induced emission of biogenic volatiles is biphasic in cucumber: a high resolution analysis of dose dependence. Journal of Experimental Botany, 68(16), 4679–4694. https://doi.org/10.1093/jxb/erx244
dc.relationKabera, J., Semana, E., Mussa, A., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology, 2(7).
dc.relationKhan, U., Ahmed, R., Shahzadi, I., & Shah, M. (2016). Some important factors influencing tissue culture response in wheat. Sarhad Journal of Agriculture, 31(4), 199–209. https://doi.org/10.17582/journal.sja/2015/31.4.199.209
dc.relationKhoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328–2375. https://doi.org/10.3390/molecules18022328
dc.relationKim, J., & Shim, Y. (2016). Method validation of analytical method for 12 flavonol glycosides in foods using ultra high performance liquid chromatography coupled with photodiode array detection. Food Science and Biotechnology, 25(3), 659–664. https://doi.org/10.1007/s10068-016-0116-5
dc.relationKohls, S., Scholz-Böttcher, B. M., Teske, J., Zark, P., & Rullkötter, J. (2012). Cardiac glycosides from yellow oleander (Thevetia peruviana) seeds. Phytochemistry, 75, 114–127. https://doi.org/10.1016/j.phytochem.2011.11.019
dc.relationKomaraiah, P., Kishor, P. B. K., Carlsson, M., Magnusson, K., & Mandenius, C. (2005). Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures. Plant Science, 168, 1337–1344. https://doi.org/10.1016/j.plantsci.2005.01.017
dc.relationKondamudi, R., Murthy, K. S. R., & Pullaiah, T. (2009). Euphorbiaceae a critical review on plant tissue culture. Tropical and Subtropical Agroecosystems, 10, 313–335. Retrieved from http://redalyc.uaemex.mx/redalyc/pdf/939/93911238011.pdf
dc.relationKrzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., & Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha piperita cell suspension cultures. Plant Cell, Tissue and Organ Culture, 108(1), 73–81. https://doi.org/10.1007/s11240-011-0014-8
dc.relationLattanzio, V. (2013). Phenolic compounds: Introduction. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes (pp. 1544–1573). https://doi.org/10.1007/978-3-642-22144-6
dc.relationLin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., … Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10). https://doi.org/10.3390/molecules21101374
dc.relationLiu, Z. B., Chen, J. G., Yin, Z. P., Shangguan, X. C., Peng, D. Y., Lu, T., & Lin, P. (2018). Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell, Tissue and Organ Culture, 134(1), 79–93. https://doi.org/10.1007/s11240-018-1401-1
dc.relationMatsuura, H., & Fett-Neto, A. (2015). Plant alkaloids: main features, toxicity, and mechanisms of action. Plant Toxins, 1–15. https://doi.org/10.1007/978-94-007-6728-7
dc.relationMazarei, M., Al-ahmad, H., Rudis, M. R., Joyce, B. L., & Stewart, C. N. (2011). Switchgrass (Panicum virgatum L.) cell suspension cultures: establishment, characterization and application. Plant Science, 10–13. https://doi.org/10.1016/j.plantsci.2010.12.010
dc.relationMazid, M., Khan, T., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232–249.
dc.relationMendhulkar, V., & Vakil, M. (2013). Elicitation of flavonoids by salicylic acid and Penicillium expansum in Andrographis paniculata (Burm. f) Nees. cell culture. Research in Biotechnology, 4(2), 01–09.
dc.relationMendoza, D. (2019). Estudio metabolómico de células de Thevetia peruviana (Pers.) K. Schum (Apocynaceae) cultivadas en suspensión, como respuesta al tratamiento con dos elicitores de la biosíntesis de compuestos fenólicos. Universidad Nacional de Colombia.
dc.relationMendoza, D., Arias, J., Cuaspud, O., & Arias, M. (2020). Phytochemical screening of callus and suspensions cultures of Thevetia peruviana. Brazilian Archives of Biology and Technology, 63, 1–14. https://doi.org/10.1590/1678-4324-2020180735
dc.relationMendoza, D., Cuaspud, O., Pablo, J., Ruiz, O., & Arias, M. (2018). Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnology Reports, 19(63). https://doi.org/10.1016/j.btre.2018.e00273
dc.relationMoharramnejad, S., Taheri, A., & Jaber, A. (2019). Effect of methyl jasmonate and salicylic acid on in vitro growth, stevioside production, and oxidative defense system in Stevia rebaudiana. Sugar Tech, 1–8. https://doi.org/10.1007/s12355-019-00727-8
dc.relationMurthy, H. N., Kim, Y., Jeong, C., Kim, S., Zhong, J., & Paek, K. (2014). Production of ginsenosides from adventitious root cultures of Panax ginseng. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology (pp. 625–651). https://doi.org/10.1007/978-94-017-9223-3
dc.relationMustafa, N., Winter, W. De, Iren, F. Van, & Verpoorte, R. (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols, 6(6). https://doi.org/10.1038/nprot.2010.144
dc.relationNamdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1(2), 227–231.
dc.relationNasu, S., Milas, L., Kawabe, S., Raju, U., & Newman, R. (2002). Enhancement of radiotherapy by oleandrin is a caspase-3 dependent process. Cancer Letters, 185(2), 145–151. https://doi.org/10.1016/S0304-3835(02)00263-X
dc.relationNcube, B., Ndhlala, A., & Staden, J. Van. (2017). Secondary metabolism and the rationale for systems manipulation. In Transgenesis and Secondary Metabolism (pp. 45–65). https://doi.org/10.1007/978-3-319-28669-3
dc.relationOlmos, S., Luciani, G., & Ernestina, G. (2010). Micropropagación. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y Mejoramiento Vegetal II (Primera, p. 356). Buenos Aires.
dc.relationOrozco, F., Hoyos, R., & Arias, M. (1996). Establecimiento de un cultivo de células en suspension de Eucalyptus cinerea. Revista Colombiana de Biotecnología, 4(1), 43–48.
dc.relationOwolabi, I., Yupanqui, C., & Siripongvutikorn, S. (2018). Review article: enhancing secondary metabolites (emphasis on phenolics and antioxidants) in plants through elicitation and metabolomics. Pakistan Journal of Nutrition, 17, 411–420. https://doi.org/10.3923/pjn.2018.411.420
dc.relationPacheco, D., Taborda, M., & De la Rosa, C. (2006). Estudio fitoquímico preliminar y evaluación de la actividad antifúngica de los extractos de hojas, cortezas y semillas de Thevetia peruviana (Pesoon) Schum. Revista Intrópica, 3, 5–12.
dc.relationPagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. (2016). Secondary metabolites of plants and their role: overview. Current Trends in Biotechnology and Pharmacy, 9(3).
dc.relationPekal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1792. https://doi.org/10.1007/s12161-014-9814-x
dc.relationPérez, N., & Jiménez, E. (2011). Producción de metabolitos secundarios de plantas mediante el cultivo in vitro. Biotecología Vegetal, 11(4), 195–211. https://doi.org/10.2436/tscb.vi.63494
dc.relationPetrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., & Vianello, A. (2013). Plant flavonoids biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14, 14950–14973. https://doi.org/10.3390/ijms140714950
dc.relationPurwianingsih, W., Hidayat, R., & Rahmat, A. (2019). Increasing anthraquinone compounds on callus leaf Morinda citrifolia (L.) by elicitation method using chitosan shell of shrimps (Penaeus monodon). Journal of Physics: Conference Series, 1–8. https://doi.org/10.1088/1742-6596/1280/2/022001
dc.relationRahman, N., Rahman, H., Haris, M., & Mahmood, R. (2017). Wound healing potentials of Thevetia peruviana: antioxidants and inflammatory markers criteria. Journal of Traditional and Complementary Medicine, 7(4), 519–525. https://doi.org/10.1016/j.jtcme.2017.01.005
dc.relationRamachandra, S., & Ravishankar, G. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. https://doi.org/10.1016/S0734-9750(02)00007-1
dc.relationRamirez, K., Vidal, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high added value compounds in plant cell factories. Molecules, 21(2), 1–24. https://doi.org/10.3390/molecules21020182
dc.relationReyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., … Ribera-Fonseca, A. (2016). Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules, 21(6), 1–18. https://doi.org/10.3390/molecules21060567
dc.relationReza, M., Abbaspour, N., Jafari, M., & Samadi, A. (2014). Elicitation of valerenic acid in the hairy root cultures of Valeriana officinalis L (Valerianaceae). Tropical Journal of Pharmaceutical Research, 13(6), 943–949. https://doi.org/10.4314/tjpr.v13i6.17
dc.relationRobledo, A., Vásquez, M., Adame, R., & Jofre, A. (2006). Callus and suspension culture induction, maintenance, and characterization. In V. Loyola & F. Vásquez (Eds.), Plant cell culture protocols (Second, pp. 59–70). https://doi.org/10.1385/1-59259-959-1
dc.relationRodríguez, M., Latsague, M., Chacón, M., & Astorga, P. (2014). Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque, 35(1), 111–118. https://doi.org/10.4067/S0717-92002014000100011
dc.relationRuan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., … Zhang, K. (2019). Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10), 1–15. https://doi.org/10.3390/ijms20102479
dc.relationSantos, E., Salesa, B., Ferriani, A., & Teixeira, S. D. (2017). Flavonoids: classification , biosynthesis and chemical ecology. In Flavonoids - From Biosynthesis to Human Health (pp. 3–16). https://doi.org/http://dx.doi.org/10.5772/67861
dc.relationSchenk, R., & Hildebrandt, A. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(12), 199–204. https://doi.org/https://doi.org/10.1139/b72-026
dc.relationSierra, M., Barros, R., Gómez, D., Mejía, A., & Suarez, D. (2018). Productos naturales: metabolitos secundarios y aceites esenciales. Uniagraria. Bogotá.
dc.relationSingh, K., Agrawal, K., Mishra, V., Uddin, S., & Shukla, A. (2012). A review on Thevetia peruviana. International Research Journal of Pharmacy, 3(4), 74–77. https://doi.org/10.1016/j.wem.2015.07.007
dc.relationSiwach, P., Grover, K., & Rani, A. (2011). The influence of plant growth regulators, explant nature and sucrose concentration on in vitro callus growth of Thevetia peruviana Schum. Asian Journal of Biotecnnology, 3(3), 280–292. https://doi.org/10.3923/ajbkr.2011.280.292
dc.relationSmetanska, I. (2008). Production of secondary metabolites using plant cell cultures. Advances in Biochemical Engineering/Biotechnology, 111, 187–228. https://doi.org/10.1007/10_2008_103
dc.relationSubban, K., Subramani, R., Madambakkam Srinivasan, V. P., Johnpaul, M., & Chelliah, J. (2019). Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLOS ONE, 14(2), 1–17. https://doi.org/10.1371/journal.pone.0212736
dc.relationSuzuki, H., Reddy, S., Naoumkina, M., Aziz, N., May, G., Huhman, D., … Dixon, R. (2005). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic reprogramming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220, 696–707. https://doi.org/10.1007/s00425-004-1387-2
dc.relationSytykiewicz, H., Horbowicz, M., Wiczkowski, W., & Mitrus, J. (2016). Methyl jasmonate elicitation affects expression of genes involved in biosynthesis and turnover of 2-phenylethylamine in maize seedlings. Acta Biologica Cracoviensia, 58(1). https://doi.org/10.1515/abcsb-2016-0005
dc.relationTabata, H. (2006). Production of paclitaxel and the related taxanes by cell suspension cultures of taxus species. Current Drug Targets, 7(4), 453–461. https://doi.org/10.2174/138945006776359368
dc.relationTaha, H. S., Farag, S. ., Shams, K. ., Abdel-Azim, N. ., & Seif El-Nasr, M. . (2011). In vivo and in vitro studies on Thevetia species Growing in Egypt. II. Establishment of in vitro tissue culture system and production of cardiac glycosides. Journal of American Science, 7(3), 1–12.
dc.relationTashackori, H., Sharifi, M., Chashmi, N. A., Behmanesh, M., & Safaie, N. (2018). Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta, 248(5), 1289–1306. https://doi.org/10.1007/s00425-018-2973-z
dc.relationTewari, R. K., & Paek, K. Y. (2011). Salicylic acid induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. Journal of Plant Growth Regulation, 30(4), 396–404. https://doi.org/10.1007/s00344-011-9202-3
dc.relationTewtrakul, S., Nakamura, N., Hattori, M., Fujiwara, T., & Supavita, T. (2002). Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory. Chemical and Pharmaceutical Bulletin, 50(5), 630–635.
dc.relationThawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S., & Karaman, R. (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11(656), 1–28. https://doi.org/10.3390/toxins11110656
dc.relationThiruvengadam, M., Rekha, K., Rajakumar, G., Lee, T., Kim, S., & Chung, I. (2016). Enhanced production of anthraquinones and phenolic compounds and biological activities in the cell suspension cultures of Polygonum multiflorum. International Journal of Molecular Sciences, 17(11), 1–16. https://doi.org/10.3390/ijms17111912
dc.relationTian, D. M., Cheng, H. Y., Jiang, M. M., Shen, W. Z., Tang, J. S., & Yao, X. S. (2016). Cardiac glycosides from the seeds of Thevetia peruviana. Journal of Natural Products, 79(1), 38–50. https://doi.org/10.1021/acs.jnatprod.5b00611
dc.relationTiwari, R., & Rana, C. (2015). Plant secondary metabolites: a review. International Journal of Engineering Research and General Science, 3(5).
dc.relationTomás, F., & Ferreres, F. (2012). Analytical methods of flavonols and flavones. In Z. Xu & L. Howard (Eds.), Analysis of Antioxidant - Rich Phytochemicals (First, pp. 207–246).
dc.relationVasconsuelo, A., & Boland, R. (2007). Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science, 172, 861–875. https://doi.org/10.1016/j.plantsci.2007.01.006
dc.relationVatanparast, G., Mirdehghan, S., & Karimi, H. (2013). Foliar application of salicylic acid , methyl jasmonate and potassium sulfate on photosynthetic characteristics and fruit quality of pomegranate. Iran Agricultural Research, 31(2), 23–34. https://doi.org/10.22099/IAR.2013.1524
dc.relationWang, J., Gao, W. Y., Zhang, J., Zuo, B. M., Zhang, L. M., & Huang, L. Q. (2012). Production of ginsenoside and polysaccharide by two stage cultivation of Panax quinquefolium L. cells. In Vitro Cellular and Developmental Biology - Plant, 48(1), 107–112. https://doi.org/10.1007/s11627-011-9396-x
dc.relationWang, J., Qian, J., Yao, L., & Lu, Y. (2015). Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources and Bioprocessing, 2(5), 1–9. https://doi.org/10.1186/s40643-014-0033-5
dc.relationWang, S., Bowman, L., & Ding, M. (2008). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107, 1261–1269. https://doi.org/10.1016/j.foodchem.2007.09.065
dc.relationWeston, L. A., & Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of Chemical Ecology, 39, 283–297. https://doi.org/10.1007/s10886-013-0248-5
dc.relationWu, C.-H., Dewir, Y., Hahn, E.-J., & Paek, K.-Y. (2006). Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology, 49(June), 193–199.
dc.relationYang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 1–26. https://doi.org/10.3390/molecules23040762
dc.relationYang, Y., He, F., Yu, L., Ji, J., & Wang, Y. (2009). Flavonoid accumulation in cell suspension cultures of Glycyrrhiza inflata batal under optimizing conditions. Zeitschrift Für Naturforschung C, 64(1–2), 68–72.
dc.relationYu, J., Gao, J., Wang, X. Y., Wei, Q., Yang, L. F., Kai, Q., & Kuai, B. K. (2010). The pathway and regulation of salicylic acid biosynthesis in probenazole treated Arabidopsis. Journal of Plant Biology, 53, 417–424. https://doi.org/10.1007/s12374-010-9130-y
dc.relationZhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003
dc.relationZhao, Y., Wu, Y., & Wang, M. (2015). Bioactive substances of plant origin. In Handbook of Food Chemistry (pp. 967–1008). https://doi.org/10.1007/978-3-642-36605-5
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleOptimización de la producción de metabolitos secundarios tipo flavonoides en cultivos en suspensión de células de Thevetia peruviana
dc.typeOtro


Este ítem pertenece a la siguiente institución