dc.relation | A Pandey, CR Soccol, JA Rodriguez-Leon, P. S.-N. N. (2001). Solid State Fermentation in Biotechnology: Fundamentals and Application. Asiatech Publishers, Inc.
Abell, L. L., Levy, B. B., Brodie, B. B., & Kendall, F. E. (1951). Simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. Journal of Biological Chemistry, 195(1), 357–366. https://doi.org/10.1016/S0021-9258(19)50907-3
Adeeyo, A. O., Lateef, A., & Gueguim-kana, E. B. (2016). Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes ( Agaricomycetes ) Using Mutation and a Genetic Algorithm–Coupled Artiicial Neural Network (GA-ANN). (September). https://doi.org/10.1615/IntJMedMushrooms.v18.i7.20
Agudelo-Escobar, L. M., Gutiérrez-López, Y., & Urrego-Restrepo, S. (2016). Efecto de la aireación, la agitación y el pH sobre la producción de biomasa micelial y exopolisacáridos del hongo filamentoso Ganoderma lucidum. DYNA (Colombia), 84(200), 73–79. https://doi.org/10.15446/dyna.v84n200.57126
Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269(February), 16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010
Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimization of fermentative production of poly ( c -glutamic acid ) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100(2), 826–832. https://doi.org/10.1016/j.biortech.2008.06.047
Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301–304. https://doi.org/10.5941/MYCO.2014.42.3.301
Bellon-Maurel, V., Orliac, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: A review. Process Biochemistry, 38(6), 881–896. https://doi.org/10.1016/S0032-9592(02)00093-6
Berovic, M., & Podgornik, B. B. (2016). Cultivation of Medicinal Fungi in Bioreactors. Mushroom Biotechnology: Developments and Applications, 155–171. https://doi.org/10.1016/B978-0-12-802794-3.00009-6
Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. K. S. (2010). Lentinus edodes: A Macrofungus with Pharmacological Activities. Current Medicinal Chemistry, 17(22), 2419–2430. https://doi.org/10.2174/092986710791698495
Borràs, E., Blánquez, P., Sarrà, M., Caminal, G., & Vicent, T. (2008). Trametes versicolor pellets production: Low-cost medium and scale-up. Biochemical Engineering Journal, 42(1), 61–66. https://doi.org/10.1016/j.bej.2008.05.014
Cepero de García, M.C., Restrepo Restrepo, S., Franco-Molano, A. E., Cárdenas Toquina, M., Vargas Estupiñan, N. (2012). Biología de hongos.
Chang, S., & Miles, P. (2004). Philip G. Miles, Shu-Ting Chang-Mushrooms_ Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact-CRC Press (2004).
Chegwin Angarita, C., & Nieto R., I. (2014). Effect of non-conventional carbon sources on the production of triterpenoids in submerged cultures of Pleurotus macrofungi. J. Chil. Chem. Soc, 59, 2287–2293. https://doi.org/10.1016/0006-2952(87)90680-0
Chemat, F., & Khan, M. K. (2011). Ultrasonics Sonochemistry Applications of ultrasound in food technology : Processing , preservation and extraction. Ultrasonics - Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
Chen, H. P., & Liu, J. K. (2017). Secondary Metabolites from Higher Fungi. In Progress in the chemistry of organic natural products (Vol. 106). https://doi.org/10.1007/978-3-319-59542-9_1
Chen, W., Zhao, Z., Chen, S. F., & Li, Y. Q. (2008). Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresource Technology, 99(8), 3187–3194. https://doi.org/10.1016/j.biortech.2007.05.049
Cheung, L. M., Cheung, P. C. K., & Ooi, V. E. C. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. 81, 249–255.
Couto, S. R., & Toca-Herrera, J. L. (2007). Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25(6), 558–569. https://doi.org/10.1016/j.biotechadv.2007.07.002
Cox, P. W., Paul, G. C., & Thomas, C. R. (1998). Image analysis of the morphology of filamentous micro-organisms. Microbiology, 144(4), 817–827. https://doi.org/10.1099/00221287-144-4-817
Crueger W.; Crueger A. (1993). Biotecnología : manual de microbiología industrial (Acribia, ed.). España.
Cui, F. J., Li, Y., Xu, Z. H., Xu, H. Y., Sun, K., & Tao, W. Y. (2006). Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology, 97(10), 1209–1216. https://doi.org/10.1016/j.biortech.2005.05.005
Cui, Jian-dong, & Jia, S. (2010). Optimization of Medium on Exopolysaccharides Production in Submerged Culture of Cordyceps militaris. 19(6), 1567–1571. https://doi.org/10.1007/s10068-010-0222-8
Cui, Jian, & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnology Advances, 21(2), 109–122. https://doi.org/10.1016/S0734-9750(03)00002-8
Cui, M., Yang, H., & He, G. (2015). Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS. Journal of Zhejiang University-SCIENCE B, 16(12), 998–1010. https://doi.org/10.1631/jzus.B1500147
Davitashvili, E., Kapanadze, E., Kachlishvili, E., Khardziani, T., & Elisashvili, V. (2008). Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. International Journal of Medicinal Mushrooms, 10(2), 171–179. https://doi.org/10.1615/IntJMedMushr.v10.i2.80
Domingos, M., Souza-Cruz, P. B. de, Ferraz, A., & Prata, A. M. R. (2017). A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 170, 670–676. https://doi.org/10.1016/j.ces.2017.04.004
Donatini, B. (2010). Introduction à la mycothérapie: géné ralités sur l’intérêt des principaux mycelia. Phytotherapie, 8(3), 191–197. https://doi.org/10.1007/s10298-010-0549-6
Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13, 113–125. https://doi.org/10.1299/kikaib.79.786
Duvnjak, D., Pantić, M., Pavlović, V., Nedović, V., Lević, S., Matijašević, D., … Nikšić, M. (2016). Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. Innovative Food Science and Emerging Technologies, 34, 1–8. https://doi.org/10.1016/j.ifset.2015.12.028
Elisashvili, V. (2012). Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). International Journal of Medicinal Mushrooms, 14(3), 211–239. https://doi.org/10.1615/IntJMedMushr.v14.i3.10
Elisashvili, V. I., Kachlishvili, E. T., & Wasser, S. P. (2009). Carbon and Nitrogen Source Effects on Basidiomycetes. 45(5), 592–596. https://doi.org/10.1134/S0003683809050135
Elsayed, E. A., Enshasy, H. El, Wadaan, M. A. M., & Aziz, R. (2014). Mushrooms : A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. 2014.
Emelyanova, E. V. (2005). Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate. 40, 1119–1124. https://doi.org/10.1016/j.procbio.2004.03.016
Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2008). Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agricultural and Food Chemistry, 56(8), 2609–2612. https://doi.org/10.1021/jf800091a
Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2012). Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. Journal of Chemical Technology and Biotechnology, 87(7), 903–907. https://doi.org/10.1002/jctb.3697
Fang, Q. H., & Zhong, J. J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37(7), 769–774. https://doi.org/10.1016/S0032-9592(01)00278-3
Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. Advances in Applied Microbiology, 63(07), 33–103. https://doi.org/10.1016/S0065-2164(07)00002-0
Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104–112. https://doi.org/10.1016/j.bej.2009.12.002
Ferrer-romero, J. C. (2019). Optimización del medio de cultivo para la producción de biomasa y compuestos fenólicos por Pleurotus ostreatus en fase sumergida utilizando la metodología de superficie de respuesta Optimization of medium composition for the production of Pleurotus ostrea. 1–16.
Flórez Rubiano, D. (2018). Evaluación Del Efecto De La Variación De Ciertos Parámetros Del Cultivo Biotecnologico Sobre La Composición Y La Potencial Actividad Antioxidante De Un Macromiceto. Universidad Nacional de Colombia.
Gaitán-Hernández, R., Esqueda, M., Gutiérrez, A., Sánchez, A., Beltrán-García, M., & Mata, G. (2006). Bioconversion of agrowastes by Lentinula edodes: The high potential of viticulture residues. Applied Microbiology and Biotechnology, 71(4), 432–439. https://doi.org/10.1007/s00253-005-0241-1
García-Cruz, F., Durán-Páramo, E., Garín-Aguilar, M. A., Valencia del Toro, G., & Chairez, I. (2020). Parametric characterization of the initial pH effect on the polysaccharides production by Lentinula edodes in submerged culture. Food and Bioproducts Processing, 119, 170–178. https://doi.org/10.1016/j.fbp.2019.10.016
Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27(2), 153–176. https://doi.org/10.1016/j.biotechadv.2008.10.006
Gardezi, S. M. S. ; I. H. ; S. D. A. (2003). Estimation of Sterols in Edible Fats and Oils. Pakistan Journal of Nutrition., 2(3), 178–181.
Giovanni Giovannozzi Sermanni, Alessandro D’Annibale, Gabriella Di Lena, N., & Silvia Vitale, E. D. M. & V. M. (1994). The production of exo-enzymes by Lentinus edodes and pleurotus ostreatus and their use for upgrading corn straw. Bioresource Technology, 48, 173–178.
Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102(18), 7795–7803. https://doi.org/10.1007/s00253-018-9226-8
Gyamerah, M. (1995). Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Applied Microbiology and Biotechnology, 44(3–4), 356–361. https://doi.org/10.1007/BF00169929
H.G. Gong, J. J. Z. (2005). Hydrodynamic shear stress affects cell growth and metabolite production by medicinal mushroom Ganoderma lucidum. Chinese Journal of Chemical Engineering, 13, 426– 428.
Hamedi, A., Ghanati, F., & Vahidi, H. (2012). Study on the effects of different culture conditions on the morphology of Agaricus blazei and the relationship between morphology and biomass or EPS production. 699–707. https://doi.org/10.1007/s13213-011-0309-3
Hatvani, Nora. (2001). Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. In International Journal of Antimicrobial Agents (Vol. 17). Retrieved from www.ischemo.org
Hatvani, Nóra, & Mécs, I. (2001). Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochemistry, 37(5), 491–496. https://doi.org/10.1016/S0032-9592(01)00236-9
He, P., Geng, L., Wang, Z., Mao, D., Wang, J., & Xu, C. (2012). Fermentation optimization, characterization and bioactivity of exopolysaccharides from Funalia trogii. Carbohydrate Polymers, 89(1), 17–23. https://doi.org/10.1016/j.carbpol.2012.01.093
Herbert, V. (1988). Vitamin requirements , and assay. Clinical Nutrition, 48(February), 852–858.
Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. https://doi.org/10.1007/s00253-003-1504-3
Hsieh, C., Liu, C., Tseng, M., Lo, C., & Yang, Y. (2006). Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. 39, 434–439. https://doi.org/10.1016/j.enzmictec.2005.11.033
Hsieh, C., Tseng, M. H., & Liu, C. J. (2006). Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme and Microbial Technology, 38(1–2), 109–117. https://doi.org/10.1016/j.enzmictec.2005.05.004
J Sinha, J T Bae, J P Park, K H Kim, C H Song, J. W. Y. (2001). Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol, 56(August), 88–92. https://doi.org/10.1007/s002530100606
John Smith, N. R. & R. S. (2002). Medicinal Mushrooms:Their therapeutic properties and current medicalusage with special emphasis on cancer treatments. University of Strathclyde.
Jong, S. C., & Birmingham, J. M. (1993). Medicinal and Therapeutic Value of the Shiitake Mushroom. Advances in Applied Microbiology, 39(C), 153–184. https://doi.org/10.1016/S0065-2164(08)70595-1
K.U Zaidi, R. J., & Quereshi, and S. (2013). On the novel inhibitory action of mushroom extract of coriolus Versicolor and its bioactivity against drug resistant bacteria Salmonella typhimurium ( MTCC ON THE NOVEL INHIBITORY ACTION OF MUSHROOM EXTRACT OF CORIOLUS VERSICOLOR AND IT ’ S BIOACTIVITY AG. Nternational Journal of Applied Biology and Pharmaceutical Technology, 4(2).
Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. https://doi.org/10.1002/jsfa.5960
Ke, L. (2014). Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment. Journal of Food Processing and Preservation, 1–6. https://doi.org/10.1111/jfpp.12228
Kim, H. O., Lim, J. M., Joo, J. H., Kim, S. W., Hwang, H. J., Choi, J. W., & Yun, J. W. (2005). Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technology, 96(10), 1175–1182. https://doi.org/10.1016/j.biortech.2004.09.021
Kozarski, M. S., Klaus, A. S., Nikši, M. P., Griensven, L. J. L. D. Van, Vrvi, M. M., & Jakovljevi, D. M. (2014). Polysaccharides of higher fungi : biological role , structure and antioxidative activity. Hem. Ind., 3, 305–320. https://doi.org/10.2298/HEMIND121114056K
Krishna, C. (2005). Solid-state fermentation systems - An overview. Critical Reviews in Biotechnology, Vol. 25, pp. 1–30. https://doi.org/10.1080/07388550590925383
Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., … Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of Biotechnology, 163(2), 112–123. https://doi.org/10.1016/j.jbiotec.2012.06.024
Kumar, P. K. R., & Lonsane, B. K. (1987). Gibberellic acid by solid state fermentation: Consistent and improved yields. Biotechnology and Bioengineering, 30(2), 267–271. https://doi.org/10.1002/bit.260300217
Kumari, M., Survase, S. A., & Singhal, R. S. (2008). Production of schizophyllan using Schizophyllum commune NRCM. 99, 1036–1043. https://doi.org/10.1016/j.biortech.2007.02.029
Kwon, J. S., Lee, J. S., Shin, W. C., Lee, K. E., & Hong, E. K. (2009). Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass and Exo-polysaccharides with Cordyceps militaris in Liquid Culture. Biotechnology and Bioprocess Engineering, 14, 756–762. https://doi.org/10.1007/s12257-009-0024-0
Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., & Yun, J. W. (2004). Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35(5), 369–376. https://doi.org/10.1016/j.enzmictec.2003.12.015
Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40(2), 249–254. https://doi.org/10.1016/j.enzmictec.2006.04.009
Li, P., Xu, L., Mou, Y., Shan, T., Mao, Z., Lu, S., & Peng, Y. (2012). Medium Optimization for Exopolysaccharide Production in Liquid Culture of Endophytic Fungus Berkleasmium sp . Dzf12. International Journal of Molecular Sciences, 13, 11411–11426. https://doi.org/10.3390/ijms130911411
Li, Q., Lei, Y., Hu, G., Lei, Y., & Dan, D. (2018). Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Science and Biotechnology, (July 2017). https://doi.org/10.1007/s10068-018-0339-8
Li, R., Chen, W. C., Wang, W. P., Tian, W. Y., & Zhang, X. G. (2010). Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydrate Polymers, 82(2), 240–244. https://doi.org/10.1016/j.carbpol.2010.02.048
Liang, Y., Tang, C., Huang, B., & Sun, L. (2011). Effect of fermentation time on antioxidative activities of Ganoderma lucidum broth using leguminous plants as part of the liquid fermentation medium. Food Chemistry, 126(4), 1586–1592. https://doi.org/10.1016/j.foodchem.2010.12.024
Lim, J. M., Kim, S. W., Hwang, H. J., Joo, J. H., Kim, H. O., Choi, J. W., & Yun, J. W. (2004). Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 119(2), 159–170. https://doi.org/10.1385/ABAB:119:2:159
Lin, E. S., & Sung, S. C. (2006). Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. International Journal of Food Microbiology, 108(2), 182–187. https://doi.org/10.1016/j.ijfoodmicro.2005.11.010
Lin, S., Li, C., Lee, S., & Kan, L. (2003). Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C , activating mitogen-activated protein kinases and G2-phase cell cycle arrest. 72(1), 2381–2390. https://doi.org/10.1016/S0024-3205(03)00124-3
Lindequist, U., Niedermeyer, T. H. J., & Jülich, W. D. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285–299. https://doi.org/10.1093/ecam/neh107
Lopes, A., Sabaini, N. M., & Gomes-da-Costa, S. M. (2009). Produção de biomassa de cogumelo-do-sol e de shiitake em resíduos agroindústriais. Boletim Centro de Pesquisa de Processamento de Alimentos, 27(2), 183–190. https://doi.org/10.5380/cep.v27i2.21926
Lung, M., & Huang, P. (2010). Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures. Applied Microbiology, 50, 198–204. https://doi.org/10.1111/j.1472-765X.2009.02777.x
Ma, Y., Mao, D., Geng, L., Wang, Z., & Xu, C. (2013). Production , fractionation , characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydrate Polymers, 96(2), 460–465. https://doi.org/10.1016/j.carbpol.2013.04.019
Mahapatra, S., & Banerjee, D. (2013). Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydrate Polymers, 97, 627–634.
Malinowska, E., Krzyczkowski, W., Łapienis, G., & Herold, F. (2009). Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology and Biotechnology, 36(12), 1513–1527. https://doi.org/10.1007/s10295-009-0640-x
Márquez-Rocha, F. J., Guillén N., G. K., Sánchez V., J. E., & Vázquez-Duhalt, R. (1999). Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnology Techniques, 13(1), 29–32. https://doi.org/10.1023/A:1008861432337
Martinez Carrera, D., Sobal, M., Morales, P., Martínez, W., Martínez, M., Mayett, Y. (2004). Los hongos comestibles: propiedades nutricionales, medicinales y su contribción a la alimentación Mexicana. In Colegio Posgraduados.
Mattila, P., Suonpa, K., & Piironen, V. (2000). Functional properties edible mushrooms Nutrition 2002. 16, 694–696.
Michael J. Carlile, Graham W. Gooday, S. C. W. (2001). The Fungi (Second Edi; A. Press, Ed.). Great Britain.
Mizuno, M., & Nishitani, Y. (2013). Immunomodulating compounds in Basidiomycetes. 52(3), 202–207. https://doi.org/10.3164/jcbn.13
Mizuno, T. (1999). The Extraction and Development of Antitumor Active Polysaccharides from Medicinal Mushrooms in Japan-Review. International Journal of Medicinal Mushrooms, 1, 9–30.
Money, N. P. (2016). Fungi and Biotechnology. The Fungi: Third Edition, 401–424. https://doi.org/10.1016/B978-0-12-382034-1.00012-8
Montgomery, D. (2004). Diseño y análisis de experimentos.pdf (Segunda). México: Limusa.
Mshandete, A. M., & Mgonja, J. R. (2009). Submerged Liquid Fermentation of Some Tanzanian Basidiomycetes for the Production of Mycelial Biomass, Exopolysaccharides and Mycelium Protein Using Wastes Peels Media. 4(6), 1–13. Retrieved from www.arpnjournals.com
Nehad, E. A. and A. R. E.-S. (2010). Physiological studies on the production of exopolysaccharide by Fungi. Agriculture and Biology Journal of North AmericaNorth America, 1, 1303–1308. https://doi.org/10.5251/abjna.2010.1.6.1303.1308
Nieto R., I., & Cucaita V., E. del. (2007). ÁCIDOS GRASOS, ÉSTERES Y ESTEROLES DEL CUERPO FRUCTÍFERO DEL HONGO Laccaria laccata. Revista Colombiana de Química, 36(3), 277–284.
Nikitina, V. E., Tsivileva, O. M., Pankratov, A. N., & Bychkov, N. A. (2007). Lentinula edodes biotechnology - From lentinan to lectins. Food Technology and Biotechnology, 45(3), 230–237.
Oliveros, C. V. (2017). Proyecto de tesis : Diseño bioguiado apoyado con herramientas ómicas de un alimento funcional obtenido mediante la adición del hongo Lentinula edodes Estudiante de Doctorado en Bioquímica.
Osman, M.E., Hassan, F.R.H., Khattab, O.H., Ahmed, W.A., El-Henawy, H. E. (2009). Physiological Studies on Growth of Two Different Strains of Lentinus edodes. Australian Journal of Basic and Applied Sciences, 3(4), 4094–4103.
Oyola, F. L., & Barrera, J. B. (2004). Ecología química en hongos y líquenes. Revista Academica Colombiana de Ciencias, XXVIII (10, 509–528.
Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005
Papagianni, M., Mattey, M., & Kristiansen, B. (1994). Morphology and citric acid production of Aspergillus niger PM 1. Biotechnology Letters, 16(9), 929–934. https://doi.org/10.1007/BF00128627
Papaspyridi, L. M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E., & Christakopoulos, P. (2011). Growth and biomass production with enhanced β-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor. Engineering in Life Sciences, 11(1), 65–74. https://doi.org/10.1002/elsc.201000102
Pazouki, M., & Panda, T. (2000). Understanding the morphology of fungi. Bioprocess Engineering 22, 22, 127–143.
Petre, M, Teodorescu, A., & Andronescu, A. (2012). Food biotechnology to produce high nutritive biomass by submerged fermentation of edible mushrooms. In Journal of Environmental Protection and Ecology (Vol. 13).
Petre, Marian. (2010). Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Introduction The submerged cultivation of edible and medicinal mushrooms is a promising metho. (March), 49–55.
Petre, Marian, & Petre, V. (2016). Biotechnology of mushroom growth throug submerged cultivation. In Mushroom Biotechnology (pp. 1–18).
Pires Rincão, V., Aimi Yamamoto, K., Maria Pontes Silva Ricardo, N., Aguiar Soares, S., Doretto Paccola Meirelles, L., Nozawa, C., & Elisa Carvalho Linhares, R. (2012). Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Retrieved from http://www.virologyj.com/content/9/1/37
Prasad, S., Rathore, H., Sharma, S., & As, Y. (2015). Medicinal Mushrooms as a Source of Novel Functional Food. International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350, (January 2016), 221–225. https://doi.org/10.19070/2326-3350-1500040
Quang, D. N., Hashimoto, T., & Asakawa, Y. (2006). Inedible mushrooms: A good source of biologically active substances. Chemical Record, 6(2), 79–99. https://doi.org/10.1002/tcr.20074
Rajender Singh, & M.Chauhan. (2009). (PDF) Potential of Edible Fungal Mycelia, Individually and in Consortium Form for Bioremediation. In A. Rathoure (Ed.), BIOREMEDIATION-Current Research and Applications (pp. 293–310). I.K. International. Retrieved from https://www.researchgate.net/publication/318468903_Potential_of_Edible_Fungal_Mycelia_Individually_and_in_Consortium_Form_for_Bioremediation
Ramona Ávila Núñez, Bernarda Rivas Pérez, R. H. M. y M. C. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129–135. Retrieved from https://www.redalyc.org/pdf/904/90424216002.pdf
Rau, U., Gura, E., Olszewski, E., & Wagner, F. (1992). Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. 9, 19–25.
Raux, E., Schubert, H. L., & Warren, M. J. (2000). Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum. Cellular and Molecular Life Sciences, 57(13–14), 1880–1893. https://doi.org/10.1007/PL00000670
Regina, M., Broetto, F., Giovannozzi-Sermanni, G., Marabotini, R., & Peranni, C. (2008). Influence of stationary and bioreactor cultivation on Lentinula edodes (Berk) Pegler lignocellulolitic activity. Brazilian Archives of Biology and Technology, 51(2), 223–233. https://doi.org/10.1590/S1516-89132008000200001
Rendón, M. y P. D. V. (2004). Evaluación del crecimiento y producción de exoplisacáridos del Shiitake (Lentinula edodes) en cultivo sumergido. Universidad EAFIT.
Reshetnikov, S. V., & Tan, K.-K. (2001). Higher Basidiomycota as a Source of Antitumor and Immunostimulating Polysaccharides (Review). International Journal of Medicinal Mushrooms, 3(4), 34. https://doi.org/10.1615/intjmedmushr.v3.i4.80
Rincão, V. P., Yamamoto, K. A., Silva Ricardo, N. M. P., Soares, S. A., Paccola Meirelles, L. D., Nozawa, C., & Carvalho Linhares, R. E. (2012). Polysaccharide and extracts from Lentinula edodes: Structural features and antiviral activity. Virology Journal, 9, 1–6. https://doi.org/10.1186/1743-422X-9-37
Rivera, A., Nieto, I. J., & Valencia, M. A. (2010). Composición y cuantificación por cromatografía de gases acoplada a espectrometría de masas de la fracción esterólica de once hongos colombianos. Revista Colombiana de Química, 31(2), 95–102.
Roupas, P., Keogh, J., Noakes, M., Margetts, C., & Taylor, P. (2012, October). The role of edible mushrooms in health: Evaluation of the evidence. Journal of Functional Foods, Vol. 4, pp. 687–709. https://doi.org/10.1016/j.jff.2012.05.003
Royse, D. J., Baars, J., & Tan, Q. (2017). Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms, 2010, 5–13. https://doi.org/10.1002/9781119149446.ch2
Rühl, M. (2009). Laccases and other ligninolytic enzymes of the basidiomycetes Coprinopsis cinerea and Pleurotus ostreatus - submerged and solid state fermentation, morphological studies of liquid cultures and characterization of new laccases. Georg-August-University Göttingen, 294. Retrieved from https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B127-A
Rzymski, P., Budka, A., Siwulski, M., Jasi, A., Kala, P., Poniedzia, B., & Monika, G. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66(December 2017), 168–178. https://doi.org/10.1016/j.jfca.2017.12.018
Saeki, N., Takeda, H., Tanesaka, E., & Yoshida, M. (2011). Induction of manganese peroxidase and laccase by Lentinula edodes under liquid culture conditions and their isozyme detection by enzymatic staining on native-PAGE. Mycoscience, 52(2), 132–136. https://doi.org/10.1007/s10267-010-0076-1
Sánchez, C. (2004). Modern aspects of mushroom culture technology. Biotechnol, Appl Microbiol, 756–762. https://doi.org/10.1007/s00253-004-1569-7
Sánchez O. J., Montoya S., and V. L. M. (2015). Polysaccharide production by submerged fermentation. Springer International Publishing, 452–470. https://doi.org/10.1007/978-3-319-16298-0
Savić, M., Anđelković, I., Duvnjak, D., Matijašević, D., Avramović, A., Pešić-Mikulec, D., & Nikšić, M. (2012). The fungistatic activity of organic selenium and its application to the production of cultivated mushrooms Agaricus bisporus and Pleurotus spp. Archive of Biological Science, 64(4), 1455–1463. https://doi.org/10.2298/ABS1204455S
Shcherba, V. V, & Babitskaya, V. G. (2004). The Carbohydrates of Submerged Mycelium of Xylotrophic Basidiomycetes. 40(6), 551–554.
Shenbhagaraman, R., Jagadish, L. K., & Premalatha, K. (2012). Optimization of extracellular glucan production from Pleurotus eryngii and its impact on angiogenesis. International Journal of Biological Macromolecules, 50, 957–964. https://doi.org/10.1016/j.ijbiomac.2012.02.008
Sheng, L., Zhu, G., & Tong, Q. (2014). Effect of uracil on pullulan production by Aureobasidium pullulans CGMCC1234. Carbohydrate Polymers, 101(1), 435–437. https://doi.org/10.1016/j.carbpol.2013.09.063
Shu, C. H., & Lung, M. Y. (2004). Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochemistry, 39(8), 931–937. https://doi.org/10.1016/S0032-9592(03)00220-6
Simonić, J., Stajić, M., Glamočlija, J., Vukojević, J., Duletić-Laušević, S., & Brčeski, I. (2008). Optimization of submerged cultivation conditions for extra- and intracellular polysaccharide production by medicinal Ling Zhi or Reishi mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms, 10(4), 351–360. https://doi.org/10.1615/IntJMedMushr.v10.i4.80
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18. https://doi.org/10.1016/j.bej.2008.10.019
Smania, E. F. A., Monache, F. D., Jr, A. S., Yunes, R. A., & Cuneo, R. S. (2003). Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia, 74(03), 375–377. https://doi.org/10.1016/S0367-326X(03)00064-9
Smith, G. M., & Calam, C. T. (1980). Variations in inocula and their influence on the productivity of antibiotic fermentations. Biotechnology Letters, 2(6), 261–266. https://doi.org/10.1007/BF00239854
Smith, J. E., Rowan, N. J., & Sullivan, R. (2002). Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. In Biotechnology Letters (Vol. 24).
Song, C. H., Cho, K. Y., & Nair, N. G. (1987). A Synthetic Medium for the Production of Submerged Cultures of Lentinus Edodes . Mycologia, 79(6), 866–876. https://doi.org/10.1080/00275514.1987.12025475
Song, M., Kim, N., Lee, S., & Hwang, S. (2007). Use of whey permeate for cultivating Ganoderma lucidum mycelia. Journal of Dairy Science, 90(5), 2141–2146. https://doi.org/10.3168/jds.2006-690
Stamets, P. (2000). Growing Gourmet and Medicinal Mushrooms. Potter/TenSpeed/Harmony.
Suárez Arango, C., & Nieto, I. J. (2013). Cultivo biotecnológico de macrohongos comestibles: Una alternativa en la obtención de nutracéuticos. Revista Iberoamericana de Micologia, 30(1), 1–8. https://doi.org/10.1016/j.riam.2012.03.011
Suárez, C. (2012). Utilización de la fermentación líquida de Lentinula edodes (shiitake), para la producción de metabolitos secundarios bioactivos y evaluación de su potencial empleo en la producción de un alimento funcional. Universidad Nacional de Colombia.
Subramaniyam, R. and Vimala, R. (2012). Solid State and Submerged Fermentation for the Production of Bioactive Substances : a Comparative Study. 3(3), 480–486.
Sun, L., Zhang, Z., Xin, G., Sun, B., Bao, X., Wei, Y., … Xu, H. (2020). Advances in umami taste and aroma of edible mushrooms. Trends in Food Science & Technology, 96(December 2019), 176–187. https://doi.org/10.1016/j.tifs.2019.12.018
Tang, Y. J., & Zhong, J. J. (2004). Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochemical Engineering Journal, 21(3), 259–264. https://doi.org/10.1016/j.bej.2004.06.008
Tang, Y. J., Zhu, L. W., Li, H. M., & Li, D. S. (2007). Submerged culture of mushrooms in bioreactors - Challenges, current state-of-the-art, and future prospects. Food Technology and Biotechnology, 45(3), 221–229.
Tang, Y., & Zhong, J. (2002). Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. 31, 20–28.
Tavares, A. P. M., Agapito, M. S. M., Coelho, M. A. Z., Silva, J. A. L., & Coutinho, J. A. P. (2005). Selection and optimization of culture medium for exopolysaccharide production by Coriolus ( Trametes ) versicolor. 1499–1507. https://doi.org/10.1007/s11274-005-7370-7
Tepwong, P., Giri, A., & Ohshima, T. (2012). Effect of mycelial morphology on ergothioneine production during liquid fermentation of Lentinula edodes. Mycoscience, 53(2), 102–112. https://doi.org/10.1007/s10267-011-0145-0
Tepwong, P., & Ohshima, T. (2009). Biosynthesis of ergothioneine during different stages of submerged fermentation of “Shiitake” (Lentinus edodes) mushroom and their bioactive properties. Journal of Bioscience and Bioengineering, 108, S4–S5. https://doi.org/10.1016/j.jbiosc.2009.08.021
Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013
Tsivileva, O. M., Nikitina, V. E., & Garibova, L. V. (2005). Effect of culture medium composition on the activity of extracellular lectins of Lentinus edodes. Prikladnaia Biokhimiia i Mikrobiologiia, 41(2), 200–203.
Turło, J., Gutkowska, B., Herold, F., Krzyczkowski, W., Błazewicz, A., & Kocjan, R. (2008). Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology, 43(4–5), 369–374. https://doi.org/10.1016/j.enzmictec.2008.05.005
Turło, Jadwiga. (2014). The biotechnology of higher fungi - current state and perspectives. Folia Biologica et Oecologica, 10, 49–65. https://doi.org/10.2478/fobio-2014-0010
Turło, Jadwiga, Gutkowska, B., & Herold, F. (2010). Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food and Chemical Toxicology, 48(4), 1085–1091. https://doi.org/10.1016/j.fct.2010.01.030
Vega-Oliveros, C. ; (2016). Comparación de la producción de metabolitos secundarios bioactivos con dos fuentes de carbono en la fermentación líquida de una especie de Pleurotus y su uso potencial en un alimento de tipo funcional.
Vetchinkina, E. P., Pozdnyakova, N. N., & Nikitina, V. E. (2008). Enzymes of the xylotrophic basidiomycete Lentinus edodes F-249 in the course of morphogenesis. Microbiology, 77(2), 144–150. https://doi.org/10.1134/S0026261708020045
Viccini, G., Mitchell, D. A., Boit, S. D., Gern, J. C., Da Rosa, A. S., Costa, R. M., … Krieger, N. (2001). Analysis of Growth Kinetic Profiles in Solid-State Fermentation. Food Technology and Biotechnology, 39(4), 271–294.
Vinokurov, V. A., Barkov, A. V, Krasnopol, L. M., & Mortikov, E. S. (2010). CURRENT PROBLEMS . Alternative Fuels Technology RENEWABLE FEEDSTOCK SOURCES. 46(2), 9–11.
Wagner, R., Mitchell, D. A., Sassaki, G. L., & Amazonas, M. A. L. D. A. (2004). Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. Journal of Biotechnology, 114(1–2), 153–164. https://doi.org/10.1016/j.jbiotec.2004.06.013
Wagner, R., Mitchell, D. A., Sassaki, G. L., De Almeida Amazonas, M. A. L., & Berovič, M. (2003). Current Techniques for the Cultivation of Ganoderma lucidum for the Production of Biomass, Ganoderic Acid and Polysaccharides. Food Technology and Biotechnology, 41(4), 371–382.
Wang, Y., & Lu, Z. (2004). Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa ( Pers . ex Fr .) Quel . AS 5 . 245 under submerged cultivation. 20, 39–47. https://doi.org/10.1016/j.bej.2004.04.004
Wasser, S P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol, 258–274. https://doi.org/10.1007/s00253-002-1076-7
Wasser, Solomon P., & Weis, A. L. (1999). Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). International Journal of Medicinal Mushrooms, 1(1), 31–62. https://doi.org/10.1615/intjmedmushrooms.v1.i1.30
Wasser, Solomon P. (2010). Medicinal Mushroom Science : History , Current Status , Future Trends , and Unsolved Problems. 12(1), 1–16.
Wasser, Solomon P. (2014). Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges. https://doi.org/10.4103/2319-4170.138318
Wolters, M., Ströhle, A., & Hahn, A. (2004). Cobalamin: A critical vitamin in the elderly. Preventive Medicine, 39(6), 1256–1266. https://doi.org/10.1016/j.ypmed.2004.04.047
Wu, X. J., & Hansen, C. (2008). Antioxidant capacity, phenolic content, and polysaccharide content of Lentinus edodes grown in whey permeate-based submerged culture. Journal of Food Science, 73(1). https://doi.org/10.1111/j.1750-3841.2007.00595.x
Xiao, J. H., Chen, D. X., Liu, J. W., Liu, Z. L., Wan, W. H., Fang, N., … Liang, Z. Q. (2004). Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. 1105–1116. https://doi.org/10.1111/j.1365-2672.2004.02235.x
Xiong, Q., Wilson, W. K., & Pang, J. (2007). The Liebermann-Burchard reaction: Sulfonation, desaturation, and rearrangment of cholesterol in acid. Lipids, 42(1), 87–96. https://doi.org/10.1007/s11745-006-3013-5
Xu, C., Kim, S., Hwang, H., Choi, J., & Yun, J. (2003). Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. 38.
Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances, 29(6), 667–674. https://doi.org/10.1016/j.biotechadv.2011.05.003
Xu, X., Yan, H., Tang, J., Chen, J., & Zhang, X. (2014a). Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Critical Reviews in Food Science and Nutrition, 54(4), 474–487. https://doi.org/10.1080/10408398.2011.587616
Xu, X., Yan, H., Tang, J., Chen, J., & Zhang, X. (2014b, January). Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Critical Reviews in Food Science and Nutrition, Vol. 54, pp. 474–487. https://doi.org/10.1080/10408398.2011.587616
Yang, F.-C., & Liau, C.-B. (1998). The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. In Process Biochemist O (Vol. 33).
Yang, J. P., Hsu, T., Lin, F., Hsu, W., & Chen, Y. (2012). Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH1. Carbohydrate Polymers, 90(1), 174–180. https://doi.org/10.1016/j.carbpol.2012.05.011
Zárate-Chaves, C. A., Romero-Rodríguez, M. C., Niño-Arias, F. C., Robles-Camargo, J., Linares-Linares, M., Rodríguez-Bocanegra, M. X., & Gutiérrez-Rojas, I. (2013). Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology, 44(1), 215–223. https://doi.org/10.1590/S1517-83822013005000032
Zhang, Y., Li, S., Wang, X., Zhang, L., & Cheung, P. C. K. (2011). Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids, 25(2), 196–206. https://doi.org/10.1016/j.foodhyd.2010.02.001
Zhong, J. J., & Tang, Y. J. (2004). Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Advances in Biochemical Engineering/Biotechnology, Vol. 87, pp. 25–59. https://doi.org/10.1007/b94367
Zou, X. (2005). Optimization of nutritional factors for exopolysaccharide production by submerged cultivation of the medicinal mushroom Oudemansiella radicata. World Journal of Microbiology and Biotechnology, 21(6–7), 1267–1271. https://doi.org/10.1007/s11274-005-1941-5 | |