dc.contributor | Niño Vásquez, Luis Fernando | |
dc.contributor | Bobadilla, Jaime Leonardo | |
dc.contributor | laboratorio de Investigación en Sistemas Inteligentes Lisi | |
dc.creator | Bayuelo Sierra, Alfredo José | |
dc.date.accessioned | 2022-03-23T18:54:29Z | |
dc.date.available | 2022-03-23T18:54:29Z | |
dc.date.created | 2022-03-23T18:54:29Z | |
dc.date.issued | 2022-03 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81329 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La planeación del movimiento para sistemas robóticos (o simplemente robots, o vehículos) es un problema bastante bien estudiado. Resultados significativos se han obtenido en la literatura y se han llevado a la práctica en la industria y otros usos comerciales. Sin embargo, altos costos computacionales y simplificaciones hechas en la formulación de los problemas presentan retos abiertos y oportunidades de investigación. Este trabajo presenta estrategias para ayudar en la solución del problema de navegación, y otros relacionados, en cuatro escenarios: Cuando no se conoce el Modelo que describe el vehículo, No se conoce la posición ni orientación del vehículo, no se conoce el Mapa del lugar, Y cuando no se conoce la intención (aliado/adversario) de otros robots en el ambiente. Primero, se presenta una estrategia que usa ambientes simulados realísticos para superar la falta de modelo del vehículo o las dificulatades que conlleven su cálculo. Los ambientes simulados se han beneficiado de las mejoras en los sistemas computarizados de la última década; por ejempo, los juegos de computadora han progresivamente mostrado ambientes más y más realistas, y estos han sido ya usados para entrenar robots al mostrarle a los sensores del robot esta información como cierta, de tal forma que se logra que los robots aprendan de secuencias del juego, de esta misma forma, en este trabajo se usan los simuladores para ayudar a resolver el problema de la navegación. También se presenta un esquema de planeación basado en la retro alimentación para un sencillo robot que rebota, mostrando cómo dicho robot puede navegar ambientes complejos sin saber su posición en todo momento. Por supuesto el mapa debe ser conocido para crear tal esquema de planeación, cuando no se conoce el mapa, la estrategia conocida como Localización y Mapeo Simultaneos, puede usarse para determinar el mapa alrededor y encontrarse en el mismo. Finalmente, cuando se consideran robots más simples, puede llegar a ser necesario usar más de un robot para cumplir una tarea, y puede que en el ambiente hayan robots adversarios, por lo tanto, se presenta una estrategia que permite comunicarse para evitar colisiones que mantiene la privacidad al mismo tiempo. (Texto tomado de la fuente) | |
dc.description.abstract | The problem of Motion Planning for Robotic Systems (in this work: robot or vehicles) has been well studied. Some significant outcomes have been accomplished, and good results demonstrated in practical situations in industry and other commercial uses. Nevertheless, high computational cost and several assumptions on the problems present open challenges and opportunities for research. This work presents strategies to help in the solution of the navigation and other related problems for four different scenarios: unknown vehicle model, unknown positions/orientation of the vehicle, unknown map to navigate and unknown intention of other vehicles in the same environment. First, realistic simulation is used to overcome the lack of a model, or the difficulties to calculate it. Simulated environments have taken advantage of the improvements in computer systems in the last decades; for example, computer games have progressively shown more realistic environments, these environments have already been used to train models by fooling the sensors of robots and making them to learn from gameplays, in this fashion, simulators are used here to help solving the navigation problem. It is also presented here a feedback-based motion planer for a simple bouncing robot, showing how it can navigate a complex world even if the current position is not know all the time. Of course the map must be known before hand to create such a plan, for the case where the map is not known a priori, a strategy for simultaneous localization and mapping is presented here to determine the world around and the position of the vehicle in such map. Finally, when considering simpler robots, it might be necessary to use multiple of them to succeed at a particular task, and they might also be in the presence of a third party robot, hence, a strategy is presented here to communicate and avoid collisions while preserving privacy. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación | |
dc.publisher | Departamento de Ingeniería de Sistemas e Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Tauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Minimalist Robot
Navigation and Coverage Using a Dynamical System Approach. In 2017
First IEEE International Conference on Robotic Computing (IRC), pages
249–256. IEEE, 4 2017. | |
dc.relation | Tauhidul Alam, Leonardo Bobadilla, and Dylan A Shell. Minimalist robot
navigation and coverage using a dynamical system approach. In Proceedings
of IEEE International Conference on Robotic Computing, pages 249–256,
2017. | |
dc.relation | Tauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Space-Efficient
Filters for Mobile Robot Localization from Discrete Limit Cycles. IEEE
Robotics and Automation Letters, 3(1):257–264, 1 2018. | |
dc.relation | Mikhail J Atallah and Wenliang Du. Secure multi-party computational geometry. In Proceedings of the Workshop on Algorithms and Data Structures,
pages 165–179. Springer, 2001. | |
dc.relation | Ali-akbar Agha-mohammadi, Saurav Agarwal, Sung-Kyun Kim, Suman
Chakravorty, and Nancy M. Amato. SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space. IEEE
Transactions on Robotics, 34(5):1195–1214, 10 2018. | |
dc.relation | Ali-akbar Agha-mohammadi, Suman Chakravorty, and Nancy M Amato.
FIRM: Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2 2014. | |
dc.relation | Ali-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Amato.
FIRM: Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2014 | |
dc.relation | Tauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N.
Smith. A Data-Driven Deployment Approach for Persistent Monitoring in
Aquatic Environments. In 2018 Second IEEE International Conference on
Robotic Computing (IRC), pages 147–154. IEEE, 1 2018 | |
dc.relation | Tauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N
Smith. A data-driven deployment approach for persistent monitoring in
aquatic environments. In Proceedings of IEEE International Conference on
Robotic Computing, pages 147–154, 2018. | |
dc.relation | Tauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N
Smith. An underactuated vehicle localization method in marine environments. Technical report, 2018. | |
dc.relation | Tauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. An underactuated vehicle localization method in marine environments. In Proceedings of MTS/IEEE OCEANS Charleston, pages 1–8, 2018. | |
dc.relation | Jacob Anderson and Ryan N. Smith. Predicting Water Properties with Markov Random Fields for Augmented Terrain-Based Navigation in Autonomous
Underwater Vehicles. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans
(OTO), pages 1–5. IEEE, 5 2018. | |
dc.relation | Tim Bailey. Mobile robot localisation and mapping in extensive outdoor
environments. pages 121–125. Ph.D. dissertation, 2002. | |
dc.relation | Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena scientific Belmont, MA, 2005 | |
dc.relation | Peter Bogetoft, Dan Lund Christensen, Ivan Damg˚ard, Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen,
Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation goes live.
In Proceedings of the International Conference on Financial Cryptography
and Data Security, pages 325–343, 2009. | |
dc.relation | Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for
secure multi-party computation. In Proceedings of the 15th ACM Conference
on Computer and Communications Security, pages 257–266. ACM, 2008 | |
dc.relation | Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping (slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117,
2006 | |
dc.relation | Adam Bry and Nicholas Roy. Rapidly-exploring Random Belief Trees for
motion planning under uncertainty. In 2011 IEEE International Conference
on Robotics and Automation, pages 723–730. IEEE, 5 2011. | |
dc.relation | Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential
composition of dynamically dexterous robot behaviors. The International
Journal of Robotics Research, 18(6):534–555, 1999. | |
dc.relation | Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms
in the semi-honest model. In Proceedings of the International Conference on
the Theory and Application of Cryptology and Information Security, pages
236–252. Springer, 2005. | |
dc.relation | V. Chen, M. Batalin, W. Kaiser, and Gaurav S. Sukhatme. Towards spatial and semantic mapping in aquatic environments. In IEEE International
Conference on Robotics and Automation, pages 629 – 636, Pasadena, CA,
May 2008 | |
dc.relation | Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard, Lydia E Kavraki, and Sebastian Thrun. Principles of Robot
Motion: Theory, Algorithms, and Implementation. MIT press, 2005. | |
dc.relation | Suman Chakravorty and S. Kumar. Generalized sampling based motion
planners with application to nonholonomic systems. In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages 4077–4082.
IEEE, 10 2009. | |
dc.relation | Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal v2. 1. In Proceedings of the International Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2017. | |
dc.relation | T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2001. | |
dc.relation | Qinyue Chen, Sheue-Er Low, Jeremiah WE Yap, Adjovi KX Sim, Yu-Yang
Tan, Benjamin WJ Kwok, Jeannie SA Lee, Chek-Tien Tan, Wan-Ping Loh,
Bernard LW Loo, et al. Immersive virtual reality training of bioreactor operations. In 2020 IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE), pages 873–878. IEEE, 2020. | |
dc.relation | A. Comport, E. Malis, and P. Rives. Real-time quadrifocal visual odometry.
International Journal of Robotics Research, Special issue on Robot Vision,
29(2 - 3):245 – 266, 2010. | |
dc.relation | L. G. Crespo and J. Q. Sun. Stochastic Optimal Control of Nonlinear Systems via Short-Time Gaussian Approximation and Cell Mapping. Nonlinear
Dynamics, 28(3/4):323–342, 2002 | |
dc.relation | David A Caron, Beth Stauffer, Steffi Moorthi, Amarjeet Singh, Maxim Batalin, Eric Graham, Mark Hansen, William Kaiser, Jnaneshwar Das, Arvind A
Pereira, Amit Dhariwal, Bin Zhang, Carl Oberg, and Gaurav S Sukhatme.
Macro- to fine-scale spatial and temporal distributions and dynamics of phytoplankton and their environmental driving forces in a small subalpine lake
in southern {c}alifornia, {usa}. Journal of Limnology and Oceanography,
53(5):2333–2349, 2008 | |
dc.relation | Wenliang Du and Mikhail J Atallah. Secure multi-party computation problems and their applications: a review and open problems. In Proceedings of
the Workshop on New Security Paradigms, pages 13–22, 2001. | |
dc.relation | Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential
Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000. | |
dc.relation | J Das, T Maughan, M McCann, M Godin, T O’Reilly, M Messie, F Bahr,
K Gomes, F Py, J Bellingham, G Sukhatme, and K Rajan. Towards mixedinitiative, multi-robot field experiments: Design, deployment, and lessons
learned. In Proceedings of the Intelligent Robots and Systems (IROS) Conference, 2011. | |
dc.relation | J Das, F Py, T Maughan, M Messie, T O’Reilly, J Ryan, G S Sukhatme, and
K Rajan. Coordinated Sampling of Dynamic Oceanographic Features with
AUVs and Drifters. Intnl. J. of Robotics Research, 31(5):626–646, 2012 | |
dc.relation | Jorge Estrela da Silva, Bruno Terra, Ricardo Martins, and Joao Borges
de Sousa. Modeling and simulation of the lauv autonomous underwater
vehicle. In 13th IEEE IFAC international conference on methods and models
in automation and robotics, volume 1. Szczecin, Poland Szczecin, Poland,
2007. | |
dc.relation | Robin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in
cluttered environments. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 42–49. IEEE, 5 2015 | |
dc.relation | Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006 | |
dc.relation | David Eppstein, Michael T Goodrich, and Roberto Tamassia. Privacypreserving data-oblivious geometric algorithms for geographic data. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 13–22. ACM, 2010. | |
dc.relation | Xavier Emery. The kriging update equations and their application to the
selection of neighboring data. Computational Geosciences, 13(3):269–280,
Sep 2009 | |
dc.relation | Keith B Frikken and Mikhail J Atallah. Privacy preserving route planning.
In Proceedings of the ACM Workshop on Privacy in the Electronic Society,
pages 8–15, 2004. | |
dc.relation | Drone airborne collisions report. https://www.faa.gov/newsroom/
researchers-release-report-drone-airborne-collisions?newsId=
89246. Published: 28-11-2017, Accessed: 01-10-2021. | |
dc.relation | C. Fookes, F. Lin, V. Chandran, and S. Sridharan. Evaluation of image
resolution and super-resolution on face recognition performance. Journal of
Visual Communication and Image Representation, 23(1):75 – 93, 2012 | |
dc.relation | C. Fruh and A. Zakhor. Constructing 3d city models by merging aerial and ground views. IEEE Computer Graphics and Applications, 23(6):52 – 61,
2003. | |
dc.relation | Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme,
volume 20. Stanford University Stanford, 2009. | |
dc.relation | Stephanie Gil, Swarun Kumar, Mark Mazumder, Dina Katabi, and Daniela
Rus. Guaranteeing spoof-resilient multi-robot networks. Autonomous Robots, 41(6):1383–1400, 2017. | |
dc.relation | Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing selfdriving cars with search-based procedural content generation. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 318–328, 2019 | |
dc.relation | Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pages 218–229, 1987 | |
dc.relation | Jose E Guivant and Eduardo Mario Nebot. Optimization of the simultaneous
localization and map-building algorithm for real-time implementation. IEEE
Transactions on Robotics and Automation, 17(3):242–257, 2001 | |
dc.relation | Sandeep Hans, Sarat C Addepalli, Anuj Gupta, and Kannan Srinathan. On
privacy preserving convex hull. In Proceedings of the International Conference on Availability, Reliability and Security, pages 187–192, 2009. | |
dc.relation | Tomislav Hengl, Gerard BM Heuvelink, and Alfred Stein. A generic framework for spatial prediction of soil variables based on regression-kriging.
Geoderma, 120(1-2):75–93, 2004. | |
dc.relation | Jeong hwan Jeon, Sertac Karaman, and Emilio Frazzoli. Optimal samplingbased feedback motion trees among obstacles for controllable linear systems
with linear constraints. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 4195–4201, 2015 | |
dc.relation | Daniel Hernandez, Ryan N Smith, Enrique Fernandez, Josep Isern, Jorge
Cabrera, Antonio Dominguez, and Victor Prieto. Glider path-planning for
optimal sampling of mesoscale eddies. In Fourteenth International Conference on Computer Aided Systems Theory, Workshop on Marine Robotics
and Applications, 2 2013. | |
dc.relation | Chieh Su Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear systems, volume 64. Springer Science & Business Media, 2013. | |
dc.relation | Raja Jurdak, Alberto Elfes, Branislav Kusy, Ashley Tews, Wen Hu, Emili
Hernandez, Navinda Kottege, and Pavan Sikka. Autonomous surveillance
for biosecurity. Trends in biotechnology, 33(4):201–207, 2015 | |
dc.relation | Rae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl,
Abbas Abdolmaleki, Tom Erez, Yuval Tassa, and Francesco Nori. Modelling
generalized forces with reinforcement learning for sim-to-real transfer. arXiv
preprint arXiv:1910.09471, 2019. | |
dc.relation | L´eonard Jaillet and Josep M Porta. Path planning under kinematic constraints by rapidly exploring manifolds. IEEE Transactions on Robotics,
29(1):105–117, 2012. | |
dc.relation | Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–
894, 2011 | |
dc.relation | Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2149–2154. IEEE, 2004. | |
dc.relation | Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996 | |
dc.relation | Steven M LaValle et al. Sensing and filtering: A fresh perspective based on
preimages and information spaces. Foundations and Trends R in Robotics,
1(4):253–372, 2012. | |
dc.relation | Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998. | |
dc.relation | Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006. | |
dc.relation | Steven M LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/ | |
dc.relation | S. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine,
18(2):108–118, 6 2011 | |
dc.relation | S. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine,
18(1):79–89, March 2011 | |
dc.relation | Steven M. LaValle. Motion planning: Wild frontiers. IEEE Robotics Automation Magazine, 18(2):108–118, 2011. | |
dc.relation | Benoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive quadrotor flight through cluttered environments using mixed integer
programming. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1469–1475. IEEE, 5 2016 | |
dc.relation | Jim A Ledin. Hardware-in-the-loop simulation. Embedded Systems Programming, 12:42–62, 1999 | |
dc.relation | Stephen R Lindemann and Steven M LaValle. Multiresolution approach for
motion planning under differential constraints. In Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006.,
pages 139–144. IEEE, 2006. | |
dc.relation | C. Liu, H.-Y. Shum, and W. Freeman. Face hallucination: Theory and practice. Internaltional Journal of Computer Vision, 75(1):115 – 134, 10 2007. | |
dc.relation | Kevin M. Lynch, Ira B. Schwartz, Peng Yang, and Randy A. Freeman.
Decentralized Environmental Modeling by Mobile Sensor Networks. IEEE
Transactions on Robotics, 24(3):710–724, June 2008. | |
dc.relation | Steven La Valle. Motion Planning. IEEE Robotics & Automation Magazine,
18(2):108–118, 6 2011. | |
dc.relation | Kaitai Liang, Bo Yang, Dake He, and Min Zhou. Privacy-preserving computational geometry problems on conic sections. Journal of Computational
Information Systems, 7(6):1910–1923, 2011. | |
dc.relation | Gordon E Moore et al. Cramming more components onto integrated circuits,
1965. | |
dc.relation | M. Mason. The mechanics of manipulation. In Proceedings. 1985 IEEE
International Conference on Robotics and Automation, volume 2, pages 544–
548. Institute of Electrical and Electronics Engineers, 1985. | |
dc.relation | Matthew Mason. The mechanics of manipulation. In Proceedings of IEEE
International Conference on Robotics and Automation, volume 2, pages 544–
548, 1985. | |
dc.relation | Bethany H. McCarthy. Ibm unveils world’s first 2 nanometer chip technology,
opening a new frontier for semiconductors. https://newsroom.ibm.com/
2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,
-Opening-a-New-Frontier-for-Semiconductors#assets_all, May
2021. Accessed: 01-10-2021. | |
dc.relation | Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplaysecure two-party computation system. In Proceedings of the USENIX Security Symposium, volume 4, page 9. San Diego, CA, USA, 2004. | |
dc.relation | Yuriy Mileyko, Gregory Reis, Monique Chyba, and Ryan N Smith. Energyefficient control strategies for updating an augmented terrain-based navigation map for autonomous underwater navigation. In 2017 IEEE Conference
on Control Technology and Applications (CCTA), pages 223–228. IEEE, 8
2017. | |
dc.relation | Musa Morena Marcusso Manh˜aes, Sebastian A. Scherer, Martin Voss,
Luiz Ricardo Douat, and Thomas Rauschenbach. UUV simulator: A gazebobased package for underwater intervention and multi-robot simulation. In
OCEANS 2016 MTS/IEEE Monterey. IEEE, sep 2016 | |
dc.relation | Anirudha Majumdar and Russ Tedrake. Funnel Libraries for Real-Time
Robust Feedback Motion Planning. 1 2016. | |
dc.relation | Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research,
36(8):947–982, 2017 | |
dc.relation | Elon Musk. Tesla ai day. https://www.youtube.com/watch?v=
j0z4FweCy4M. Accessed: 01-10-2021 | |
dc.relation | Sen Nag et al. How much of the ocean have we explored? WorldAtlas, 2019 | |
dc.relation | Juan Nieto, Jose Guivant, and Eduardo Nebot. Denseslam: Simultaneous
localization and dense mapping. The International Journal of Robotics Research, 25(8):711–744, 2006 | |
dc.relation | Jason M O’Kane and Steven M LaValle. Comparing the power of robots.
The International Journal of Robotics Research, 27(1):5–23, 2008. | |
dc.relation | Jason M O’Kane and Dylan A Shell. Automatic design of discreet discrete
filters. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 353–360, 2015. | |
dc.relation | Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques, pages 223–238. Springer, 1999 | |
dc.relation | Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. A Survey of Motion Planning and Control Techniques for SelfDriving Urban Vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–
55, 3 2016 | |
dc.relation | Brian Paden, Michal C´ap, Sze Zheng Yong, Dmitry Yershov, and Emilio ˇ
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016. | |
dc.relation | S. Prince, J. Elder, J. Warrell, and F. Felisberti. Tied factor analysis for
face recognition across large pose differences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(6):970 – 984, 2008. | |
dc.relation | Amanda Prorok and Vijay Kumar. A macroscopic privacy model for heterogeneous robot swarms. In International Conference on Swarm Intelligence,
pages 15–27. Springer, 2016. | |
dc.relation | M Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger, R Wheeler, and A Y Ng. Ros: an open-source robot operating system. In Proceedings
of the Open-Source Software workshop of the International Conference on
Robotics and Automation, 2009. | |
dc.relation | Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing
photorealism enhancement. arXiv preprint arXiv:2105.04619, 2021. | |
dc.relation | Gregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Augmented Terrain-Based Navigation to Enable
Persistent Autonomy for Underwater Vehicles. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 292–298. IEEE, 4
2017 | |
dc.relation | Gregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. In MTS/IEEE
Oceans, Aberdeen, Scotland, April 2017. Best Student Paper Finalist | |
dc.relation | Gregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Jonathan Kelly,
Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation.
In OCEANS 2017 - Aberdeen, pages 1–8. IEEE, 6 2017 | |
dc.relation | E Rimon and DE Koditschek. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5):501–
518, 1992 | |
dc.relation | D L Rudnick and M J Perry. ALPS: Autonomous and Lagrangian Platforms and Sensors, Workshop Report. Technical report, http://www.geoprose.com/ALPS, 2003 | |
dc.relation | David Ribas, Pere Ridao, Jose Neira, and Juan D Tardos. SLAM using an
imaging sonar for partially structured underwater environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5040–5045, 2006 | |
dc.relation | David Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater
SLAM in a marina environment. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1455–1460,
2007. | |
dc.relation | David Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater
SLAM in man-made structured environments. Journal of Field Robotics,
25(11-12):898–921, 2008. | |
dc.relation | Venkatraman Renganathan and Tyler Summers. Spoof resilient coordination for distributed multi-robot systems. In Proceedings of the International
Symposium on Multi-Robot and Multi-Agent Systems, pages 135–141, 2017. | |
dc.relation | Andrei A Rusu, Matej Veˇcer´ık, Thomas Roth¨orl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning, pages 262–270. PMLR, 2017 | |
dc.relation | Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. | |
dc.relation | Ryan N Smith, Yi Chao, Peggy P Li, David A Caron, Burton H Jones,
and Gaurav S Sukhatme. Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes based on
Predictions from a Regional Ocean Model. International Journal of Robotics
Research, 29(12):1475–1497, October 2010. | |
dc.relation | T. Senlet and A. Elgammal. Satellite image based precise robot localization
on sidewalks. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2647 – 2653, 5 2012. | |
dc.relation | J Q Sun and CS T Hsu. The generalized cell mapping method in nonlinear
random vibration based upon short-time gaussian approximation. Journal
of Applied Mechanics, 57(4):1018–1025, 1990 | |
dc.relation | Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal samplingbased motion planning under differential constraints: the driftless case. In
2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 2368–2375. IEEE, 2015 | |
dc.relation | P Svestka, JC Latombe, and LE Overmars Kavraki. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996. | |
dc.relation | Andrew Stuntz, David Liebel, and Ryan N Smith. Enabling persistent autonomy for underwater gliders through terrain based navigation. In OCEANS
2015-Genova, pages 1–10. IEEE, 2015 | |
dc.relation | Alexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topographyfollowing-coordinate oceanic model. Ocean Modelling, 9(4):347–404, 1 2005. | |
dc.relation | Alexandre Sousa, Luis Madureira, Jorge Coelho, Jos´e Pinto, Jo˜ao Pereira,
Jo˜ao Borges Sousa, and Paulo Dias. Lauv: The man-portable autonomous
underwater vehicle. IFAC Proceedings Volumes, 45(5):268–274, 2012 | |
dc.relation | Markku Suomalainen, Alexandra Q Nilles, and Steven M LaValle. Virtual
reality for robots. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11458–11465. IEEE, 2020. | |
dc.relation | Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous Mobile Robots. MIT press, 2011 | |
dc.relation | Nitin Sydney and Derek A. Paley. Multi-vehicle control and optimization
for spatiotemporal sampling. In IEEE Conference on Decision and Control
and European Control Conference, pages 5607–5612. IEEE, December 2011 | |
dc.relation | Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, 2012. | |
dc.relation | Li Shundong, Dai Yigi, Wang Daoshun, and Luo Ping. A secure multiparty computation solution to intersection problems of sets and rectangles.
Progress in Natural Science, 16(5):538–545, 2006 | |
dc.relation | Sebastian Thrun et al. Robotic mapping: A survey. Exploring artificial
intelligence in the new millennium, 1(1-35):1, 2002 | |
dc.relation | Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972 | |
dc.relation | Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT press, 2005. | |
dc.relation | Sebastian Thrun. Probabilistic algorithms in robotics. AI Magazine,
21(4):93–93, 2000. | |
dc.relation | A. J. Titus, S. Kishore, T. Stavish, S. M. Rogers, and K. Ni. PySEAL:
A Python wrapper implementation of the SEAL homomorphic encryption
library. ArXiv e-prints, March 2018 | |
dc.relation | Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts.
LQR-trees: Feedback motion planning via sums-of-squares verification. The
International Journal of Robotics Research, 29(8):1038–1052, 2010. | |
dc.relation | Ben Upcroft, M.F. Ridley, L. Ong, B. Douillard, T. Kaupp, S. Kumar, T.A.
Bailey, Fabio Ramos, A. Makarenko, A. Brooks, S. Sukkarieh, and H F
Durrant-Whyte. Multi-level state estimation in an outdoor decentralised
sensor network. Springer Tracts in Advanced Robotics - Experimental Robotics, 39:355 – 365, 2008 | |
dc.relation | Antonio AC Vieira, Luis MS Dias, Guilherme AB Pereira, Jos´e A Oliveira, Maria Do Sameiro Carvalho, and Paulo Martins. Simulation model
generation for warehouse management: Case study to test different storage strategies. International Journal of Simulation and Process Modelling,
13(4):324–336, 2018. | |
dc.relation | Ulrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. Learning a
visuomotor controller for real world robotic grasping using simulated depth
images. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors,
Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of
Proceedings of Machine Learning Research, pages 291–300. PMLR, 13–15
Nov 2017. | |
dc.relation | Florian Wirnshofer, Philipp S. Schmitt, Wendelin Feiten, Georg v. Wichert,
and Wolfram Burgard. Robust, Compliant Assembly via Optimal Belief
Space Planning. 11 2018. | |
dc.relation | Dustin J Webb and Jur Van Den Berg. Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 5054–
5061, 2013. | |
dc.relation | Wencen Wu and Fumin Zhang. Cooperative exploration of level surfaces
of three dimensional scalar fields. Automatica, 47(9):2044–2051, September
2011. | |
dc.relation | Fu-Rui Xiong, Zhi-Chang Qin, Yang Xue, Oliver Sch¨utze, Qian Ding, and
Jian-Qiao Sun. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Communications
in Nonlinear Science and Numerical Simulation, 19(5):1465–1473, 5 2014. | |
dc.relation | Andrew C Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, pages 160–
164, 1982 | |
dc.relation | Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, pages
162–167, 1986 | |
dc.relation | Dmitry S. Yershov and Emilio Frazzoli. Asymptotically optimal feedback
planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive
mesh refinement. The International Journal of Robotics Research, 35(5):565–
584, 4 2016. | |
dc.relation | Dmitry S Yershov and Emilio Frazzoli. Asymptotically optimal feedback
planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive
mesh refinement. The International Journal of Robotics Research, 35(5):565–
584, 2016 | |
dc.relation | Fumin Zhang, D. M. Fratantoni, Derek Paley, J. Lund, and Naomi E. Leonard. Control of coordinated patterns for ocean sampling. International
Journal of Control, 80(7):1186 – 1199, 2007. | |
dc.relation | Y Zhang, M A Godin, J G Bellingham, and J P Ryan. Using an Autonomous
Underwater Vehicle to Track a Coastal Upwelling Front. IEEE Journal of
Oceanic Engineering, 37(3):338–347, July 2012. | |
dc.relation | Liangjun Zhang, Steven M LaValle, and Dinesh Manocha. Global vector
field computation for feedback motion planning. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 477–482, 2009. | |
dc.relation | Wenshuai Zhao, Jorge Pe˜na Queralta, and Tomi Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 737–744.
IEEE, 2020 | |
dc.relation | Yulin Zhang and Dylan A Shell. Complete characterization of a class of privacy-preserving tracking problems. International Journal of Robotics Research, 2018. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Planning under uncertainty using a dynamical systems approach for autonomous vehicles | |
dc.type | Trabajo de grado - Doctorado | |